
Minimizing regret in repeated play of games

Uriel Feige

May 12, 2013

1 Introduction

These notes are largely based on a survey on learning, regret minimization and equilibria
written by Avrim Blum and Yishay Mansour, and appearing as Chapter 4 of [NRTV07].
The main difference are in the presentation rather than in the content, and in the inclusion
of Section 1.5. The notes correspond to two 2-hour lectures in the course on algorithmic
game theory given in the Weizmann Institute in May 2013.

Suppose player P is faced with a game for which P knows his own payoff matrix, but
does not know the payoff matrix of the other players (or equivalently, knows payoff matrices
for the other players, but has no reason to assume that other players are rational). In this
general setting, one may represent (essentially without loss of generality) all remaining
players as one player Q, and hence the game may be assumed to be a 2-player game. How
should P play? If P has a dominant strategy, then playing it is a natural policy. But
in the absence of dominant strategies, solution concepts such as Nash equilibrium involve
the payoffs of both players, and hence P would not know which strategy corresponds to
such a solution concept. Moreover, it might be the case that Q is not willing to play some
strategies available to Q (e.g., they might be dominated by other strategies), so it could be
that the payoff matrix for P (say, as a row player) contains columns that are not really part
of the game. At this full generality of this situation, it is difficult to provide good advice
for P what to play. The content of these notes is a variation on the above situation, in
which some basic game G (for which P knows only his own payoff matrix) is repeated for
T rounds, and P wishes to maximizes the sum of expected payoffs from all rounds. In this
situation, P does have hope of playing intelligently, because at any given round P knows
what Q played in previous rounds, and P can use this information in deciding what to play
in the given round.

1.1 A formal model

There is a two player game G that is repeated for T rounds. In G, the row player P has a
set of N actions (strategies) and the column player Q has an arbitrary number of actions.
The payoff matrices of P and Q might contain arbitrarily many columns, and hence neither
matrix is given to P . Instead, whenever Q performs an action, the corresponding column
of P ’s payoff matrix is revealed to P . (The fact that P need not know his payoff matrix in
advance makes the results applicable in a wider range of settings.) The multi-round game
proceeds as follows. At a given round, first P chooses a probability distribution p over the

1



rows, then Q chooses a probability distribution over the columns, then a row and a column
are selected according to these distributions, P collects his payoff for the round and learns
the entire column played by Q (what P ’s payoff would have been for any other row). P ’s
goal is to play a multi-round strategy that maximizes the expected sum of payoffs collected
from all rounds.

It turns out that even the task of approximately maximizing P ’s payoff is hopeless.
Consider a game in which the payoff for P completely depends on Q’s action (what P plays
is irrelevant), and the payoff for Q is identically 0. Let Q declare his multi-round strategy in
advance: Q plays strategy 1 in round 1, and in all future rounds Q plays the same strategy
that P played on his first round. Hence the payoff for P is completely determined by P ’s
action in the first round. But not knowing his own payoff matrix, P has no idea what to
play in the first round.

To overcome the above difficulty, we change our goal in the above setting. Instead of
maximizing expected payoff for P , we wish to minimize the regret of P , compared to some
benchmark. Let us provide more details. First, without loss of generality, we assume that
all payoffs in the payoff matrix of P are scaled to be in the range [0, 1]. Given an execution
of the T -round game, the regret for P is the difference between the maximum payoff offered
by the benchmark and that actually obtained by P . We consider the following benchmark:

External regret. The benchmark is that of fixed action strategies against a nonadaptive
playerQ. Namely, for each of theN actions of P one computes the sum of payoffs that would
have been obtained had this action been played in all rounds, assuming that Q would play
in each round the same action played on that round in the given execution. The maximum
of these N values is taken as the benchmark.

The benchmark we compare against makes the assumption that Q’s play is unaffected
by P ’s play. However, as we shall see, the results we obtain relative to this benchmark are
informative even in (some) situations in which Q’s play is affected by P ’s play.

Observe that on a particular execution the external regret may be negative (the player
does better than the benchmark).

Our goal is to design algorithms that achieve external regret that is sublinear in T . This
would imply that the average regret per round tends to 0 as T grows.

As a convention, the term regret will mean external regret.

1.2 Some probabilistic preliminaries

To achieve sub-linear regret, the strategy for P might need to be randomized. This can
easily be seen by taking the basic game to be matching pennies. Hence we shall consider
randomized strategies for P , and compute expected regret. The matching pennies game
shows that even in the case N = 2 and 0/1 payoffs, the expected regret is at least Ω(

√
T ).

