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1 Introduction

1.1 What is a game?

A game has players. We shall assume here that the number of players in a game is at
least two and finite. (For simplicity, we shall assume players of male gender, though
the gender of the players is irrelevant, and the players may also be genderless software
programs.)

Every player i has a set Si of strategies available to him. We shall assume here
that the sets Si are finite, though game theory also addresses games with infinite
strategy sets. In a game, every player selects one strategy from his respective set of
strategies.

The outcome of the game is the profile of strategies selected by the players, one
strategy for each player. Hence it is a vector of strategies.

Every player is assumed to have his own preference relation over outcomes. This
preference relation induces a partial order over outcomes. For simplicity, let us assume
here that the partial order is given in form a numerical value for each outcome, and
the player prefers those outcomes with higher numerical value over those with lower
numerical value. These values are often referred to as payoffs for the players. It is
often the case that the value of the payoff is meant to have quantitative significance
beyond the preference of order over outcomes. For example, a payoff 2 would be
considered twice as good as a payoff of 1. In this case, the payoff function would
typically be called a utility function for the player.

A game is represented in normal form (a.k.a. strategic form, matrix form, or
bi-matrix for two players) if it explicitly lists for each player and every outcome the
value of the outcome for that player. For two player games, a game in normal form
is often depicted as a pair of payoff matrices, one for the row player and the other for
the column player, or even as a single matrix with both payoffs written in each entry.

Often, normal form representation of games is prohibitively large. There are many
other more succinct representations of games. Many games (such as the game of chess)
are represented implicitly. Two common forms of succinct representations for general
classes of games are extensive form (typically, a game tree for two person games), and
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graphical games (a graphical representation of multiplayer games in which the payoff
of a player is affected only by actions of players in his immediate neighborhood).

1.2 Solution concepts

A description of a game does not say how the players actually choose their strategies.
Game theory tries to answer this question. There are two different aspects to this
question.

• Descriptive. Given a game, how will people actually play it? What strategies
will they choose? These questions involve considerations from social science and
psychology, and their study may well require experimentation.

• Prescriptive. Given a game, how should players play it? Recommend strategies
for the players. This is the more theoretical part of game theory, and here
mathematics and computer science have a more prominent role.

Though the descriptive and prescriptive aspects are related (e.g., if a strategy is
recommended, will the players actually play it?), the emphasize here will be on the
prescriptive aspect of game theory.

We will try to associate solution concepts with a game. The solution concept will
offer to players a recommendation of which strategy to play. The recommended strat-
egy will satisfy some optimality conditions (that depends on the solution concept).

Before presenting the solution concepts that will be discussed here, let us explicitly
list some of the assumptions that we shall make here.

1. The game is given. A game is sometimes an abstraction of a real life situation.
Reaching the right abstraction (who the players are, what actions are available
to them, what are their preferences) might be a very difficult task and will not
be addressed here. We assume that the game is given.

2. Self awareness. The player is aware of those aspects of the game that are
under his control. He knows which strategies are available to him, and his
own preference relation over outcomes. (Indirectly, this requires awareness of
strategies available to the other players, as they define the possible outcomes.)

3. Full information. For games in normal form, this is essentially the same as
self awareness. However, for games given in some succinct representation, full
information is different from self awareness. For example, for games in extensive
form, in means that after every move the player knows exactly at what node of
the game tree the game is. Chess is an example of a game of full information.
Poker is an example of a game of partial information.
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4. No computational restrictions. When suggesting a solution concept, we shall
ignore the question of whether finding a recommended strategy under this con-
cept is computationally tractable. Of course, in many games (chess being one
example) the issue of computational limitations (a.k.a. bounded rationality) is
an important aspect of the game. We remark that even though the solution con-
cepts themselves will not a-priori be required to be computationally efficient,
we shall eventually be interested in their computational complexity.

We now present some of the solution concepts that will be discussed more thor-
oughly later. The underlying assumption is that players are rational. Here the word
rational is meant to convey that a player attempts to maximize his own payoff. It is
worth pointing out that a player may appear to behave irrationally from this respect.
This can often be attributed to the failure of one or more of the assumptions listed
above.

1.3 Solutions in pure strategies

Dominant strategies. A strategy s is dominant for player i if regardless of the
strategies played by other players, the payoff of player i is strictly maximized by
playing si.

