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The setting

A set 𝑀 of 𝑚 indivisible items (goods).
𝑛 agents.
Each agent 𝑖 has a monotone valuation function 𝑣𝑖. 
• Special case: additive valuation. 𝑣𝑖 𝑆 =  σ𝑒∈𝑆 𝑣𝑖(𝑒).
Each agent 𝑖 has an arbitrary non-negative entitlements 𝑏𝑖.

• Special case: equal entitlements. 𝑏𝑖 =
1

𝑛
 for every agent 𝑖.
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Assumptions about entitlements

Monotone: higher entitlement is better.
Linear scale: if agent 𝑗 transfers her entitlement to agent 𝑖, then 
agent 𝑖 has entitlement 𝑏𝑖  +  𝑏𝑗.

Entitlements sum up to 1, indicating that collectively all agents are 
entitled to all the goods, no less and no more.
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Examples

• Allocation of housing units to eligible residents.

• Allocation of seats in the parliament to political parties.

• Dividing an inheritance among a widow and several children.

• Handling student registration to courses of limited capacity.

• NBA draft: allocation of eligible basketball players to NBA teams.
…
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Recap for equal entitlement

Ideal fairness notions: represent what we aspire to achieve. 
Not always feasible, so sometimes we settle for approximations.

Share based notions: 
• Maximin share (MMS) for monotone valuations. 
• For additive valuations: the proportional share (PS).

Comparison based notions: envy-free.
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Sanity check for fairness notions

Consider dividing a homogeneous divisible good. 
Money, water, processing time, storage space … 
Modelled as 𝑚 identical items, for very large 𝑚. 𝑣𝑖 𝑆 = 𝑣𝑖( 𝑆 ).

Proportional allocation: each agent 𝑖 gets 𝑏𝑖 ⋅  𝑚 items (𝑚 is assumed to 
be such that 𝑏𝑖 ⋅  𝑚 is an integer).
Independent of the valuations. 

In the equal entitlement case, the ideal fairness notions (MMS, PS for 
additive, EF) are satisfied by the proportional allocation.
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Unequal entitlement, additive valuations

A set 𝑀 of 𝑚 identical items, 𝑣𝑖(𝑆)  =  |𝑆|.

Maximin share?
Proportional share (PS): entitled to a value of 𝑏𝑖 ⋅ 𝑣𝑖 (𝑀).

Weighted envy free (WEF): 𝑣𝑖 𝐴𝑖

𝑏𝑖
≥

𝑣𝑖 𝐴𝑗

𝑏𝑗
.

Both enforce the proportional allocation.
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Non-additive valuations, share based notions

Example, submodular valuation (diminishing returns). 
𝑣𝑖 𝑥 = √𝑥

PS. Not meant to be used for non-additive valuations.
𝑃𝑆𝑖 =  𝑏𝑖 ⋅ 𝑣𝑖 𝑀 = 𝑏𝑖 ⋅ √𝑚. Achieved by 𝑏𝑖

2 ⋅ 𝑚 items. 
The proportional share for nonadditive valuations does not give the 
proportional allocation, not even for equal entitlement.

How does one adapt MMS to unequal entitlements?
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Non-additive valuations, WEF 𝑣𝑖 𝐴𝑖

𝑏𝑖
≥

𝑣𝑖 𝐴𝑗

𝑏𝑗

With two agents of equal entitlement, each agent gets 𝑚
2

 items. 

Unequal entitlements 1

3
,

2

3
, identical valuations 𝑣𝑖 𝑥 = √𝑥.

In WEF, agent 1 gets 𝑚
5

 items and agent 2 gets 4𝑚

5
 items.  

WEF allocation offers lower Nash Social Welfare 𝑣1 𝐴1 ⋅ 𝑣2 𝐴2  
and lower weighted NSW (𝑣1(𝐴1))𝑏1(𝑣2(𝐴2))𝑏2  then the 
proportional allocation.
WEF allocations do not exist if 𝑣1 𝑥 = 𝑥 and 𝑣2 𝑥 = √𝑥.
WEF does not appear to capture fair allocations.
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Ex-ante fairness (expected value received)

Giving 𝑀 to each agent 𝑖 with probability 𝑏𝑖  gives the proportional 
share ex-ante, and is ex-ante WEF.