This can be proved as follows. Suppose that Q is playing uniformly at random. Then
the expected payoff for P is exactly T/2. On the other hand, the expected payoff for the
external regret benchmark if T/2 + Ω(

√
T ), because Q has constant probability of playing

one of his two actions at least Ω(
√
T ) times more often that the other action (the standard

deviation of T coin flips is Θ(
√
T )).

One can similarly show games for which the expected regret is at least Ω(logN) (even
for T = O(logN)). Consider a game with 0/1 payoffs that proceeds for T = log2N rounds
and in which the payoff matrix for P contains the 2N strings {0, 1}N as columns. If Q plays

2



completely at random in each round, then regardless of what P plays, the expected payoff
for P is exactly logN

2 . However, there is likely to be one action of P that would achieve a
payoff of 1 in every round (each action has probability 1/N of achieving this, independently
of other actions). It is not hard to show that the expected value of the benchmark is larger
than logN − 1, giving Ω(logN) expected regret.

More generally, if there are N actions each giving random 0/1 payoffs, adaptation of the
arguments above show that every algorithm will have expected regret Θ(

√
T logN). The

examples above do not require Q to be aware of what P is playing.
A simplifying trick in the analysis of randomized strategies is to replace them by deter-

ministic fractional strategies, where the payoff collected from an action in a given round is
the probability with which it is played (its fractional value) times its payoff. The expected
payoff in fractional and probabilistic strategies is exactly the same, and the value of the
external regret benchmark is not affected by this change.

1.3 The randomized weighted majority algorithm

This is an algorithm suggested by Littlestone and Warmouth, and variations of it are used
in many different contexts. We present here the special case in which payoffs are either 0
or 1. The algorithm involves a parameter 0 < ϵ < 1.

Initially, each action gets weight 1. Let wt(i) denote the weight of action i prior to

round t. Hence w1(i) = 1 for all i. In round t, action i is played with probability wt(i)∑
j
wt(j)

.

Then, the weight of those actions that give 0-payoff at round t remains unchanged (namely,
wt+1(j) = wt(j)), whereas the weight of those actions that give 1-payoff at that round is
multiplied by (1 + ϵ) (namely, wt+1(j) = (1 + ϵ)wt(j)).

We now analyze the regret of the RWM algorithm. For simplicity of the analysis, we
analyze the fractional version of RWM (that we call FWM). Set W t =

∑N
i=1w

t(i), let ft
denote the payoff obtained by FWM in round t, let f =

∑T
t=1 ft be the total payoff obtained

by FWM, and let b denote the total payoff obtained by the benchmark.

Proposition 1.1 W T+1 = N
∏T

t=1(1 + ftϵ).

Proof: Proof by induction on t. The base case is t = 0 for which W 1 = N . Consider
round t. In hindsight, let S be the set of actions that gave payoff 1 in round t. Then on

the one hand ft =

∑
i∈S

wt(i)∑
j∈[N ]

wt(j)
, and on the other hand W t+1 = W t + ϵ

∑
i∈S wt(i). Hence

Wt+1

Wt
= 1 + ϵf t, as required by the inductive step. 2

Proposition 1.2 W T+1 ≥ (1 + ϵ)b.

Proof: Consider the action that maximizes the benchmark. In b distinct rounds its
weight was multiplied by a factor of (1 + ϵ). 2

Combining the two propositions, we deduce that N
∏T

t=1(1+ftϵ) ≥ (1+ϵ)b. As 1+δ < eδ

for all 0 < δ < 1, the left hand side can be replaced by Neϵf . For 0 < ϵ < 1/2 we have
that 1 + ϵ > eϵ−ϵ2 (this can easily be verified by the Taylor expansion of ex). Hence the
right hand side is at most e(ϵ−ϵ2)b. This gives Neϵf > e(ϵ−ϵ2)b. Taking logarithms on both
sides and rearranging we obtain that f > b − ϵb − logN

ϵ . As b ≤ T we may choose (in the

3



RWM algorithm) ϵ =
√

logN
T obtaining an external regret term of 2

√
T logN . We have thus

established:

Theorem 1.3 When payoffs are 0/1, the randomized weighted majority algorithm has ex-
pected external regret at most 2

√
T logN .

Extending Theorem 1.3 to payoffs in [0, 1] is left as homework.

1.4 The minimax theorem revisited

Consider a 2-person 0-sum finite game G. Recall the minimax theorem: if for every mixed
strategy of Q player P has a reply (pure strategy) with expected payoff at least p, than P
can announce a mixed strategy with respect to which no reply of Q gives P expected payoff
smaller than p. We previously proved the minimax theorem using linear programming
duality. Here we show that it is also a consequence of sublinear external regret in repeated
games.