Formally, for every set of strategies s−i for all players but i and every strategy
s′ ̸= s,

ui(s, s−i) ≥ ui(s
′, s−i)

Dominant strategies do not always exist (e.g., for a payoff matrix that is the
identity matrix). However, when they do exist, they are a very favorable solution
concept. For games in normal form, they can be computed efficiently.

An interesting example is the game prisoner’s dilemma, which has the following
game matrix.

Cooperate Defect

|------------|------------|

Cooperate | -2; -2 | -9; -1 |

|------------|------------|

Defect | -1; -9 | -8; -8 |

|------------|------------|

Both players have dominant strategies, but the outcome of playing them is inferior
for both players than the outcome if alternative strategies are played. The source of
the problem is that a player can slightly improve his own payoff at the cost of other
players loosing a lot. If each player selfishly maximizes his payoff, everyone looses.
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Examples such as prisoner’s dilemma point to a shortcoming of the concept of
rational behavior - it might lead to undesirable outcomes.

It is worth mentioning in this context an area of game theory that will be addressed
in other parts of the course, that of mechanism design. At a high level, the purpose
of this area is to set up games in such a way that rational behavior will always lead
to desirable outcomes, avoiding situations such as the prisoner’s dilemma.

A well known example for mechanism design is that of a Vickery auction. Consider
an auctioneer who has one item for sale, and k bidders (players), where bidder i has
value ui for the item (known only to bidder i). The process of the auction is a sealed
bid auction, in which first all players submit their bids in sealed envelopes, and then
the envelopes are opened and the highest bidder wins. We assume that the payoff
of an agent is 0 if he does not win, and his value for the item minus his payment if
he wins. In a first price auction, the winner pays his bid. In general, there are no
dominant strategies in first price auctions, and the bids of the bidders depend on their
beliefs regarding what other bidders will bid. In a second price (Vickery) auction, the
winner pays the second highest bid. This has the desirable outcome that players have
dominant strategies - to bid their true value. Moreover, in this case the outcome is
that the item is allocated to the player who desires it most, which promotes economic
efficiency. Hence the second price auction is an example of a game that is designed
in such a way that its solution under a standard solution concept optimizes some
economic goal: maximizing total economic welfare. (Note that here money paid by
the bidder to the seller is assumed to have no effect on the total economic welfare,
because the total sum of money remains constant.)

Nash equilibrium. In this solution concept, one recommends strategies to all
players in the game, with the property that given that all other players stick to their
recommendation, the strategy recommended to a player is strictly better than (or at
least as good as) any other strategy.

Formally, a Nash equilibrium in a k player game is a vector s̄ = (s1, . . . , sk) such
that for every player i and any strategy s′i ̸= si

ui(si, s̄−i) > ui(s
′
i, s̄−i)

For weak Nash equilibrium the inequality need not be strict.
An example of a two player game with a Nash equilibrium is the battle of sexes,

with male and female players who want to go some movie together, but have different
tastes in movies.

Action Romantic

|----------|----------|

Action | 5; 4 | 2; 2 |

|----------|----------|

Romantic | 1; 1 | 4; 5 |
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|----------|----------|

There are no dominant strategies, but two Nash equilibria: the top left corner and
the bottom right corner. Each player prefers a different Nash equilibrium.

A famous multi-player example is the stable marriage problem, which we will
address later in the course.

An example of a game that does not have a Nash Equilibrium is that of matching
pennies.

|----------|----------|

| 1; 0 | 0; 1 |

|----------|----------|

| 0; 1 | 1; 0 |

|----------|----------|

An issue that comes up with Nash equilibrium and not in dominant strategies is
that games may have multiple Nash equilibria. Moreover, different players may prefer
different Nash equilibria. This might make Nash equilibria unstable in practice. (A
player may deviate from the recommended strategy, suffering some loss, but also
inflicting loss to others, in the hope that other players deviate as well, and that a
new Nash equilibrium that is more favorable to the player is reached. A strike by a
worker’s union may be explained as an attempt by the workers to switch to a different
equilibrium point between the workers and the employers.)

Subgame optimality. This notion addresses to some extent the issue of multiple
solutions of a game under a given solution concept. It applies to games that take
multiple rounds. As players make moves and the game progresses, the portion of the
game that remains is called a subgame. A profile of strategies is a Nash equilibrium
that is subgame perfect if for every subgame (including those subgames that are only
reachable by “irrational” moves) the strategies restricted to this subgame form a Nash
equilibrium.