Weaknesses of this randomized allocation: 
• Ex-post very poor. Want a combination of ex-ante and ex-post 

guarantees (Best of Both Worlds, BoBW). 
• The ex-ante proportional guarantee is optimal for additive 

valuations, but might be very weak for concave (subadditive) 
valuations, in which the sum of values of the parts is higher than 
the value of the whole.
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Definitions presented in this talk

Want fairness notions that apply to arbitrary (unequal) entitlements, 
and arbitrary monotone valuations.
Leave comparison based notions (envy-free) for future work.
Concentrate on share based fairness:
• ෣𝑀𝑀𝑆 . A minimal upper bound on all feasible ex-post shares.
• ෣𝑀𝐸𝑆. A minimal upper bound on all feasible ex-ante shares.
• APS. Gives proportional allocation for homogeneous divisible 

good.
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Ex-post share-based fairness notions

Agent 𝑖 has entitlement 𝑏𝑖 ≥ 0, and σ𝑖 𝑏𝑖 = 1. 
(For equal entitlement, 𝑏𝑖 =

1

𝑛
.) 

If 𝑏𝑖 =
1

𝑘
 for some integer 𝑘, it is natural to use the share value:

𝑀𝑀𝑆 𝑣𝑖 ,
1

𝑘
= max

𝐴1,…,𝐴𝑘

min
𝑗

𝑣𝑖(𝐴𝑗) 

Suppose we do that. 

What should the share value be when 1

𝑘+1
< 𝑏𝑖 <

1

𝑘
 ?
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Pessimistic rounding 1

𝑘+1
≤ 𝑏𝑖 <

1

𝑘
 

ෛ𝑀𝑀𝑆 𝑣𝑖 , 𝑏𝑖 = 𝑀𝑀𝑆(𝑣𝑖 ,
1

𝑘 + 1
)

Possible motivation: feasibility when all agents have the same 
valuation function.

Proposition [Feige23]: there are instances with entitlements (1

2
,

1

3
,

1

6
) 

and identical additive valuations with no ෛ𝑀𝑀𝑆 allocations.
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Optimistic rounding 1

𝑘+1
< 𝑏𝑖 ≤

1

𝑘
 

෣𝑀𝑀𝑆 𝑣𝑖 , 𝑏𝑖 = 𝑀𝑀𝑆(𝑣𝑖 ,
1

𝑘
)

Motivation: an upper bound on all feasible shares.
Proof: There might be 𝑘 agents with entitlement 𝑏𝑖  and valuation 𝑣𝑖, 
and then at least one of the agents will get at most ෣𝑀𝑀𝑆 𝑣𝑖 , 𝑏𝑖 .
This upper bound is tight, even with respect to nice feasible shares.
Theorem [Babaioff and Feige, 24]: there is a collection of shares, 
such that each share is feasible, item name independent and 
self-maximizing, and for every 𝑏𝑖  and additive 𝑣𝑖, the value of at 
least one of these shares is ෣𝑀𝑀𝑆 𝑣𝑖 , 𝑏𝑖 .
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The AnyPrice Share APS  [Babaioff, Ezra, Feige 2021]

Agent 𝑖 has entitlement 𝑏𝑖 ≥ 0, and σ𝑖 𝑏𝑖 = 1. 
(For equal entitlement, 𝑏𝑖 =

1

𝑛
.) 

Recall: the MMS of an agent is the value that she is guaranteed to 
get as a cutter in a cut and choose game. 
At a high level: the APS of an agent is the value that she is 
guaranteed to get as a chooser in a price and choose game. 
Price and choose can handle arbitrary entitlements.

If 𝑏𝑖 =
1

𝑘
 for some integer 𝑘, the APS need not equal 𝑀𝑀𝑆 𝑣𝑖 ,

1

𝑘
.
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The anyprice share APS 
[Babaioff, Ezra, Feige 2021]

An adversary assigns a nonnegative vector 𝑝 = (𝑝1, … , 𝑝𝑚) of prices 
to the items, summing to 1. 
The agent may pick any bundle 𝐵 of price at most 𝑏𝑖.  
 

