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1 The cut and choose protocol

Here is modern English translation of a passage from the Bible (Genesis, 13:8–9).
So Abram said to Lot, “Let’s not have any quarreling between you and me, or

between your herders and mine, for we are close relatives. Is not the whole land
before you? Let’s part company. If you go to the left, I’ll go to the right; if you go to
the right, I’ll go to the left.”

In the setting above there are two players, Abram and Lot, and a divisibe good
(land areas). The players wish to divide the good among them. (At the time, this
did not mean ownership of the land, but rather where they will take their families
and possessions.) Abram offers a partition of the good (into a left part and right
part), and lot chooses among the two options. This is probably the earliest recorded
application of the cut and choose allocation procedure.

In more modern literature, such settings are referred to as fair division, and cake
cutting is often used as a metaphor if the good is divisible.

Is the cut and choose protocol fair? Fairness is a subjective notion, so anyone is
entitled to his/her own opinion about it.

Here we discuss a mathematical theory of fairness. It is important to state clearly
what assumptions we make, so that it will not be applied in situations in which the
assumptions do not hold.

Assumptions:

• There are n ≥ 2 players. They all have equal entitlement. (This assumption
will be relaxed later.)

• There is one good M (or several goods) that need to be divided among the
players. Each player i has a valuation function vi over parts of the good. Val-
uations are normalized (not receiving anything has value 0), and monotone
non-decreasing – the marginal value of any part is non-negative. (A related
branch of fair division deals with allocation of bads, also referred to as chores,
and then valuations are non-increasing.)
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• For a divisible good, we assume that valuations are non-atomic – every part of
the good that has positive marginal value can be further divided. For indivisible
goods, M is a collection of m goods, and each good is atomic – it cannot be
divided. (More generally, M may contain a mixture of divisible and indivisible
goods.)

The cut and choose protocol suggests two notions of fairness.
One notion is comparison based. Each player compares what she receives with

what other players receive. For the case of two players, an allocation A = (A1, A2)
is called envy free (EF) if v1(A1) ≥ v1(A2), and v2(A2) ≥ v2(A1). For the chooser
(player 2), there is a simple strategy ensuring (EF) – choose the part (P1 or P2) with
higher v2 value. For the cutter (player 1), achieving EF is a more delicate matter.
It can be ensured if the cut is into two parts satisfying v1(P1) = v2(P2). Such a cut
exists for a divisible good.

The other notion is share based. A share s is a mapping from the entitlement and
valuation of an agent to a value, indicating what value (at least) the agent expects
to get in a fair allocation. The agent does not care what value other agents receive.

The cut and choose protocol offers a natural notion of a share for the cutter – the
maximum value that she can ensure for herself in the cut and choose protocol. This
is a max-min notion, referred to as the maximin share (MMS). It is the maximum
over all partitions, of the value of the less valuable part in the partition.

The cutter in a cut and choose protocol has a strategy that offers her at least her
MMS – cut according to the MMS partition. For the chooser, we distinguish between
two cases.

If the chooser has an additive valuation, then her MMS is equal to her proportional
share, namely 1

2
v2(M), and max[v2(P1), v2(P2)] ≥ 1

2
v2(M). Hence, the chooser can

get her MMS. More generally, for additive valuations, in an EF allocation every agent
also gets at least her MMS.

If the valuation of the chooser is not additive, she might not be able to get her
MMS. In the story of Abram and Lot, suppose that it was the case that all the left
(west) part was composed of hills and all the right (east) part was a big valley. If Lot
would have liked to have a mixture of hills and valleys (rather than only hills or only
a valley), his MMS partition would be into North and South, not East and West. In
this case, with the division that Abram offered (into east and west), no part gives
Lot his MMS. For agents who care about share based fairness, being the cutter may
sometimes offer them better guarantees that being the chooser.

Summarizing, the cutter can guarantee to herself her MMS, the chooser can guar-
antee for herself no envy.

An allocation A = (A1, A2) is Pareto optimal (also referred to as Pareto efficient)
if there is no other allocation A′ = (A′

1, A
′
2) for which v1(A

′
1) ≥ v1(A1) and v2(A

′
2) ≥

v2(A2), with at least one of the inequalities being strict. Pareto optimality is a well
accepted critirion for economic efficiency.
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Share based fairness notions are consistent with Pareto efficiency. Given an allo-
cation that satisfies them, any allocation that Pareto dominates it also satisfies them.
Comparison based fairness notions need not be consistent with Pareto efficiency. In
fact, in real life situations, such as two small children arguing over a toy, the final
allocation chosen by the parent might be the empty allocation (the parent takes away
the toy). That allocation is envy free, but not Pareto optimal.

