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1. In class we showed the well known algorithm for finding a stable matching (a.k.a.
stable marriage) of Gale and Shapely.

Consider the following game with 2n players, n men and n women, each having
his/her own preference list over partners of the other sex. In this game, every
man and every woman supplies a preference list (either their true preference
list, or some other preference list), the outcome of the game is the matching
produced by the stable matching algorithm when run on the supplied preference
lists (the algorithm where the unengaged men propose), and the payoff for a
player is the rank (in the player’s list) of the partner assigned to the player. An
interesting question is whether the players have incentives to play truthfully in
this game. Namely, is it always to the benefit of a player to report his or her
true preference list, or may the player win a better partner (from the player’s
point of view) by reporting a different preference list?

It is known that for every man, reporting his true preference list is a dominant
strategy. The proof of this is non-trivial. In this assignment you are required
to answer some easier questions.

(a) Show that all players following the strategy of reporting their true prefer-
ence lists is not necessarily a Nash equilibrium of the game. Namely, show
an example (n = 3 suffices for this purpose), where a woman can benefit
(eventually be matched by the algorithm to a man that she prefers more)
by reporting a preference list that is different from her true preference list.

(b) Prove that this game always has some pure Nash equilibrium (though as
question 1(a) shows, in this Nash equilibrium some players might not be
reporting their true preferences).



2. The surprise examination paradox.

A teacher announces that in the following week there will be a surprise exami-
nation. A clever student argues by backward induction that having a surprise
examination is impossible. (The exam cannot be on the last day because by
then the students will not be surprised by it. Having agreed that it cannot be
on the last day, by the time the day before last arrives, the students expect
it to be given on that day. And so on.) Here we consider a multi-round two
player zero-sum game between a teacher and a student. In every round the
teacher has two possible actions: either E (to give an exam) or N (not to give
an exam). In every round, the student has two possible actions: either S (to
study towards an exam) or N (not to study). In every round, both players play
simultaneously.

In the unbounded version of the game, the game ends on the first round on
which at least one of the players does not play N . If on that round the play
was (E, S) the student wins (he anticipated an exam on that day and was not
surprised), and otherwise the teacher wins (the student failed to predict the day
of the exam and was surprised). If the game never ends, no player wins (it is a
tie).

The bounded version of the game is similar to the unbounded version, except
that the game is known to last for at most 4 rounds. If the game reaches round 4,
then round 4 is special in the following sense: if the teacher plays N in round 4,
the student wins regardless of what the student plays.

(a) In the bounded game, what is a max-min strategy for the teacher? What
is a max-min strategy for the student? How would you provide a simple
proof that each of the strategies that you present is indeed a max-min
strategy?

(b) In the unbounded game, is there a max-min strategy for the teacher? For
the student? Explain.
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