𝐴𝑃𝑆 = 𝑚𝑖𝑛𝑝𝑚𝑎𝑥𝐵[𝑣 𝐵 ]

A min-max definition.
The APS of agent 𝑖 depends only on the valuation function and 
entitlement of 𝑖.
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Additive valuation, entitlement 𝑏𝑖 =
2

5
= 0.4

       𝑣𝑖 𝐴 = 𝑣𝑖 𝐵 = 7

       𝑣𝑖 𝐶 = 𝑣𝑖 𝐷 = 𝑣𝑖 𝐸 = 5
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Additive valuation, entitlement 𝑏𝑖 =
2

5
= 0.4

       𝑣𝑖 𝐴 = 𝑣𝑖 𝐵 = 7

       𝑣𝑖 𝐶 = 𝑣𝑖 𝐷 = 𝑣𝑖 𝐸 = 5

         0.23        0.23       0.18    0.18    0.18        𝐴𝑃𝑆𝑖 ≤ max 5 + 5, 7 = 10
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Additive valuation, entitlement 𝑏𝑖 =
2

5
= 0.4

       𝑣𝑖 𝐴 = 𝑣𝑖 𝐵 = 7

       𝑣𝑖 𝐶 = 𝑣𝑖 𝐷 = 𝑣𝑖 𝐸 = 5

         0.23        0.23       0.18    0.18    0.18        𝐴𝑃𝑆𝑖 ≤ max 5 + 5, 7 = 10

5 bundles, each item in two of them:  𝐴, 𝐵 , 𝐵, 𝐶 , 𝐶, 𝐷 , 𝐷, 𝐸 , (𝐸, 𝐴). 
At least one bundle has price at most 0.4. Implies that 𝐴𝑃𝑆𝑖 ≥ 10
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Properties of APS
A distribution over subsets of ℳ is 𝑏𝑖-balanced if every item has 
probability 𝑏𝑖  of appearing in a random bundle.
Max-min definition of APS (equivalence holds for arbitrary 
valuations): The APS is the value of worst bundle in the best 
𝑏𝑖- balanced distribution.

For equal entitlements (𝑏𝑖 =
1

𝑛
 for integer 𝑛), the maximin share MMS 

definition requires a balanced distribution over disjoint bundles. 
The APS is a relaxed version of the MMS (bundles need not be 
disjoint, 𝐴𝑃𝑆 ≥ 𝑀𝑀𝑆) that extends to arbitrary entitlements.
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A homogeneous divisible good

𝑚 identical items. 
𝑚 is sufficiently large so that 𝑏𝑖 ⋅ 𝑚 is integer for all agents 𝑖.

𝐴𝑃𝑆𝑖 = 𝑣𝑖(𝑏𝑖 ⋅ 𝑚). 

• Upper bound: price each item as 1

𝑚
.

• Lower bound: 𝑏𝑖- balanced distribution with 𝑚 bundles, each of 
𝑏𝑖 ⋅ 𝑚 consecutive items (in cyclic order) and probability 1

𝑚
.
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A homogeneous divisible good

𝐴𝑃𝑆𝑖 = 𝑣𝑖(𝑏𝑖 ⋅ 𝑚). 
• Lower bound: 𝑏𝑖- balanced distribution with 𝑚 bundles, each of 

𝑏𝑖 ⋅ 𝑚 consecutive items (in cyclic order) and probability 1

𝑚
.

                                                                 …….
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A homogeneous divisible good

When dividing a homogeneous divisible good, the proportional 
allocation is an APS allocation, regardless of the valuations of the 
agents.
Moreover, if valuations are strictly monotone, then the proportional 
allocation is the only APS allocation.
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The APS is not a feasible share

There are instances with indivisible items, even with equal 
entitlement and identical additive valuations, in which in every 
allocation, some agent does not get her APS.
(In these instances, 𝐴𝑃𝑆 > 𝑀𝑀𝑆)

We settle for 𝜌-APS allocations, in which every agent gets at least a 
𝜌 fraction of her APS.
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Ex-ante share-based fairness notions

Maximum expectation share MES.
Recall: a distribution is 𝑏𝑖-balanced if every item has probability 𝑏𝑖  of 
appearing in a random bundle.

The APS is the value of worst bundle in the best 𝑏𝑖-balanced distribution. 