Consider a T -fold repeated version of G. Suppose that both players use an algorithm
of sublinear external regret. Then on average (per round), P gets payoff (denote it by p)
at least equal (up to terms that tend to 0 as T grows) as his best response to the empirical
mixed strategy of Q. Moreover, Q gets payoff at least equal (up to terms that tend to 0 as
T grows) as his best response to the empirical mixed strategy of P . Hence the empirical
mixed strategies of P and Q must be minimax strategies. (Both players can announce these
mixed strategies in advance and no player has an incentive to deviate.)

The above implies that the RWM algorithm can be used in order to compute mixed
strategies certifying the minimax theorem. Observe that the convergence to minimax strate-
gies is not in the sense that towards the last rounds players play their minimax strategies,
but rather that the minimax strategies are the long-time averages of what players empiri-
cally play.

1.5 Linear programming revisited

Recall that we used linear programming to prove the minimax theorem. Now that we have
an alternative proof for the minimax theorem, we revisit linear programming.

As mentioned in the past, linear programs come in many equivalent forms. Consider the
following game form of a linear program. There is no objective function (the objective is
added as a constraint). Variables are nonnegative (this is fairly standard), and in addition we
have the constraint

∑
i xi = 1. (This can be enforced for bounded linear programs by scaling

and adding a slackness variable.) Every other constraint j is of the form
∑

i aijxi ≥ 1. A
constraint of the form

∑
i aijxi ≤ bj can be converted to the required from by first negating

it, obtaining
∑

i−aijxi ≥ −bj , and then adding to it the constraint
∑

i(bj + 1)xi = bj + 1
(implied by

∑
i xi = 1). Hence the game form of a linear program is testing feasibility of:

minimize 0
subject to

Ax ≥ 1∑n
i=1 xi = 1

x ≥ 0

4



(Boldface notation denotes vectors.)
Consider a game between a variable player and a constraint player. The variable player

chooses a variable i, the constraint player chooses a constraint j, and the payoff to the
variable player is aij . If the LP is feasible, a feasible solution gives the variable player a
mixed strategy of expected payoff at least 1. For any mixed strategy that corresponds to
a nonfeasible solution, the constraint player has a reply (the violated constraint) that gives
the variable player expected payoff less than 1.

Consider a repeated game in which the LP is the basic game, and both players play
algorithms with low external regret. Then if the LP is feasible the empirical average play
of the variable player converges to a feasible solution to the LP. If the LP is infeasible, the
empirical average play of the constraint player converges to an unbounded solution of the
dual LP as explained now. There are m dual y variables (one for each row of A) and one
dual z variable (for the constraint

∑n
i=1 xi = 1). The dual LP is:

maximize
∑

j yj + z
subject to

ATy + 1z ≤ 0
y ≥ 0
If the constraint player has a strategy that keeps the expected payoff to the variable

player smaller than δ < 1, then using this strategy as a solution to y and setting z = −δ
gives a feasible solution to the dual LP of value 1−δ > 0. Scaling this solution by arbitrarily
large multiplicative positive constants shows that the dual LP is unbounded.

The research direction of using multiplicative update rules in the design of algorithms
is surveyed in [AHK12].

1.6 Swap regret

The notion of external regret might appear to be weak in the sense that the benchmark
only compares against strategies that are fixed throughout all rounds in the repeated game.
However, due to the fact that the regret depends only on the logarithm of the number of
actions available, it is easy to extend the benchmark to much larger classes of strategies
while still maintaining sublinear regret. For example, if one wants to consider strategies
that may switch the fixed action midway through the repeated game, one simply considers
a benchmark containing N2 strategies instead on N , where strategy aij (for 1 ≤ i, j ≤ N)
means playing action i in the first T/2 rounds and action j in the last T/2 rounds. As
logN2 = 2 logN the regret does not significantly change.

It is desirable in some cases to consider internal regret rather than external regret.
The difference between the two is that in external regret the benchmark is set in advance
independently of the actions of the algorithm, whereas in internal regret the benchmark
depends on the algorithm.

Swap regret. One considers all NN mappings from [N ] to [N ]. For each such mapping
f , one sums over all rounds the payoff that P would get if the action played at that round
would be swapped to the one indicated by applying f , assuming that Q does not change
his actions. The maximum of these NN values is taken as the benchmark.

