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1 Two player Nash equilibria

We sometimes use the word Nash as an abbreviation for “Nash equilibrium”.
In some senses, computing Nash for two player games is an easier task than for

three player games.
Consider a two player game with payoff matrices R and C for the row and column

players. Mixed strategies for the row and column players are represented as vectors
x and y of probabilities over choices of pure strategies. The vector associated with
pure strategy i for the row player is denoted by xi, and it has 1 in its ith coordinate,
and 0 elsewhere. The notation yj has a similar interpretation. Given supports SR for
the row player and SC for the column player, to form a Nash, the mixed strategies x
and y associated with them need to satisfy the following linear constraints:

• Nonnegativity: x, y ≥ 0.

• Probability distribution:
∑

xi =
∑

yj = 1.

• Best response for the row player: xiTRy ≥ xjTRy for every pure strategies
i ∈ SR and j. These are linear constraints for the entries of the vector y.

• Best response for the column player: xTCyi ≥ xTCyj for every pure strategies
i ∈ SC and j. These are linear constraints for the entries of the vector x.

The probabilities involved in the mixed strategies are solutions to a linear program
and hence (when taking a basic feasible solution) are rational and can be represented
using polynomially many bits.

The Lemke-Howson algorithm (see Chapter 2 in [NRTV07]) can be used for find-
ing a Nash equilibria in two player games. It also provides an alternative proof that
in two player games, Nash equilibria must exist (and hence also proves the mini-
max theorem). It is not a polynomial time algorithm. There are known families
of examples that require an exponential number of steps to reach a Nash equilib-
rium [SavaniStengel04].
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It is not known whether there is a polynomial time algorithm for computing a
two-player Nash. It is know that many variations of this question are NP-hard. For
example, we have the following theorem.

Theorem 1.1 In a two-player game with non-negative payoffs, the following compu-
tational tasks are NP-hard.

• To determine whether there is a Nash equilibrium in which the column player
has expected positive payoff.

• To determine whether there is a Nash equilibrium in which the row player has
a “strictly” mixed strategy (rather than a pure strategy).

Proof: The proof of both parts of the theorem is by the same reduction from the
NP-hard max-clique problem. The input to the max-clique problem is a graph G and
an integer parameter k, and the question is whether G has a clique of size (at least)
k.

Given a graph G with n vertices and an integer parameter k ≤ n, consider the
following 2-player game that we refer to as the k-clique game. The payoff matrix for
the row player has n + 1 rows and n columns. The top n by n submatrix is A, the
adjacency matrix of a graph G. All the entries of the bottom row are k−1

k
. For the

column player, the top n by n submatrix is the identity matrix I, and the bottom
row is all 0.

The theorem is proved by establishing the following claims.

1. If G has a clique of size k, then there is a Nash equilibrium for the k-clique game
in which the support for the row player has at least k rows, and the expected
payoff for the column player is positive.

2. If G does not have a clique of size k, then in all Nash equilibria the support for
the row player is the last row, his payoff is k−1

k
, and the payoff for the column

player is 0.

If S is a maximal clique of size at least k, then both players playing uniformly
over S can be seen to be a Nash equilibrium, with payoff 1− 1/|S| for the row player
and 1/|S| for the column player. This proves claim 1.

We now prove claim 2. We shall refer to a Nash in which the row player plays row
n + 1, the payoff for the row player is k−1

k
and the payoff for the column player is 0,

as a standard Nash equilibrium. We claim that if G has no clique of size k, there is
no non-standard Nash.

Suppose for the sake of contradiction that there is a non-standard Nash. Let xi be
the probability that the ith column is played in this Nash, and let S be the support
for the mixed strategy for the column player (namely, S = {i|xi > 0}). S must also
be in the support for the row player (otherwise the payoff for one of the strategies
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of the column player is 0, implying that this is the payoff for all the column player’s
strategies, implying that only row n+1 is played, and hence this is a standard Nash).
Being in the support of a Nash, all rows of S give the row player the same expected
payoff, and it must be at least k−1

k
(otherwise the row player plays row n+1 instead).

Let y range over nonnegative vectors whose entries sum to 1, and recall that A is
the adjacency matrix of G. We have thus established that maxy y

TAy ≥ k−1
k
, by

taking y = (x1, . . . xn). The well known Motzkin-Straus theorem [MotzkinStraus65]
says that for every adjacency matrix A, the exisence of such a y implies that the
respective graph G contains a k-clique.

For completeness, we sketch a proof of the Motzkin-Straus theorem. Since A is a
0/1 matrix with 0 along the diagonal, then for every non-negative vector y whose sum
of entries is 1 and with support S, it is easy to see that yTAy ≤ 1− 1

|S| , with equality
only if S is a clique and y is uniform over its support. Hence y needs to have support
at least k. If |S| > k and S is not a clique, then consider any two vertices u and v
that are not adjacent in G. For every δ, replacing y by changing yu to yu + δ and
changing yv to yv − δ changes the objective yTAy by a linear function of δ. Hence δ
can be chosen in a way that reduces the support of y (makes either yu = 0 or yv = 0),
without reducing the objective. Continuing in this fashion, we must end up with a
clique of size at least k. 2

2 PPAD

The Lemke-Howson algorithm places Nash in the class PPAD [Papadimitriou94],
standing for Polynomial Parity Argument Directed. This class captures problem that
can be represented as directed graph, where vertices of the graph represent states in
which an algorithm that searches for a solution can be in. (There can be exponentially
many such states.) Importantly, each vertex has at most one incoming edge and at
most one outgoing edge. One is given a source (a vertex with no incoming edge and
one outgoing edge), and is required to output either a sink, or a different source.