The MES is the expected value of a random bundle in the best 
𝑏𝑖-balanced distribution.

MES is at least as large as APS, and at least as large as the proportional 
share.
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A dominating ex-ante share 1

𝑘+1
< 𝑏𝑖 ≤

1

𝑘
 

Recall: The MES is the expected value of a random bundle in the 
best 𝑏𝑖-balanced distribution. 

For 1

𝑘+1
< 𝑏𝑖 ≤

1

𝑘
 , let ෡𝑏𝑖 =

1

𝑘
.

The ෣𝑀𝐸𝑆 is the expected value of a random bundle in the best 
෡𝑏𝑖-balanced distribution.
෣𝑀𝐸𝑆 is an upper bound on every feasible ex-ante share, and a tight 
upper bound for additive valuations.
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Summary for share based notions 1

𝑘+1
< 𝑏𝑖 ≤

1

𝑘
 

Upper bounds on all feasible shares, tight for additive valuations.

Ex-post: ෣𝑀𝑀𝑆 𝑣𝑖 , 𝑏𝑖 = 𝑀𝑀𝑆(𝑣𝑖 ,
1

𝑘
).

Ex-ante: ෣𝑀𝐸𝑆 𝑣𝑖 , 𝑏𝑖 = 𝑀𝐸𝑆(𝑣𝑖 ,
1

𝑘
).

The anyprice share (APS): a share that induces the proportional 
allocation for a divisible homogeneous good (such as money).
The proportional share: a share that is always feasible ex-ante.
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Approximations for additive valuations

Ex post:
For which values of 𝜌 is 𝜌-APS feasible?
For which values of 𝜌 is 𝜌- ෣𝑀𝑀𝑆 feasible?

Ex ante:
MES is feasible. For which values of 𝜌 is 𝜌-෣𝑀𝐸𝑆 feasible?

BoBW?
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Ex-ante approximation of ෣𝑀𝐸𝑆 

Recall, MES is feasible ex-ante, agent 𝑖 gets 𝑀 with probability 𝑏𝑖.
Problem for ෣𝑀𝐸𝑆: after rounding up, sum of entitlements exceeds 1.

For 1

𝑘+1
< 𝑏𝑖 ≤

1

𝑘
 , let ෡𝑏𝑖 =

1

𝑘
.

Proposition: if σ𝑖 𝑏𝑖 = 1 then σ𝑖
෡𝑏𝑖 < 𝛾 ≃ 1.69103. Moreover, 𝛾 is the 

smallest possible universal upper bound.

𝜌- ෣𝑀𝐸𝑆 for 𝜌 =
1

𝛾
≃ 0.591: agent 𝑖 gets 𝑀 with probability  

෢𝑏𝑖

σ ෢𝑏𝑗
≥

1

𝛾
⋅ ෡𝑏𝑖.
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Ex-post approximation of ෣𝑀𝑀𝑆 

Approximation ratio is no better than 1
𝛾

≃ 0.591.

In fact, approximation ratio is no better than 0.5.

𝑚 = 2𝑛 − 2 items of value 1.

𝑛 − 1 agents of entitlement 1
𝑛

< 𝑏𝑖 <
1

𝑛−1
. 

Then  ෡𝑏𝑖 =
1

𝑛−1
 and ෣𝑀𝑀𝑆 = 2.

One agent of entitlement 1

𝑛+1
< 𝑏𝑛 <

1

𝑛
. Then  ෢𝑏𝑛 =

1

𝑛
 and ෣𝑀𝑀𝑆 = 1.

In every allocation, at least one agent does not get more than 1
2

⋅ ෣𝑀𝑀𝑆.

30



Approximation of ෣𝑀𝑀𝑆

Theorem [Babaioff and Feige, 2024]: 
• For every allocation instance with arbitrary entitlements and additive 

valuations, there is a 1
2

- ෣𝑀𝑀𝑆 allocation.

• For every 𝜀 > 0, a (1

2
− 𝜀)- ෣𝑀𝑀𝑆 allocation can be computed in 

polynomial time.
• The results hold also for ෢𝑇𝑃𝑆 instead of ෣𝑀𝑀𝑆. 

