
Pseudo Constant Time
Implementations of TLS
Are Only Pseudo Secure
Eyal Ronen, Kenny Paterson, Adi Shamir

Talk Outline

1. TLS and CBC_HMAC ciphersuite
2. Side channel attack mitigations:

Pseudo Vs Fully constant time
3. Padding attack on CBC_HMAC
4. New cache attacks on CBC_HMAC

Transport Layer Security (TLS)

• The most widely used cryptographic protocol
• Provides communication security (https, VPN, etc.)

• TLS handshake is used for authentication and
secure key exchange

• TLS Record layer protects the communication
• Allows for cryptographic agility using different

cipher suites

Transport Record Layer

TCP

Record Protocol

Handshake

Protocol

Alert

Protocol

HTTP,

other apps

Change

Cipher

Spec

Protocol

CBC_HMAC Ciphersuite in TLS

• Implements the HMAC-then-CBC scheme
• Once the most popular TLS record cipher suite
• Long history of practical implementation attacks

• Still widely used (Oct 2018)
• ~8% by Mozilla's Telemetry
• ~11% by ICSI Certificate Notary
• Better alternatives now available (e.g. AES-GCM)
• Supported for backwards compatibility

Crypto Scheme Vs Implementation

• HMAC-then-CBC functionality for TLS is secure* [Krawczyk01, PRS11]

Input OutputCrypto Scheme

Secret

Crypto Scheme Vs Implementation

• Securely implementing CBC_HMAC for TLS is hard
• Padding oracle attacks due to non constant time implementation

• All implementations were vulnerable to Lucky 13 [AP 2013]

• Multiple rounds of attacks and patches

Input OutputImplementation

Secret

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Result = MyTable[KeyBytes[5]]

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Result = MyTable[KeyBytes[5]]

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Result = MyTable[KeyBytes[5]]

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Result = MyTable[KeyBytes[5]]

Side channels attack mitigations

• Secret values should not change the code flow in any way

measurable by attacker

• Attacker might be able to see error messages, measure running

time, detect memory access patterns, and more

If SecretValue == 0 then Send2Attacker(“Bad secret value!”)

If KeyBits[1] == 1 then SlowFunction()

else FastFuntion()

Result = MyTable[KeyBytes[5]]

Pseudo Vs Fully Constant time
Full Constant time

• Program flow independent

from secret values

• Blocks all currently known

classes of attacks*

• “Full” is easy to test

• Very high code complexity
• Hard to write/review

• OpenSSL AES-NI CBC_HMAC

vulnerabilty (2013-2016)

Pseudo Constant time
• Mask program flow

dependencies on secret values

• Blocks only currently

implemented attacks

• Lower code complexity

• “Pseudo” is Hard to test
• Lucky 13 Strikes back [IIES 2015]

• Lucky Microseconds [AP 2016]

• ???

Our Findings

``All secure implementations are alike; each insecure implementation is

buggy in its own way.'' -- after Leo Tolstoy, Anna Karenina

• All fully constant time implementations of HMAC-then-CBC

are secure*

• All pseudo constant time implementations are vulnerable

• Amazon’s S2N, mbed TLS, GnuTLS, wolfSSL

• All countermeasures were buggy

• All implementations were vulnerable to different novel

variants of cache attacks

CBC_HMAC – Lucky 13 Attack

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC Padding oracles [Vaudenay 2002]

• In CBC mode Padding Oracles can be used to build a Decryption

Oracle

C

Valid/Invalid

Padding
Oracle

P=DecK(C)

Check
padding of P

CBC_HMAC – Timing Padding Oracle

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC_HMAC – Invalid Padding

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC_HMAC – Invalid Padding

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC_HMAC – Invalid Padding

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC_HMAC – Long Valid Padding

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC_HMAC – Short Valid Padding

MAC

SQN || HDR Payload fragment

P

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Decrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

Padding Oracle to Plaintext Recovery
• Needs multiple oracle queries

• TLS handshakes’ keys are dropped after any error
• Can only recover data that is fixed between TLS handshakes

