
Algorithms for Computing Solution Concepts in Game Theory

Uriel Feige

December 21, 2008

Preface

These are notes for the first five lectures of the course on Algorithmic Game Theory, given (starting
November 2008) in the Weizmann Institute jointly by Uriel Feige, Robert Krauthgamer and Moni
Naor. The lecture notes are not intended to provide a comprehensive view of solution concepts
in game theory, but rather discuss some of the algorithmic aspects involved. Hence some of the
definitions will not be given here in their full generality. More information can be found in the first
three chapters of [NRTV07] and references therein.

Each lecture in the course was roughly two hours, with a break in the middle. The experience
of the author when teaching this material was as follows.

The first lecture was intended to cover Section 1, but this turned out to be too optimistic. The
notion of a mixed Nash was only touched upon briefly at the end of the lecture, and there was no
time for the notion of a correlated equilibrium (which was deferred to lecture 5).

The second lecture covered Section 2, except that the open questions mentioned in Section 2.2
were not discussed in class for lack of time.

The third lecture covered sections 3.2 (an introduction to linear programming) and 3.3. Initially,
I was planning to precede this by discussing known results on two-player win-lose games of partial
information (see Section 3.1) but decided to drop this subject due to lack of time. The associated
homework assignment partially touches upon this subject.

The fourth lecture discussed mixed Nash equilibria. Towards the end of the lecture I started
describing the Lemke-Howson algorithm, but did not finish in time.

The fifth lecture started with the Lemke-Howson algorithm, which took roughly an hour to
describe (longer than I expected). Then the class PPAD was discussed (including showing the
proof of Sperner’s Lemma in two dimensions, not appearing in the lecture notes), finishing with
correlated equilibria (the end of Section 1), and a short mention that it can be computed using
linear programming. Theorem 3.7 was omitted due to lack of time.

I would have liked to have an additional lecture covering parts of Chapter 4 in [NRTV07] (iterative
algorithms for regret minimization), which among other things explains how to (approximately)
solve two-player zero-sum games in certain situations in which the game is not in standard form,
and provides an alternative proof to the minimax theorem. However, I decided to drop this subject
since the other subjects already took up the five lectures devoted to this part of the course.

Homework assignments as given in the course are also included. They are intended to be an
integral part of the course. The first question in assignment 2 turned out to be too difficult, especially
as it was given with an incorrect hint. The first question in assignment 5 could have been given
after lecture 4.

The notes are made accessible on the web for the use of students in the course, and for non-
commercial use of others who may be interested. To help make the notes a more reliable source of
information for future courses, please send comments to uriel.feige@weizmann.ac.il.

1

1 Introduction

1.1 What is a game?

A game has players. We shall assume here that the number of players in a game is at least two and
finite. (For simplicity, we shall assume players of male gender, though the gender of the players is
irrelevant, and the players may also be genderless software programs.)

Every player i has a set Si of strategies available to him. We shall assume here that the sets Si

are finite, though game theory also addresses games with infinite strategy sets. In a game, every
player selects one strategy from his respective set of strategies.

The outcome of the game is the profile of strategies selected by the players, one strategy for each
player. Hence it is a vector of strategies.

Every player is assumed to have his own preference relation over outcomes. This preference
relation induces a partial order over outcomes. For simplicity, let us assume here that the partial
order is given in form a numerical value for each outcome, and the player prefers those outcomes
with higher numerical value over those with lower numerical value. These values are often referred
to as payoffs for the players. It is often the case that the value of the payoff is meant to have
quantitative significance beyond the preference of order over outcomes. For example, a payoff 2
would be considered twice as good as a payoff of 1. In this case, the payoff function would typically
be called a utility function for the player.

A game is represented in standard form (a.k.a. strategic form) if it explicitly list for each player
and every outcome the value of the outcome for that player. For two player games, a game in
standard form is often depicted as a pair of payoff matrices, one for the row player and the other
for the column player, or even as a single matrix with both payoffs written in each entry.

Often, standard form representation of games is prohibitively large. There are many other
more succinct representations of games. Many games (such as the game of chess) are represented
implicitly. Two common forms of succinct representations for general classes of games are extensive
form (typically, a game tree for two person games), and graphical games (a graphical representation
of multiplayer games in which the payoff of a player is affected only by actions of players in his
immediate neighborhood).

1.2 Solution concepts

A description of a game does not say how the players actually choose their strategies. Game theory
tries to answer this question. There are two different aspects to this question.

• Descriptive. Given a game, how will people actually play it? What strategies will they choose?
These questions involve considerations from social science and psychology, and their study may
well require experimentation.

• Prescriptive. Given a game, how should players play it? Recommend strategies for the players.
This is the more theoretical part of game theory, and here mathematics and computer science
have a more prominent role.