For additive valuations, the truncated proportional share (TPS) is a share whose 
value is sandwiched between the MMS and the proportional share. Moreover, 
unlike the MMS, its value can be computed in polynomial time.
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Proof technique

Consider the bidding game, an allocation mechanism for agents of 
arbitrary entitlements. 
Design a safe strategy for an agent playing the bidding game, that 
guarantees at least 1

2
⋅ ෣𝑀𝑀𝑆, regardless of the strategies used by 

other agents.

Existence of 1
2

⋅ ෣𝑀𝑀𝑆 allocations follows, as all agents can use the 
safe strategy.
If the safe strategy can be implemented in polynomial time, 
then a 1

2
⋅ ෣𝑀𝑀𝑆 allocation can be found in polynomial time.
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The bidding game [Babaioff, Ezra, Feige 2021]
(a poorman game [Lazarus, Loeb, Prop, Ullman 1995])

The bidding game for allocating 𝑚 items takes 𝑚 rounds.
Initially, each agent 𝑖 gets a budget equal to her entitlement 𝑏𝑖.
In every round:
• Each agent makes a bid not higher than her remaining budget.
• Highest bidder wins (ties broken at random), pays her bid, and 

picks an item of her choice.
Game ends when no items are left (or no budget is left).

33



Warm-up: the proportional bidding strategy

Scale the additive valuation function 𝑣𝑖  so that 𝑣𝑖(𝑀) = 1.
Assume (for simplicity) that no single item has value above 𝑏𝑖.

A safe strategy that achieves at least 1
2

⋅ 𝑃𝑆 

(without the assumption, can guarantee 1
2

⋅ 𝑇𝑃𝑆). 

• In every round, bid value of highest remaining item. If insufficient 
budget remains, then bid the full remaining budget (an under-bid).

• If the bid wins, take highest value item and pay your bid.
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0.5             0.330.17           0.33

Bidding against an adversary 

𝑏1 = 0.67 𝑏2 = 0.33

½            ½

𝑏′1 = 0.17

• σ𝑖 𝑏𝑖 = 1 𝑎𝑛𝑑 𝑣(𝑀) = 1.
• An adversary aims to minimize the bidder value.
• Proportional strategy: 

bid min(highest value item, budget)

fraction of PS achieved ≥ fraction of budget spent
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1

2
𝑃𝑆 guarantee for proportional bidding strategy

If agent 𝑖 spends at least 𝑏𝑖

2
, she gets value at least 𝑏𝑖

2
, as desired.

Assume for the sake of contradiction that agent 𝑖 managed to spend 
less than 𝑏𝑖

2
. 

This implies that 𝑖 never needed to under-bid. 
Other agents must pay at least agent 𝑖’s bids for the items that they 
win.  
Regardless of which items they choose, they consume value at 
most 1 − 𝑏𝑖  (their total budget). 

A value of 𝑏𝑖

2
 still remains, contradicting the assumption.
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The proportional strategy ensures at least 1
2

𝑇𝑃𝑆.

We need to achieve 1
2

෣𝑀𝑀𝑆, and in fact achieve 1
2

෢𝑇𝑃𝑆.

The proportional strategy is too weak to achieve this.
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Bidding against an adversary 

𝑏1 = 0.67 𝑏2 = 0.33

½            ½

0.335             0.33

𝑏′1 = 0.335

0.335           0.33

• σ𝑖 𝑏𝑖 = 1 𝑎𝑛𝑑 𝑣(𝑀) = 1.
• An adversary aims to minimize the bidder value.
• Proportional strategy: 

bid min(highest value item, budget)

• Is there a better strategy?
• Yes!
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Safe strategy for 1
2

෣𝑀𝑀𝑆

Unlike the proportional strategy which ensures 1
2

𝑇𝑃𝑆, any strategy 

that achieves 1
2

෣𝑀𝑀𝑆 (and 1
2

෢𝑇𝑃𝑆) must be:

• Non myopic (the bid depends on values of multiple items).
• Non monotone (bids may increase across rounds).

Designing a safe strategy for 1
2

෣𝑀𝑀𝑆 requires a much better 
understanding of the strategy space for the bidding game.
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• Safe strategies: guarantee a value 𝑉𝑖 𝑏𝑖  for 𝑏𝑖, for any adversary.  