Before we move on, we remark that at this point we only consider fairness for
deterministic allocations. The use of randomized allocation mechanisms can offer op-
tions for achieving fairness guarantees in situations in which deterministic allocations
do not appear to be fair enough. A well known example is random serial dictator-
ship, used in programs such as Mechir Lamishtaken in Israel (in which the players are
eligible buyers, and the items to be allocated are apartments at discounted prices).

1.1 Cut and choose for multiple agents

What would be the analog of the cut and choose protocol for n > 2 players? This
is not so clear. However, let us consider the roles of the cutter and the chooser
separately.

For the cutter, it makes sense that she is required to cut into n parts, one for each
agent. Among these parts, she should be willing to accept the worst one, as otherwise
she will make the worst part of negligible value (or even empty), effectively cutting
to fewer than n pieces. This gives the share based fairness notion of the MMS.

Definition 1.1 Given a good M, the maximin share (MMS) MMS(M, vi,
1
n
) of

an agent i with valuation vi and entitlement 1
n

is max{P1,...Pn}minj vi(Pj), where
{P1, . . . Pn} ranges over all partitions of M into n parts. An allocation A1, . . . , An

is an MMS allocation if each agent i gets a part of value at least her MMS, namely,
vi(Ai) ≥ MMS(M, vi,

1
n
).

For the chooser, faced with a partition of M into n parts, it makes sense that
she will be allowed to choose her most preferred part, as it might be that the cutter
put all value in one part, leaving almost no value for the other parts. This gives the
comparison based notion of EF.

Definition 1.2 Given a good M, an allocation A1, . . . , An is envy-free (EF) if for
every agent i and for every j it holds that vi(Ai) ≥ vi(Aj).

2 Divisible good, MMS allocation

We consider a single divisible good M. With non-additive valuations, an MMS
division need not exist. Hence, we assume that all valuations are additive. In this
case, we seek a proportional allocation, in which each agent i gets value at least
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1
n
vi(M). By scaling valuations by constant multiplicative factors, we may assume

that for every agent vi(M) = 1.
We view the divisible good at the interval from 0 to 1. The valuation function of

each agent is a nonnegative bounded density function over the interval. The value
of a subinterval is the integral of this density function. In a contiguous allocation,
each agent gets a single subinterval. We show that there is an MMS allocation that
is contiguous.

Each agent cuts the interval into n consecutive pieces, each of value 1
n
for the

agent. Then we allocate subintervals in n rounds, in a greedy fashion. In round j,
the agent to get the next subinterval is the one (among those remaining) whose jth
cut point is earliest.

The above protocol requires each agent to report n − 1 cut points. Reporting a
cut point might require infinite precision, an issue that we ignore here. Still, it is
desirable to reduce the number of reported cuts.

A more efficient protocol of Even and Paz [2] reports only ⌈log n⌉ cut points per
agent. Each agent reports its ⌊n

2
⌋ the cut point. Finding the median of these cut

points, the ⌊n
2
⌋ agents with lower cut points continue recursively with the prefix of the

interval, and the ⌈n
2
⌉ agents with higher cut points continue recursively with the suffix

of the interval. Even and Paz also present a randomized allocation protocol whose
expected total number of cut points is O(n). It is based on randomized algorithms for
finding the median. The expected number of comparisons to find the median is O(n),
but the expected number of pivot elements, against which comparisons are made,
is only O(log n). Agents holding pivot elements (the cut points are the elements)
need to report their cut points. Other agents need only report the outcome of the
comparison of their cut point with the pivot cut point.)

3 Divisible good, envy-free division

Here, we do not assume that valuations are additive (though recall that they are
normalized, monotone and non-atomic).

It seems reasonable that EF allocations exists, or at least allocations in which
the envy tends to 0. At an intuitive level, one may imagine cutting the unit interval
(cake) into infinitely small crumbs, and allocating them in periodic fashion to the
players.

A more interesting question is whether there is an EF allocation (exactly EF, not
nearly EF) in which the good is cut into finitely many pieces. Perhaps the best we
can hope for is a contiguous allocation that is EF. The following theorem is due to
Stromquist [4].

