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1 Linear programming

Many optimization problems can be formulated as linear programs. The main features
of a linear program are the following:

• Variables are real numbers. That is, they are continuous rather than discrete.

• The objective function is a linear function of the variables. (Each variable effects
the object function linearly, at a slope independent of the values of the other
variables.)

• Constraints on the variables are linear.

A solution satisfying all constraints is feasible. A feasible solution that also opti-
mizes the objective function is optimal.

Linear programs are often represented using matrix and vector representation.
For example, the following is a representation of a linear program in canonical form.
x,b,and c are column vectors, whereas A is a matrix.

minimize cTx
subject to
Ax ≥ b
x ≥ 0
In a linear program in general form, the constraints are linear but may involve

inequalities of both types (≤ and ≥), as well as equalities (=). Variables may be
required to be nonnegative ≥ 0, or else be unconstrained. Another useful form of a
linear program is the standard form:

minimize cTx
subject to
Ax = b
x ≥ 0
All forms are equivalent in terms of their expressive power, and it is simple to

transform a linear program in general form to standard form and to canonical form.

1



For linear programs in standard form, it is convenient to assume that the con-
straints (rows of the matrix A) are linearly independent. If the rows are not linearly
independent, then it suffices to consider rows of A that constitute a basis for the row
space (a maximal linearly independent set of row vectors). Either every solution that
satisfies the constraints that correspond to the basis satisfies all constraints, or the
LP is infeasible.

Consider an LP in standard form, with m linearly independent constraints and
n variables. Let B be a submatrix of A containing exactly m linearly independent
columns. This is a basis of the column space of A. Let xB be the set of basic vari-
ables corresponding to the columns of B. If B−1b ≥ 0, then the following is a basic
feasible solution: the basic variables are set to B−1b, and the nonbasic variables are
set to 0. Clearly this solution is feasible. Note that it satisfies n linearly independent
constraints with equality: the m constrains of Ax = b, and n−m of the nonnegativ-
ity constraints. The other (nonnegativity) constraints are also satisfied, though not
necessarily with equality.

Each basis gives at most one basic feasible solution. (It gives none if the condition
B−1b ≥ 0 fails to hold.) Two different bases may give the same basic feasible solution,
in which case the basic feasible solution is degenerate (more than n−m variables are
set to 0).

The following lemma is well known and we omit its proof.

Lemma 1.1 Every LP in standard form is either infeasible, or the optimal value is
unbounded, or it has a basic feasible solution that is optimal.

Lemma 1.1 implies that in order to solve an LP optimally, it suffices to consider
only basic feasible solutions. As there are at most

(
n
m

)
basic feasible solutions, we

can solve LPs optimally in this time.
Recall Cramer’s rule for solving Bx = b, where B is an invertible order n matrix.

The solution is

xj =
detBj

detB

for 1 ≤ j ≤ n, where here Bj is the matrix B with column j replaced by b. If
each entry in B and b is an integer with absolute value at most M , then each xj

is a rational number with numerator and denominator bounded by at most Mnn!.
This can be used to show that the length of numbers involved in a basic feasible
solution are polynomially related to the input size. (Moreover, it can be shown that
when a system of linear equations is solved by Gaussian elimination, the length of
intermediate numbers produced by the algorithm is also polynomially related to the
input size.)

The notion of a BFS can be extended to LPs in general form. Ignoring nonnegativ-
ity constraints, if a feasible and bounded LP has m linearly independent constraints,
then it always has a BFS with at most m nonzero variables.
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A well known algorithm to solve linear programs is the simplex algorithm. It is
not a polynomial time algorithm, though it appears to be pretty fast in practice.
Technically, simplex is a family of algorithms that differ by the pivot rule that they
use. It is still open whether there is some clever choice of pivot rule that would
make the algorithm polynomial. The ellipsoid algorithm does solve linear programs
in polynomial time, though its running time in practice is quite slow. (The simplex
algorithm is slower than the ellipsoid algorithm on worst case instances, but appears
to be faster on average.) There are interior point methods that are both polynomial
time in the worst case and pretty fast on average. (It is still not known whether
there are strongly polynomial time algorithms for linear programming, whose number
of operations depend only on n and m but not on the precision of the numbers
involved.)

An important concept related to linear programming is the notion of duality. Let
us first illustrate it on an example.