• All subsets, by increasing order of values.
• Symmetry: 𝑉𝑖 𝑏𝑖 + 𝑉𝑖 1 − 𝑏𝑖 = 𝑉𝑖 𝑀  for non-transition 𝑏𝑖.
• Entitlement > ½ ➔ at least ½ of 𝑣𝑖 𝑀 .
• Entitlement = ½ ➔ at least MMS of two agents. 
• Non-constructive!  
• NP-hard to compute a worst-case-optimal safe strategy.

Understanding the bidding game

𝑏𝑖

{∅}                {3}        {2} {1}{2,3}  {1,3}     {1,2} {1,2,3}

0 1ൗ1
4 ൗ1

2 ൗ3
4
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Safe strategy for 1
2

෣𝑀𝑀𝑆

Our strategy is explicit and polynomial time, as long as the agent 
has at most half of the remaining budget. 
If at any point the agent has more than half of the remaining budget, 
the strategy switches to the  non-constructive existential result.
For this last reason, our strategy is not known to be implementable 
in polynomial time.
For every 𝜀, we have a polynomial time version that achieves 
(

1

2
− 𝜀) ෢𝑇𝑃𝑆.
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Additional notes on the bidding game

There are several natural variations on this game (pay second price, 
choose multiple items).
The strongest currently known approximations for APS allocations 
were proved by designing safe strategies for the bidding game.
3

5
-APS for additive valuations [Babaioff, Ezra, Feige 2021].

1

3
-APS for submodular valuations [Ben Uziahu and Feige 2023]. 

(Submodular is the discrete analog of concave valuations, 
non-increasing marginal values.)
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Best of Both Worlds Impossibility 

Cannot ensure constant fraction of ෣𝑀𝑀𝑆 ex-post and constant 
fraction of ෣𝑀𝐸𝑆 ex-ante simultaneously. 
Example: two identical items and three agents with entitlements 
(0.34,0.34,0.32).
• Each of agent 1 and agent 2 must get an item in the ex-post 

allocation. Otherwise, no approximation of the ෣𝑀𝑀𝑆.
• Ex-ante, agent 3 must have positive probability of receiving an 

item. Otherwise, no approximation of the ෣𝑀𝐸𝑆.
These two requirements are incompatible.
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Summary for additive valuations

Ex-post, can ensure every agent at least 1
2

෣𝑀𝑀𝑆, and hence at least 
half of every feasible share. This is best possible.
Ex-ante, can ensure every agent at least 0.591෣𝑀𝐸𝑆, and hence at 
least 0.591 of every feasible share. This is best possible.
No BoBW: every randomized allocation that gives every agent 
positive value ex-ante, must have in its support an allocation in 
which some agent gets 0-value (ex-post), despite there being a 
feasible share of positive value for the agent.
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Chores

• Chores have positive costs (negative values).
• Doing the laundry
• Cleaning the bathroom
• Sweeping the floors

• All chores must be assigned.
• Agents have responsibilities (sum to 1).
• Agents aim to minimize their costs.
• A share bounds the maximal cost the agent might suffer. 
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Share based fairness definitions for chores

Maximin (MMS) changes to minimax (an 𝑛-partition that minimizes 
the cost of the most costly bundle).

Ex-post dominating share: ෛ𝑀𝑀𝑆 (responsibility 1

𝑘+1
≤ 𝑏𝑖 <

1

𝑘
 

rounded down to 1

𝑘+1
).

Ex-ante dominating share: ෛ𝑀𝐸𝑆.
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BoBW result for chores 

Theorem: There is a polynomial time randomized assignment 
algorithm that for every input instance with additive cost functions 
and arbitrary responsibilities outputs a distribution over 
assignments for which for every agent: 
• Ex-ante: the expected cost is at most her proportional share 

(hence, at most 2-ෛ𝑀𝐸𝑆).
• Ex-post: the cost is at most 2- ෛ𝑀𝑀𝑆.
Moreover, the approximation ratio of 2 is best possible, both ex-ante 
and ex-post.
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A general technique for additive valuations: faithful 
implementation of fractional allocations
Find a fractional allocation 𝐴∗ with good fairness properties.
(E.g., each agent 𝑖 gets a 𝑏𝑖  fraction of each item.)
• Faithful rounding: a rounded integral solution 𝐴 in which every agent 

gets at least her fractional value, up to one item. Provides an ex-post 
guarantee. 