Recall that on a particular execution the external regret may be negative (the player
does better than the benchmark). In contrast, the swap regret is nonnegative (taking f to

5



be the identity function).
As swap regret includes a benchmark of NN strategies, one may expect to be able to

achieve swap regret of O(
√
T logNN ) = O(

√
TN logN). However, swap regret is an internal

regret notion rather than an external one, hence we cannot use as a blackbox algorithms with
low external regret. Moreover, even if we could, this might give an algorithm of complexity
NN . Blum and Mansour provide an elegant way of circumventing these difficulties.

To simplify the proof that follows, let us introduce a notion of fractional swap regret. In
each round t, the player P has a probability distribution pt over actions, and then chooses
one action from this probability distribution. His fractional payoff (if actions are played
fractionally) is equal to his expected payoff. For fractional internal regret we do not replace
the realizations of action i by action j, but rather the probability pti is changed to 0 and
the probability ptj is raised by pti. In expectation, this does not change the expected payoff
of a particular benchmark swap strategy. However, in the swap benchmark one takes the
swap strategy of highest payoff. The expectation of the maximum is in general larger than
the maximum of the expectation. Hence expected swap regret is in general larger than
fractional swap regret. (For example, consider N actions that each give total payoff of
T/2 in T rounds. Action a1 gives payoff 1/2 in every round, and actions a2, . . . aN give
essentially random 0/1 payoffs. Playing strategy a1 with probability 1/2 in every round
has 0 fractional swap regret, but Ω(

√
T logN) expected swap regret.) Nevertheless, the

difference between the two can be shown to be O(N
√

T
N logN) = O(

√
TN logN). (Sketch

of proof. There are N(N − 1) basic swaps of the form “action i is replaced by action j”.
Large deviation bounds imply that for every action j that replaces i the probability of more
than O(

√
logN) standard deviations from expectation is smaller than 1/N2. By a convexity

argument, the worst sum over i, j of standard deviations is when
∑

t p
t
i = T/N for all actions

i. Then there are N events each with standard deviation
√
T/N .) It follows that a bound

of O(
√
TN log n) on fractional swap regret implies a similar bound of expected swap regret.

Theorem 1.4 There is a polynomial time sequential optimization algorithm that for [0, 1]
payoffs achieves fractional swap regret of O(

√
TN logN).

Proof: Algorithm A is a coordinator among N algorithms A1, . . . AN . Each of the N
algorithms is a low regret algorithm (we let Ri denote the regret for algorithm Ai), such as
the fractional weighted majority algorithm. In every round t, each algorithm Ai proposes a
vector of fractions qti that sums up to 1. The idea is to associate algorithm Ai with action
i in two respects that complement each other.

1. Ai updates the weights (fractions) after round t only if action i is played in round
t. More precisely, we use a fractional implementation of this idea, in the sense that
if the fraction that A assigns to action i is pti, then the payoff vector observed by Ai

in round t is ptiL
t (where Lt is the payoff vector for round t). The external regret

properties of Ai imply:

T∑
t=1

∑
j∈[N ]

qti(j)p
t
iL

t(j) ≥ max
j

[
T∑
t=1

ptiL
t(j)]−Ri

6



2. In round t, algorithm A receives the vectors of fractions qti from each algorithm Ai

and needs to aggregate them into one vector of fractions pt. This pt is a weighted
average over the qti . Namely pt =

∑N
i=1 λ

t
iq

t
i . How are the weights λt

i chosen? The
idea it to choose the vector λt such that when solving for pt one would get pt = λt.
Hence the probability that A takes the advice of Ai is exactly equal to the probability
that A chooses to play action i. Proposition 1.5 will show that such a choice of λt

exists, and moreover, can be found in polynomial time.

The fractional payoff for A is

payoff(A) =
T∑
t=1

∑
i∈[N ]

λt
i

∑
j

qti(j)L
t(j)

Consider now a swap function f : [N ] → [N ] that for every j plays f(j) instead of j.
The fractional payoff for Af is

payoff(Af ) =
∑
i∈[N ]

T∑
t=1

ptiL
t(f(i)) ≤

∑
i∈[N ]

max
j

[
T∑
t=1

ptiL
t(j)]

≤
∑
i∈[N ]

Ri +
T∑
t=1

∑
j∈[N ]

qti(j)p
t
iL

t(j)

 =
∑
i∈[N ]

Ri +
∑
i∈[N ]

T∑
t=1

∑
j∈[N ]

qti(j)λ
t
iL

t(j)

= payoff(A) +
∑
i

Ri

Recall that in the fractional weighted majority algorithm the external regret was at
most ϵb + logN

ϵ , where b was the value of the benchmark (taken there to be at most T ).
Hence:

∑
i

Ri =
∑
i

(ϵbi +
logN

ϵ
) = ϵ

∑
i

bi +
N logN

ϵ

Observe that every bi is upper bounded by
∑T

t=1 λ
t
i and hence

∑
i bi ≤

∑T
t=1

∑
i λ

T
i = T .