There are n foods, m nutrients, and a person (the buyer) is required to consume
at least bi units of nutrient i (for 1 ≤ i ≤ m). Let aij denote the amount of nutrient
i present in one unit of food j. Let ci denote the cost of one unit of food item i. One
needs to design a diet of minimal cost that supplies at least the required amount of
nutrients. This gives the following linear program, in which variable xi denotes the
amount of food i that is consumed.

minimize cTx
subject to
Ax ≥ b
x ≥ 0

Now assume that some other person (the seller) has a way of supplying the nutrients
directly, not through food. (For example, the nutrients may be vitamins, and the
seller may sell vitamin pills.) The seller wants to charge as much as he can for
the nutrients, but still have the buyer come to him to buy nutrients. A plausible
constraint in this case is that the price of nutrients is such that it is never cheaper to
buy a food in order to get the nutrients in it rather than buy the nutrients directly.
If y is the vector of nutrient prices, this gives the constraints ATy ≤ c. In addition,
we have the nonnegativity constrain y ≥ 0. Under these constraints the seller wants
to set the prices of the nutrients in a way that would maximize the seller’s profit
(assuming that the buyer does indeed buy all his nutrients from the seller). This
gives the the following dual LP:

maximize bTy
Subject to
ATy ≤ c
y ≥ 0

As one can replace any food by its nutrients and not pay more, one gets weak duality,
namely, the dual provides a lower bound for the primal. Weak duality goes beyond
the diet problem and holds even if A, b, c have some entries that are negative. That
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is, for every pair of feasible solutions to the primal and dual LPs we have:

bTy ≤ (Ax)Ty = xTATy ≤ xT c = cTx (1)

In particular, weak duality implies that if the optimal value of the primal is unbounded
then the dual is infeasible, and if the optimal value of the dual is unbounded, then
the primal is infeasible.

It turns out that linear programming satisfies a stronger notion of duality, namely,
strong duality. That is, whenever the primal LP is feasible and bounded, the optimal
solutions to the primal and dual have the same value. We shall not prove this in this
overview.

Assume that there is a pair of solutions x∗ and y∗ for which the values of the
primal and dual LPs are equal, namely cTx∗ = bTy∗. Then necessarily both x∗ and y∗

are optimal solutions to their respective LPs. In economics, the vector y∗ is refereed
to as shadow prices. These optimal solutions need to satisfy the inequalities of (1)
with equality. This gives the following complementary slackness conditions:

(Ax∗ − b)Ty∗ = 0 (2)

(c− ATy∗)Tx∗ = 0 (3)

Condition (2) has the following economic interpretation. If a certain nutrient is in
surplus in the optimal diet, then its shadow price is 0 (a free good). Condition (3) can
be interpreted to say that if a food is overpriced (more expensive than the shadow
price of its nutrients) then this food does not appear in the optimal diet.

The following table explains how to obtain the dual of a primal LP that is in
general form. Here Aj denotes a row of matrix A and Aj denotes a column.

min cTx max bTy

Aix ≥ bi i ∈ I+ yi ≥ 0

Aix = bi i ∈ I= yi free

xj ≥ 0 j ∈ J+ yTAj ≤ cj

xj free j ∈ J= yTAj = cj

Note that the dual of the dual is the primal.
Weak and strong duality apply also in this case. More specifically, if the optimum

to the primal is bounded, then so is the optimum to the dual, and vice versa. If the
optimum to one of the LPs is unbounded, then the other is not feasible. It may also
happen that neither one of them is feasible.
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2 Max-min mixed strategies

A fairly pessimistic solution concept for games is that of a max-min strategy. This is
a choice of strategy that would maximize the payoff in the “worst case” – no matter
what strategies the other players use, a certain minimum payoff is guaranteed. This
notion becomes more interesting when mixed strategies are involved, and the player
wishes to guarantee a minimum expected payoff. (Players have risk neutral utility
functions.)

Proposition 2.1 For any game in normal form and any player:

1. If the payoffs are rational numbers, then the probabilities involved in a max-min
strategy are rational.

2. A max-min strategy can be computed in polynomial time.

Proof: W.l.o.g., let player 1 be the player for which we need to compute a max-
min strategy. Let A be a payoff matrix for player 1, where its columns are indexed
by the strategies of player 1, whereas its rows are indexed by profiles of strategies for
the other players. We let Aj denote the jth row of A. Let xi be the probability with
which player 1 plays strategy i. Then a max-min strategy for player 1 is the solution
to the following linear program.

maximize t
subject to
Ajx ≥ t (for every j) (equivalently, t− Ajx ≤ 0)∑

xi = 1
x ≥ 0
The proposition follows as an immediate corollary to the theory of linear program-

ming. 2

The solution concept of a max-min strategy is often too pessimistic to be of inter-
est. However, for one important class of games, that of zero sum (or constant sum)
two person games, it is a very useful solution concept. The reason is the celebrated
minimax theorem of Von-Neumann.