• Faithful implementation: a distribution over faithful integral solutions, 
where the expectation of the distribution is exactly 𝐴∗. Adds an ex-ante 
guarantee - every agent gets her fractional value in expectation. 

Faithful implementation gives “best of both worlds”: ex-ante and ex-post.
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Some relevant work on 
faithful implementations
[Srinivasan 2008] – designed and applied a faithful implementation 
(with spread of at most one item) so as to get a 3

4
 approximation to 

the maximum welfare with budget additive valuations. 
[Budish, Che, Kojima and Milgrom 2013] – motivated the concept of 
faithful implementations, and generalized it to bi-hierarchies. 
[Freeman, Shah and Vaish 2020] – presented two “best of both 
worlds” results for fair allocation.
[Aziz 2020] – a simplified randomized allocation that is ex-ante envy 
free and ex-post envy free up to one good.
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The unifying lemma

Lemma. Every fractional allocation 𝐴∗ can be implemented in 
polynomial time as a distribution over (polynomially many) integral 
faithful allocations 𝐴1, 𝐴2 … . 

Implementation: 𝐴∗ = σ𝑘 𝜆𝑘𝐴𝑘, where σ𝑘 𝜆𝑘 = 1, and 𝜆𝑘 ≥ 0 for all 
𝑘.
Every allocation 𝐴𝑘  is faithful: every agent 𝑖 receives same value as 
in 𝐴∗, up to one item.

We shall present the proof given in [Aziz 2020]. 

50



Birkhoff – von Neumann theorem [BvN]

• Every doubly stochastic matrix decomposes (in polynomial time) 
into a convex combination (distribution) over permutation 
matrices. 0.6 0.2 0.2

0.3 0.1 0.6

0.1 0.7 0.3

0.1

0.1

0.1

0.6

0.6

0.6

0.2

0.2

0.2

0.1

0.1

0.1
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A BvN algorithm for faithful implementation

Consider a fractional allocation. For example:

Agent 1 Agent 2

Item 1 0.4 0.6

Item 2 0.3 0.7

Item 3 1 0
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A BvN algorithm for faithful implementation

Allocate the integral items (item 3 to agent 1):

Agent 1 Agent 2

Item 1 0.4 0.6

Item 2 0.3 0.7
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A BvN algorithm for faithful implementation

Add dummy items (of value 0) to get 
integer column sums:

Agent 1 Agent 2

Item 1 0.4 0.6

Item 2 0.3 0.7

Item 4 (dummy) 0.3 0.7
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A BvN algorithm for faithful implementation

Break agents into clones to get column sum 1. 
Clones “eat” fractions in order of value of items.

Now we have a doubly stochastic allocation matrix.

Agent 1 Agent 2a Agent 2b

Item 1 0.4 0.3 0.3

Item 2 0.3 0.7 0

Item 4 
(dummy)

0.3 0 0.7
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How did we partition the fractional allocation 
of Agent 2 among his clones?
Recall, fractional allocation for Agent 2: 
0.6 (item 1) + 0.7 (item 2) + 0.7 (item 4)

Sort items by value to Agent 2. Suppose that 𝑣2 2 ≥ 𝑣2 1 ≥ 𝑣2(4).
0.7 (item 2) + 0.6 (item 1) + 0.7 (item 4)

Break fractional allocation so that partial sums are integers:
0.7 (item 2) + 0.3 (item 1)  + 0.3 (item 1) + 0.7 (item 4)
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How did we partition the fractional allocation 
of Agent 2 among his clones?
Recall, fractional allocation for Agent 2: 
0.6 (item 1) + 0.7 (item 2) + 0.7 (item 4)

Sort items by value to Agent 2. Suppose that 𝑣2 2 ≥ 𝑣2 1 ≥ 𝑣2(4).
0.7 (item 2) + 0.6 (item 1) + 0.7 (item 4)

Break fractional allocation so that partial sums are integers.
0.7 (item 2) + 0.3 (item 1)  + 0.3 (item 1) + 0.7 (item 4)

 Clone 2a   Clone 2b
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A BvN algorithm for faithful implementation
Implement the doubly stochastic allocation 
as a distribution over permutation matrices.