Theorem 3.1 For every instance of allocating a divisible good among equally entitled
agents with valuation functions that are normalized, monotone and non-atomic, there
is a contiguous envy free allocation.
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Proof: We sketch a proof which is presented in a very readable form in Su [5]. It
is based on Sperner’s lemma, that we encountered in the context of proving existence
of a Nash equilibrium.

Consider the special case of three agents. A contiguous allocation of the unit
interval can be specified by a vector of dimension 3, (x1, x2, x3), for the sizes of the
pieces. The vector satisfies the constraints x1, x2, x3 ≥ 0 and x1+x2+x3 = 1. Hence,
geometrically, all vectors form a triangle. (With n > 3 agents, we have a simplex in
a higher dimension.)

Subdivide the simplex into arbitrarily small simplices. For the triangle, this can
be done by drawing lines parallel to the sides of the triangle. Name the vertices of
the subdivided simplex by names of agents in a “nameful” way, meaning that the
vertices of each small simplex all have different names. This can be done by naming
the vertices on the left side in the cyclic order A, B, C (going from top to bottom),
and naming vertices of each row (from left to right) in the same cyclic order. (For
higher dimensional simplicies, a bit more care is needed in subdividing the simplex
so as to have a namerful naming. See details in [5]).

Color each vertex of the subdivided simplex by the part that the player naming
the vertex likes best, among the three parts implied by the coordinates (x1, x2, x3) of
the vertex (breaking ties arbitrarily, though never preferring an empty part). This
coloring satisfies the conditions of Sperner’s lemma (due to the fact that empty parts
are never chosen). Hence we must have a colorful simplex. In the vertices of the
simplex, each player is satisfied with a different part (has no envy).

By refining the subdivision more and more, we converge to an EF contiguous
allocation. 2

The proof of Theorem 3.1 is not algorithmic. An algorithm (in a model in which
players can announce cuts with infinite precision) of Aziz and Mackenzie [1] finds a
non-contiguous EF allocation. and the number of queries that it makes is is bounded
by a function of n (a tower of exponents, of height 6).

4 Allocation of indivisible goods

We now consider allocation of indivisible goods. Clearly, there need not be any EF
allocation. For example, this is the case when there are fewer goods than agents. Also,
for general monotone valuations, MMS allocations need not exist. For example, this
is the case when there are two agents and four items arranged in a two by two matrix,
where one agent likes any row of the matrix, and the other agent likes any column of
the matrix. However, for additive valuations, it appears that MMS allocations may
exist (the case of fewer items than agents is not a negative example, because in this
case the MMS of every agent is 0). Perhaps surprisingly, with n ≥ 3 agents, there are
allocation instances with additive valuations in which no MMS allocation exists [3].

As neither EF nor MMS are feasible, one is led to consider relaxations of these
notions.
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4.1 Comparison based fairness for indivisible goods

For EF, well studied relaxations are EF1 and EFX. The terminology of minimal, mild
and strong used in the following definition is introduced here, and is not commonly
used in related literature.

Definition 4.1 In an allocation A1, . . . , An we say that agent i envies agent j if
vi(Ai) < vi(Aj). The envy is minimal if for every item e ∈ Aj, it holds that vi(Ai) ≥
vi(Aj \ {e}). The envy is mild if for some item e ∈ Aj, it holds that vi(Ai) ≥ vi(Aj \
{e}). The envy is strong if for every item e ∈ Aj, it holds that vi(Ai) < vi(Aj \ {e}).

An EFX allocation (envy free up to any item) is an allocation in which for every
two agents i and j, either i does not envy j, or the envy is minimal. An EF1 allocation
(envy free up to one item) is an allocation in which for every two agents i and j, either
i does not envy j, or the envy is mild.

The proof that contiguous EF allocations exist for a divisible good implies some-
what weaker fairness for indivisible goods. Arranging the goods on a line and allowing
to cut within a good (extending the valuation function in some consistent way to bun-
dles that may contain fractions of items), a contiguous envy free allocation gives every
agent a bundle in which at most two items are cut. Allocate every cut item to the
agent who got the rightmost part. The envy between an agent i and j can be elimi-
nated by removing one item from Aj (the cut item that ended up in Aj), and addiing
one item to Ai (the cut item that agent i gave up). We refer to such allocations as
EF 1

1 .
We will see that EF1 allocations also exist. The question of whether EFX alloca-

tions always exist is a central open question in fair division.
To be continued in next lecture
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