Choosing ϵ =
√

logN
NT gives fractional swap regret 2

√
TN logN , as desired. 2

It remains to prove the following proposition.

Proposition 1.5 For i ∈ [N ], given nonnegative vectors qi ∈ RN with
∑

j qi(j) = 1
for every i, one can associate nonnegative weights λi summing up to 1 such that λi =∑

j∈[N ] λjqj(i) for every i. Moreover, such a vector λ can be found in polynomial time.

Proof: Consider the N by N matrix Q whose columns are the vectors qi. Let X ∈ RN

be the set of nonnegative vectors whose entries sum up to 1. Observe that X is a compact
convex set. The mapping Qx is a continuous mapping from X to itself. Hence by Brouwer’s
fixpoint theorem it has a fixpoint, which can serve as our λ.

The proof of Brouwer’s theorem does not provide a polynomial time algorithm. However,
λ is an eigenvector of Q, and hence can be found in polynomial time by algorithms for
computing eigenvectors.

7



We note that if the qi vectors are strictly positive then there is a unique λ satisfying the
proposition (the unique stationary distribution of the random walk implied by the matrix
Q). 2

1.7 Correlated Nash

We shall consider now ϵ-correlated equilibrium. In a multiplayer game with a correlation
device, a set of strategies is in an ϵ-correlated equilibrium in no player can gain more than
ϵ in his expected payoff by deviating from the recommended strategy implied by the signal.

Theorem 1.6 Let G be an arbitrary finite multiplayer game with payoffs in [0, 1], and
let GT be its T -fold repeated version. If players use strategies with sublinear swap regret,
then for every ϵ > 0, there is a sufficiently large T such that the resulting empirical joint
distribution of actions is an ϵ-correlated equilibrium.

Let us clarify the action of the correlation device. Given the execution on the T rounds,
it picks a round at random, and recommends to each player to player whatever he play on
that round, but without revealing the round number. If given a recommendation to play i
player P wants to switch to j, this implies that the execution of GT had significant swap
regret for P .

Observe that if the correlation devices can recommend mixed strategies to players rather
than pure strategies, then low fractional swap regret suffices in the proof of Theorem 1.6.

Theorem 1.6 implies that algorithms such as RWM can compute correlated equilibria.
This is consistent with the findings of Section 1.5 which shows that they can be used in
order to solve linear programs in general, and we have seen previously that a correlated
equilibrium is a solution to a linear program.

1.8 Bandit algorithms

Online optimization in which all payoffs are observed after each round is referred to as
expert algorithms. If only the payoff of the action played is observed, this is referred to
as the multi armed bandit (MAB) setting. As a rule of thumb, expert algorithms can be
transformed into MAB algorithms using the paradigm of exploration and exploitation. We
present one approach of achieving this (though one may obtain better parameters through
more complicated approaches).

Partition T into blocks of size B. Within every block, the algorithm sticks to the same
distribution over actions, except that each of the actions is tried once in a random round
within the block, so as to gather statistics about its performance. Hence B > N . Each
block is viewed as a “super round”, and in between blocks, the update rule is that of the
underlying expert algorithm, where observed sampled payoffs of action i are scaled by B, as
if the payoff in all rounds of the block is the same as the sampled payoff. There are several
sources of regret in this MAB algorithm:

1. There are NT
B exploration steps. This adds a regret term of NT

B .

2. The true sum of payoffs of an action differs from the sampled one. Each action is
sampled T/B times, giving accuracy of 1 − O(

√
B/T ), leading to an error term of

O(
√
BT ), and with high probability not exceeding

√
BT logN .

8



3. Compared to the expert setting, now there are T/B super rounds rather than T
rounds, and every super round has payoff at most B rather than 1. Hence the regret
term of the expert algorithm used in between super rounds translates to B(ϵ TB+ logN

ϵ ).

Suppressing factors logarithmic in N by Õ notation, we may choose B = N2/3T 1/3 and
ϵ = N1/3/T 1/3, obtaining a regret of Õ(N1/3T 2/3).

References

[AHK12] Sanjeev Arora, Elad Hazan, Satyen Kale: The Multiplicative Weights Update
Method: a Meta-Algorithm and Applications. Theory of Computing (TOC) 8(1):121–
164 (2012).

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V. Vazirani (Editors),
Algorithmic Game Theory, Cambridge University Press, 2007.

9