Theorem 2.2 For every (finite) two person zero sum game, the payoff guaranteed to
a player under his mixed max-min strategy is equal to the maximum payoff that the
player can get by playing a (pure) strategy against the mixed max-min strategy of the
other player.

Proof: Let A be the payoff matrix for the column player, and −A be the payoff
matrix for the row player. Then the LP for a max-min strategy for the column player
was given in the proof of proposition 2.1. For the row player, let yj be the probability
with which he plays strategy j. Then the LP for the max-min value for the row player
is the following.
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minimize z
subject to
AT

i y ≤ z (for every i) (equivalently, z − AT
i y ≥ 0)∑

yj = 1
y ≥ 0
Simple manipulations show that the LP for the row player is the dual of the LP

for the column player. To construct this dual, associate a variable yj with every row
Aj and a variable z with the constraint

∑
xi = 1.

Both LPs are feasible and bounded. Strong duality now implies the minimax
theorem 2

Another useful observation concerning two player games is the following.

Proposition 2.3 In a two player game, the support of a max-min strategy need not
be larger than the number of strategies available to the other player.

Proof: This follows by taking a basic feasible solution for the max-min LP. 2

The minimax theorem plays an important role in connecting between two notions
of randomness in algorithms. A randomized algorithm can be viewed as a probability
distribution over deterministic algorithms. A worst case performance measure for
it is the probability that it outputs the correct answer on the worst possible input.
A distributional algorithm is a deterministic algorithm that is used in a case that
the inputs are drawn at random from some known distribution. An average case
performance measure for the algorithm is the probability (over choice of input) that
it answers correctly. One can set up a zero sum game in which the row player chooses
an algorithm and the column player chooses an input. The row player wins if the
algorithm gives the correct answer on the chosen input.

Fixing a finite collection of algorithms and a finite collection of possible inputs,
Yao’s minimax principle says that the worst case performance of the optimal ran-
domized algorithm (success probability on worst input) is exactly equal to the best
average case performance against the worst possible distribution over inputs.

Another useful observation is that if the collection of algorithms is small, then the
support of the difficult distribution may be small as well, and vice versa.

3 Correlated equilibrium

Consider a multi-player game and let s1, s2, . . . , sN be all its possible strategy profiles.
Let pi(sj) denote the payoff to player i if strategy profile sj is played. Let sj ⊕i s

′

be the strategy profile that results from sj by replacing the strategy for player i by
strategy s′ (where s′ is a strategy available to player i).

Recall that a correlated equilibrium is a probability distribution over strategy
profiles that no player has an incentive to deviate from. Formally, let xj be the
probability associated with strategy profile sj. Then a correlated equilibrium needs
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to satisfy the following set of constraints. For every player i, for every strategy s for
player i and every strategy s′ for player i:∑

s∈sj
pi(sj)xj ≥

∑
s∈sj

pi(sj ⊕i s
′)xj

where the sums are taken only over those strategy profiles in which player i plays
strategy s. Adding the nonnegativity condition x ≥ 0 and the requirement

∑
xj = 1

that probabilities sum up to 1, we see that a correlated strategy is a feasible solution
to a polynomial size (if the game is given in normal form) linear program. This
linear program is indeed feasible, because a mixed Nash equilibrium is a correlated
equilibrium. The discussion above provides the proof to the following proposition.

Proposition 3.1 Given a game in normal form in which all payoffs are rational,
a correlated equilibrium can be computed in polynomial time. Furthermore, for any
linear objective function (with rational coefficients) over the payoffs to the players,
one can find in polynomial time a correlated equilibrium maximizing the objective
function, and moreover, the probabilities involved will all be rational.

The above proposition helps make correlated equilibria a desirable solution con-
cept, when it applies (when there is some trusted party that draws a random profile
from the distribution implied by the correlated equilibrium, and presents to every
player his recommended strategy and no additional information about the strategies
recommended to other players).
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