There are two different motivations for this notion, that we illustrate by examples.
Chess. There is a difference between having a strategy that plays optimally only

from the initial position, and a strategy that plays optimally from any position. For
example, assume that it is true that white has a winning strategy in chess. Then the
strategy of playing arbitrarily is optimal for black (in the sense that no other strategy
guarantees a higher payoff), but not subgame optimal (it does not take advantage of
situations in which white has previously blundered).

Ultimatum game. This example illustrates well several aspects of solution con-
cepts. It is a game for splitting 10 dollars among two players. The column player
offers how to split the money, and the row player may either accept the split, or reject
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it, in which case neither player gets anything. For simplicity of the presentation, as-
sume that the first player is allowed to suggest only one of the following three options
(1,9),(5,5),(9,1). In extensive form, the game tree then has six leaves, whereas in
normal form it has three columns and eight rows. The following matrix illustrates
the payoffs for the row player. The payoffs for the column player are 0 or 10 − x,
depending on whether the payoff x for the row player is 0 or more.

|-------|-------|-------|

| 0 | 0 | 0 |

|-------|-------|-------|

| 0 | 0 | 9 |

|-------|-------|-------|

| 0 | 5 | 0 |

|-------|-------|-------|

| 0 | 5 | 9 |

|-------|-------|-------|

| 1 | 0 | 0 |

|-------|-------|-------|

| 1 | 0 | 9 |

|-------|-------|-------|

| 1 | 5 | 0 |

|-------|-------|-------|

| 1 | 5 | 9 |

|-------|-------|-------|

The row player has exactly one dominant strategy - to always accept the offer (the
last row). The column player does not have any dominant strategy.

The game has several Nash equilibria. For example, one of them is that the row
player accepts only (5,5) splits, and the column player offers a (5,5) split. Clearly,
the row player prefers this Nash equilibrium to playing his dominant strategy (which
leads to the Nash equilibrium of the column player offering a (1,9) split). Hence the
row player may appreciate a possibility to manoeuver the game towards one of those
Nash equilibria that is better from his perspective than the Nash equilibrium that
involves him playing his dominant strategy. However, the dynamics of the game do
not allow this. The column player plays first, and then can play no more. If the
column player plays (1,9), this results in a subgame in which the row player has only
two possible strategies, either to accept or reject. The only subgame optimal decision
is to accept. Hence the only subgame perfect equilibrium is the one in which the row
player always accepts. In the case of the ultimatum game, the notion of subgame
perfect equilibrium allows us to select one out of the many Nash equilibria.

It turns out that when the ultimatum game is played in real life (experimental
economists have actually experimented with this game), the row players often do not
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play their dominant strategy. Likewise, the column players do not always offer the
(1,9) split. An explanation for this is that in real life scenarios, the payoff matrix
does not really represent the true payoffs for the players. Besides the monitory pay-
offs represented in the payoff matrix, there are other forms payoffs (feeling of pride,
feeling of fairness, feeling of creating a reputation) that if properly represented in the
description of the game would explain this “irrational” sort of behavior.

1.4 Mixed strategies

In certain games, it is desirable for one of the players to play in a nondeterministic
way. Matching pennies is one such example. Given its zero sum game payoff functions,
it is clear that if a player’s move can be predicted by the other player, he will lose.
Another example would be a game of partial information such as poker. If a player
plays deterministically (his moves are dictated only by the cards that he holds and
previous moves that he has seen), then other players may be able to infer (something
about) his cards, and use this information to improve their chance of winning (and
hence the player suffers, the game being a zero sum game). Experienced poker players
base their play not only on information directly available from the play of the hands,
but also on other factors, and hence from the point of view of game theory (that fails
to completely model all factors involved), their play is nondeterministic.

A way game theory models the issue of playing in a nondeterministic way is
through the concept of a mixed strategy, which is a probability distribution over
strategies. For example, one mixed strategy for matching pennies is to play each
option with probability 1/2. The point is that a-priori, other players may be aware
of the probability distribution that a player is using in his mixed strategy (it might
be announced, or inferred), but they do not know the actual strategy that is selected
until after they select their own strategies. (There are obvious modifications to this
last statement when one deals with multi-round games.)