• BEAST like attack on session cookies
• Use JavaScript in browser to repeatedly reopen connections
• At the start of each connection, the same session cookie is

sent in the first packet
• From the JavaScript we can control the offset of the session

cookie in the packet

Attack Scenario:
MiTM + Cache timing side channel

Attack Scenario:
MiTM + Cache timing side channel

Attack Scenario:
MiTM + Cache timing side channel

Attack Scenario:
MiTM + Cache timing side channel

Attack Scenario:
MiTM + Cache timing side channel

.COM

Attack Scenario:
MiTM + Cache timing side channel

Attack Scenario:
MiTM + Cache timing side channel

Attack Scenario:
MiTM + Cache timing side channel

From Timing to Cache based Oracle

• Prior to our attack there was no known attacks against the
fully patched pseudo constant time implementations
• The timing is pseudo constant
• The overall memory access pattern is constant

• Our main observation
• The temporal memory access pattern is not constant
• Using new variants of the PRIME+PROBE cache attack

we were able to recreate the padding oracle

CBC_HMAC – Memory Access Long Pad

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

CBC_HMAC – Memory Access Long Pad

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment
Memory Accessed
while decrypting

CBC_HMAC – Memory Access Long Pad

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

Memory Accessed
while verifying

CBC_HMAC – Memory Access Short Pad

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment PMAC tagPayload fragment

CBC_HMAC – Memory Access Short Pad

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment
Memory Accessed
while decrypting

PMAC tagPayload fragment

CBC_HMAC – Memory Access Short Pad

MAC

SQN || HDR Payload fragment

Padding

Decrypt

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

Payload fragment

Memory Accessed
while verifying

PMAC tagPayload fragment

Our results

• Exploiting the different temporal memory access patterns
we can recreate a Lucky 13 attack variant

• PoC for 3 plaintext recovery attack variants
• Synchronized probe PRIME+PROBE on Amazon’s s2n
• Synchronized prime PRIME+PROBE on wolfSSL, mbed

TLS and GnuTLS
• “PostFetch” cache attack on mbed TLS
• Greedy Algorithm to optimize plaintext recovery

CBC_HMAC with SHA-384 Bugs

• Most widely used CBC_HMAC cipher suite
• All pseudo constant time countermeasures

were vulnerable
• Dummy operation calculation wrongly based on

SHA-1/256 specific hardcoded values
• Some implementations didn’t even protect SHA-1/256

• Hard to test correctness of the pseudo constant time
countermeasure
• All constant time countermeasures were secure

Disclosure

• wolfSSL switched to full constant time (release 3.15.4)
• mbed TLS released security advisory with CVEs 2018-0497

and 2018-0497 that were marked as “high severity”
• Users urged to update to new version with interim fix
• Full constant time solution is planned

• Amazon s2n plans to disable CBC_HMAC by default and
switch to the BoringSSL full constant time implementation

• GnuTLS made several changes to address the bugs
• We believe that the code is still vulnerable to variants of the

attack

“PostFetch” Cache Attack

• We want to know what part of a short array was read
• Differentiate between long and short access patterns

inside a single cache line
• Continuous reading near the end of the cache line will

cause the next cache line to be prefetched
• Target our cache attack on the cache line storing the bytes

after the array

Cache Line 1 Cache Line 2

Accessed Memory No prefetching

“PostFetch” Cache Attack

• We want to know what part of a short array was read
• Differentiate between long and short access patterns

inside a single cache line
• Continuous reading near the end of the cache line will

cause the next cache line to be prefetched
• Target our cache attack on the cache line storing the bytes

after the array

Cache Line 1 Cache Line 2

Accessed Memory Prefetching

Synchronized probe PRIME+PROBE

• We want to measure the time difference
• E.g. between sending a message at tsend and a memory

access by the target at either tsend +t1 or tsend + t2

• We choose tprobe such that t1 < tprobe < t2

• We prime the memory before sending the message,
and probe at tsend + tprobe

• We also use synchronized prime PRIME+PROBE

Conclusion

• All pseudo constant time implementations we reviewed
• were buggy and still vulnerable to the original Lucky 13

attack.
• were vulnerable to one or more of our 3 novel cache

attacks
• Writing fully constant time code is hard but it is worth the

effort

• Any questions?