          =                                    +                               + 

In every permutation matrix, every clone gets exactly one item.
In the corresponding allocation, every agent gets all items that are 
allocated to his clones. (Agent 2 has two clones - gets two items.)
Discard dummy items. (Discard item 4.)

0.4 0.3 0.3

0.3 0.7 0

0.3 0 0.7

0.3

0.3

0.3

0.4

0.4

0.4

0.3

0.3

0.3
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The BvN algorithm produces an 
implementation
Ex-ante: In expectation, every agent 𝑖 gets every item 𝑗 with 
probability exactly equal to the fractional allocation of 𝑗 to 𝑖.

• The fractional allocation of an agent is split among her clones.
• For every clone, the probability of getting an item 𝑗 is exactly equal 

to the fraction of 𝑗 assigned to the clone. (BvN).
• Every agent gets all items of her clones.
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The implementation is faithful

Ex-post: Every agent gets same value as she does in the fractional 
allocation, up to one item.
Even stronger: The best and the worst ex-post allocation to agent 𝑖 have 
the same value, up to one item (the spread is at most one item).
• Removing best item from best possible allocation 𝐵𝑖, we get an 

allocation that is no better than worst possible allocation 𝑊𝑖. 
0.7 (item 2) + 0.3 (item 1)  + 0.3 (item 1) + 0.7 (item 4)
 Clone 2a   Clone 2b

𝑣𝑖(max 𝑐2𝑎) ≥ 𝑣𝑖(min 𝑐2𝑎) ≥ 𝑣𝑖(max 𝑐2𝑏) ≥ 𝑣𝑖(min 𝑐2𝑏) ≥ ⋯
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Summary: the faithful implementation lemma

Lemma. Every fractional allocation 𝐴∗ can be implemented in 
polynomial time as a distribution over (polynomially many) integral 
faithful allocations 𝐴1, 𝐴2 … . 

Implementation: 𝐴∗ = σ𝑘 𝜆𝑘𝐴𝑘, where σ𝑘 𝜆𝑘 = 1, and 𝜆𝑘 ≥ 0 for all 
𝑘.
Every allocation 𝐴𝑘  is faithful: every agent 𝑖 receives same value as 
in 𝐴∗, up to one item. (Moreover, the spread is at most one item.)

The lemma has many applications.
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Allocation of chores, additive valuations

A faithful implementation of the proportional fractional allocation 
(each agent 𝑖 gets a 𝑏𝑖  fraction of each item).
Ex-ante: each agent 𝑖 gets each item with probability 𝑏𝑖. For additive 
valuations, get in expectation the proportional cost 𝑏𝑖 ⋅ 𝑣𝑖(𝑀). This 
is at most 2ෛ𝑀𝐸𝑆 (worst case is responsibility 1 − 𝜀).

Ex-post: each agent 𝑖 with entitlement 1

𝑘+1
≤ 𝑏𝑖 <

1

𝑘
 gets value at 

most 𝑣𝑖 𝑒1 +
1

𝑘
𝑣𝑖 𝑀 ∖ 𝑒1 =

𝑘−1

𝑘
𝑣𝑖 𝑒1 +

1

𝑘
𝑣𝑖 𝑀

                                                        ≤
𝑘−1

𝑘
ෳ𝑀𝑀𝑆 +

𝑘+1

𝑘
ෛ𝑀𝑀𝑆 = 2 ෛ𝑀𝑀𝑆.
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Summary

When agents have arbitrary entitlements  and are assumed to have 
additive valuations, which allocation mechanisms can we 
recommend? 
Goods: the bidding game is a plausible candidate. Agents have safe 
strategies that guarantee at least half of every feasible share. This is 
a best possible worst-case guarantee ex-post.
Chores: a faithful implementation of the proportional allocation. 
Best worst-case ex-ante and ex-post guarantees simultaneously.
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Some open questions

Propose a useful version of envy freeness for arbitrary entitlements.

Additive valuations:
• Do 1 − 𝜀 -MMS allocations become feasible as 𝑛 grows?
• Do APS (or even just ෛ𝑀𝑀𝑆) allocations exist whenever 

entitlements sum up to less than 1?

Are there 1
2

-MMS allocations for subadditive valuations?
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