It turns out that the notion of mixed strategies opens up the possibility for more
solution concepts. To realize this potential, one assumes that payoff functions are
actually utility functions (numerical values are a linear scale on which preferences
have exact values), and moreover that players are concerned only with expected payoff
(and not the distribution of payoffs). For example, getting a payoff of either 3 or 5,
each with probability 1/2, is assumed to be equivalent to getting a payoff of 4 with
probability 1. This assumption is often referred to as the players being risk neutral
(with other options being risk seeking or risk averse). Risk neutrality is a natural
assumption in certain situations. For example, if we assume that a player is involved
in many independent games throughout his lifetime each involving a relatively small
payoff, and the payoffs from these games add up, then the law of large numbers shows
that the total payoff converges to the sum of expectations, and hence the function to
optimize per game is indeed the expected payoff.

Another situation in which maximizing the expected payoff is natural (regardless
of risk neutrality) is if a game has only two possible payoffs for a player (say, either
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win or lose). In this case, maximizing the expected payoff is equivalent to maximizing
the probability of winning.

Mixed strategies are sometimes criticized as not being realistic (though they be-
come more realistic when the players are computer programs). The argument is that
human players do not really choose randomly among strategies. This relates more
to the descriptive aspects of game theory than the prescriptive aspects, and hence
is not of major concern to us. However, let us point out that this issue is discussed
extensively in game theory literature, and various justifications are offered for mixed
strategy. An interesting one is to consider a two player game in which each player
is really a “super-player” composed of a population of individuals. Each individual
plays a pure strategy. Every individual has random encounters with individuals of
the other population. Hence here the randomness is not in the choice of strategies
for each individual, but in the choice of encounters, which effectively corresponds to
the super-player corresponding to the other population having a mixed strategy. In
a Nash equilibrium (over the populations), every individual is playing optimally (in
expectation) against the other population. One may say that its strategy is “fitted”
to the environment (the environment for an individual is the other population). If the
distribution of strategies over populations is not at a Nash equilibrium, then there
may be some strategy not currently used by any individual, which is better fitted to
the environment. Such a strategy may then “invade” the space of strategies, and be
adopted by many individuals (“survival of the fittest”), changing the mixed strategy
of the respective super-player.

Two player zero sum games and the minimax theorem.
A game is referred to as constant sum if there is some constant c such that regard-

less of the outcome of the game, the sum of payoffs for the players is c. The special
case of c = 0 is referred to as a zero sum game. Most results for zero sum games
carry over to constant sum games with c ̸= 0, by scaling the payoffs of each of the n
players by an additive factor of c/n (thus making the game 0-sum).

A solution concept for two player zero sum games is offered by the minimax theo-
rem. It assumes risk neutral players that have the conservative goal of securing at least
some minimum payoff. For the maximizing player (player 1), this amounts to finding
the highest possible value t+ and a mixed strategy s1 such that mins2 E[u(s1, s2)] ≥ t+.
Here u is the payoff function for the maximizing player, and −u is the payoff function
for the minimizing player. The strategy s2 in the above expression ranges over pure
strategies. The value t+ is a max-min value maxs1 mins2 E[u(s1, s2)].

Likewise, the minimizing player seeks a smallest possible value t− and a strategy s2
satisfying maxs1 E[u(s1, s2)] ≤ t−. The value t− is a min-max value mins2 maxs1 E[u(sm, s2)],
where s2 ranges over mixed strategies, and s1 ranges over pure strategies.

The famous minimax theory of Von-Neumann says that t+ = t−. Namely, for
every finite constant sum two player game, for mixed strategies the following equality
holds:

max
s1

min
s2

E[u(s1, s2)] = min
s2

max
s1

E[u(s1, s2)]
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The expected payoff at this mutually optimal point is referred to as the value of the
game. It is essential that strategies are allowed to be mixed in the minimax theorem,
as the game of matching pennies illustrates.

Observe that the minimax theorem implies that a player may announce his mixed
strategy upfront, and still get the expected payoff guaranteed by the minimax theo-
rem.

A modern proof of the minimax theorem is based on linear programming duality
(we will review this proof later), and implies also a polynomial time algorithm for
computing the minimax value. von-Neumann’s original proof (from 1928) predated
the concept of linear programming duality, and applies also to some classes of games
with infinite strategy space.

For matching pennies, the value of the game is 0. The unique optimal mixed
strategies for the players are to play the two options with equal probability. Note
however that in this case, if one of the players plays his optimal mixed strategy, then
the other player can play arbitrarily without changing the value of the game. In fact,
this is a rather typical situation in many games: when one player chooses an optimal
mixed strategy, the other player has a choice of several pure strategies, each of which
is optimal (in expectation).