Such a graph can easily be associated with the proof of the two-dimensional
Sperner lemma. (The proof of Sperner’s lemma presented in the previous lecture
involves an undirected graph. One can make it directed by requiring that red-blue
edges are crossed with red on the right-hand side.)

Two player Nash is complete for PPAD [ChenDeng06] (even for ϵ-Nash for polyno-
mially small ϵ [ChenDengTeng06]). As computing an ϵ-Nash for multi-player games
is in PPAD [DGP06], this implies a reduction from multi player games to two player
games, preserving the concept of ϵ-Nash (though ϵ needs to be very small for the two
player game). For other problems in PPAD, see [Papadimitriou94].

Some problems related to PPAD computations are known to be very difficult. This
is touched upon in the homework assignment. Finding the other end of a PPAD com-
putation is PSPACE complete (since reversible computation is universal [Bennett73]).
Reversible Turing machines are not in PPAD because in a PPAD problem one is al-
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lowed to output any sink (or any nonstandard source) and in reversible computation
one seeks a particular sink.

3 Computing ϵ-Nash, for ϵ not too small

In [LMM03] it is proved that for every two player game with n by n payoff matri-
ces, there are ϵ-Nash that are supported on O( 1

ϵ2
log n) strategies. Moreover, the

distribution over these strategies may be taken to be uniform, if the same strategy
is allowed to appear several times in the support (the support is considered as a
multi-set rather than a set.) This, together with the fact that checking whether a
pair of mixed strategies is an ϵ-Nash can be done in polynomial time, implies that

an ϵ-Nash can be computed in time nO( 1
ϵ2

logn), by exhaustive search over all possi-
ble small supports. Obstacles towards substantially improving this running time are
presented in [Rubinstein16].

The proof that an ϵ-Nash of small support exists is by the probabilistic method.
We shall use standard bounds on large deviations for sums of independent random
variables. The following is a special case of Hoeffding’s inequality.

Lemma 3.1 Let X1, . . . , Xk be independent random variables, bounded between 0
and 1, and let Sk =

∑
Xi. Then for all t > 0,

Pr(Sk − E[Sk] ≥ t) ≤ e−
2t2

k

Theorem 3.2 Consider a two player game with payoff matrices R and C for the row
and column players, where payoffs are between 0 and 1, and matrices are of order
n. Let c be a sufficiently large constant (c = 12 is chosen in [LMM03]). For any
Nash equilibrium x∗, y∗ and for any ϵ > 0, there exists, for every k ≥ 12 lnn

ϵ2
, a pair of

k-uniform strategies x′, y′, such that:

1. x′, y′ is an ϵ-Nash.

2. |x′TRy′ − x∗TRy∗| < ϵ (the row player gets almost the same payoff as in the
Nash equilibrium).

3. |x′TCy′ − x∗TCy∗| < ϵ (the column player gets almost the same payoff as in the
Nash equilibrium).

Proof: For 1 ≤ i, j ≤ n, let xi denote the ith pure strategy of the row player and
yj denote the jth pure strategy of the column player.

We form a multi-set A by sampling with repetitions k strategies for the row
player, from the distribution x∗. We form a multi-set B by sampling with repetitions
k strategies for the column player, from the distribution y∗. The strategy x′ is uni-
formly mixed over A, and y′ is uniformly mixed over B. We claim that with positive
probability x′, y′ satisfy the theorem.
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Consider any pure strategy xi for the row player. Then Lemma 3.1 easily shows

that for every constant b > 0 it holds that Pr(|xiTRy′−xiTRy∗| ≥ bϵ) ≤ 2e−
2k2b2ϵ2

k =
2n−2cb2 . Hence, taking b = 1

2
and c sufficiently large, the union bound over n choices

of i and n choices of j shows that with positive probability, for all i and j we have
that:

1. |xiTRy′ − xiTRy∗| ≤ ϵ
2
.

2. |x′TCyj − x∗TCyj| ≤ ϵ
2
.

All inequalities in the statement of the theorem are straightforward consequences
of the above two sets of inequalities. 2

4 Brief survey of additional related work

The following theorem is due to Bubelis [Bubelis79].

Theorem 4.1 Every game G with d > 3 players and rational payoffs can be reduced
in polynomial time to a game G′ with three players and rational payoffs in which
player 1 in G′ simulates all players in G in the following sense. In every Nash for
G′, the mixed strategy x for player 1 corresponds (after scaling by d) to a Nash of G.
Every Nash profile x of G corresponds (after scaling by 1/d) to a mixed strategy of
player 1 in G′ that is part of a Nash for G′.

We introduced a notion of ϵ-Nash. A related notion of an ϵ-close Nash is perhaps
too strong, as there is evidence that checking whether a strategy of profiles in an ϵ-
close Nash might not be doable in polynomial time. See details in [EtessamiYannakakis07].
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