Mixed Nash. A mixed Nash equilibrium (defined and proven to exist by John
Nash) is a profile of mixed strategies, one mixed strategy for each player. It has
the property that given that the other players follow this profile, no player has an
incentive for deviating from his own mixed strategy. That is, every strategy in the
support of his mixed strategy is a best response to the mixed strategies of the other
players (gives maximum expected payoff among all pure strategies).

In what follows s̄ denotes a profile of mixed strategies, si denotes the mixed
strategy that it associates with player i, and s̄−i denotes the profile of mixed strategies
that it associates with the other players. For s̄ to be a mixed Nash equilibrium it is
required that for every player i and for every pure strategy s′i for player i,

E[ui(si, s̄−i)] ≥ E[ui(s
′
i, s̄−i)]

Mixed Nash equilibria exist for every finite game, with any number of players.
Nash proved this as a consequence of certain nonconstructive fixed point theorems.
Later we shall present an algorithmic proof for the case of two players (though the
algorithm is not a polynomial time algorithm). The question of whether there exists a
polynomial time algorithm for computing a mixed Nash equilibrium will be discussed
as well.

It is common to use the terms mixed Nash and pure Nash for short, and in the
absence of the prefix maixed/pure, assume that the Nash equilibrium is mixed. We
shall follow this terminology from now on.

Correlated equilibrium. A mixed Nash is a product distribution over profiles.
To realize a mixed Nash, it suffices that each player has a private source of ran-
domness. In contrast, a correlated equilibrium will be an arbitrary distribution over
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strategy profiles. To realize it, some coordination mechanism involving a common
source of randomness is needed. We shall not discuss here in detail what may serve
as a coordination mechanism, but rather mention one common example - that of the
traffic light. In the absence of any prior agreed upon traffic rules, the game played
by two drivers who arrive from perpendicular directions to a traffic junction at the
same time resembles the game of chicken.

Stop Go

|----------|----------|

Stop | 0; 0 | 0; 2 |

|----------|----------|

Go | 2; 0 | -9; -9 |

|----------|----------|

If both players observe a common signal (the traffic light), they can use it to
reach a correlated equilibrium (if you see green, go, and if you see red, stop). Once
the correlated equilibrium strategy is announced, then whenever two drivers arrive
at a junction with a traffic light, it is in the interest of the players to follow its
recommendation (if they trust that the other player also follows it).

To be a correlated equilibrium, a distribution over a profile of strategies has to
obey the following condition. Observe that for every player, given a recommendation
by the coordinating device, there is some marginal probability distribution over the
strategy profile of the other players. It is required that the strategy recommended to
the player is a best response strategy with respect to this marginal profile.

The notion of a correlated equilibrium was first suggested by Aumann. Like
Nash equilibrium, it exists for every finite game (simply because Nash is a special
case). It answers two concerns of game theory. One is that it often can offer an
equilibrium of higher expected payoff than any Nash equilibrium. The other is that
there are polynomial time algorithms for computing it (for games in normal form). We
shall discuss the algorithmic aspects later, and here we shall just present an example
showing a correlated equilibrium better than any Nash.

|----------|----------|----------|

| 2; 1 | 1; 2 | 0; 0 |

|----------|----------|----------|

| 0; 0 | 2; 1 | 1; 2 |

|----------|----------|----------|

| 1; 2 | 0; 0 | 2; 1 |

|----------|----------|----------|

10



A correlated equilibrium that picks each nonzero cell with probability 1/6 has ex-
pected payoff 3/2 for each player. Given a recommendation, a player cannot improve
the expected payoff by deviating from it. For example, given the recommendation
to play the first row, the row player knows that the column player must have re-
ceived a recommendation to play one of the first two columns, and assuming that
the column player follows the recommendation, the first row indeed gives the high-
est expected payoff. The game has a unique Nash equilibrium, namely, each player
chooses a strategy uniformly at random, and if gives an expected payoff of only 1 to
each player.

1.5 Summary of introduction

We defined the notion of a game, and presented some solution concepts for games.
These include the notions of dominant strategies, pure Nash, subgame perfect equi-
librium, minimax value, mixed Nash and correlated equilibrium. We discussed some
of the assumptions that are used in making these definitions, and some of the short-
coming of these definitions.

In later parts, we shall accept the definitions of the solution concepts as given,
and discuss algorithms for computing them.
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