Though the descriptive and prescriptive aspects are related (e.g., if a strategy is recommended,
will the players actually play it?), the emphasize here will be on the prescriptive aspect of game
theory.

We will try to associate solution concepts with a game. The solution concept will offer to players
a recommendation of which strategy to play. The recommended strategy will satisfy some optimality
conditions (that depends on the solution concept).

Before presenting the solution concepts that will be discussed here, let us explicitly list some of
the assumptions that we shall make here.

2

1. The game is given. A game is sometimes an abstraction of a real life situation. Reaching
the right abstraction (who the players are, what actions are available to them, what are their
preferences) might be a very difficult task and will not be addressed here. We assume that the
game is given.

2. Self awareness. The player is aware of those aspects of the game that are under his control.
He knows which strategies are available to him, and his own preference relation over outcomes.
(Indirectly, this requires awareness of strategies available to the other players, as they define
the possible outcomes.)

3. Full information. For games in standard form, this is essentially the same as self awareness.
However, for games given in some succinct representation, full information is different from
self awareness. For example, for games in extensive form, in means that after every move the
player knows exactly at what node of the game tree the game is. Chess is an example of a
game of full information. Poker is an example of a game of partial information.

4. No computational restrictions. When suggesting a solution concept, we shall ignore the
question of whether finding a recommended strategy under this concept is computationally
tractable. Of course, in many games (chess being one example) the issue of computational
limitations (a.k.a. bounded rationality) is an important aspect of the game. We remark that
even though the solution concepts themselves will not a-priori be required to be computation-
ally efficient, we shall eventually be interested in their computational complexity.

We now present some of the solution concepts that will be discussed more thoroughly later. The
underlying assumption is that players are rational. Here the word rational is meant to convey that
a player attempts to maximize his own payoff. It is worth pointing out that a player may appear to
behave irrationally from this respect. This can often be attributed to the failure of one or more of
the assumptions listed above.

1.3 Solutions in pure strategies

Dominant strategies. A strategy s is dominant for player i if regardless of the strategies played
by other players, the payoff of player i is strictly maximized by playing si.

Formally, for every set of strategies s−i for all players but i and every strategy s′ 6= s,

ui(s, s−i) ≥ ui(s′, s−i)

Dominant strategies do not always exist (e.g., for a payoff matrix that is the identity matrix).
However, when they do exist, they are a very favorable solution concept. For games in standard
form, they can be computed efficiently.

An interesting example is the game prisoner’s dilemma, which has the following game matrix.

Cooperate Defect
|------------|------------|

Cooperate | -2; -2 | -9; -1 |
|------------|------------|

Defect | -1; -9 | -8; -8 |
|------------|------------|

Both players have dominant strategies, but the outcome of playing them is inferior for both
players than the outcome if alternative strategies are played. The source of the problem is that a

3

player can slightly improve his own payoff at the cost of other players loosing a lot. If each player
selfishly maximizes his payoff, everyone looses.

Examples such as prisoner’s dilemma point to a shortcoming of the concept of rational behavior
- it might lead to undesirable outcomes.

It is worth mentioning in this context an area of game theory that will be addressed in other parts
of the course, that of mechanism design. At a high level, the purpose of this area is to set up games
in such a way that rational behavior will always lead to desirable outcomes, avoiding situations such
as the prisoner’s dilemma.

A well known example for mechanism design is that of a Vickery auction. Consider an auctioneer
who has one item for sale, and k bidders (players), where bidder i has value ui for the item (known
only to bidder i). The process of the auction is a sealed bid auction, in which first all players submit
their bids in sealed envelopes, and then the envelopes are opened and the highest bidder wins. In a
first price auction, the winner pays his bid. In general, there are no dominant strategies in first price
auctions, and the bids of the bidders depend on their beliefs regarding what other bidders will bid.
In a second price (Vickery) auction, the winner pays the second highest bid. This has the desirable
outcome that players have dominant strategies - to bid their true value. Moreover, in this case the
outcome is that the item is allocated to the player who desires it most, which promotes economic
efficiency. Hence the second price auction is an example of a game that is designed in such a way
that its solution under a standard solution concept optimizes some economic goal: maximizing total
economic welfare. (Note that here money paid by the bidder to the seller is assumed to have no
effect on the total economic welfare, because the total sum of money remains constant.)

Nash equilibrium. In this solution concept, one recommends strategies to all players in the
game, with the property that given that all other players stick to their recommendation, the strategy
recommended to a player is strictly better than any other strategy.

Formally, a Nash equilibrium in a k player game is a vector s̄ = (s1, . . . , sk) such that for every
player i and any strategy s′i 6= si

ui(si, s̄−i) > ui(s′i, s̄−i)

For weak Nash equilibrium the inequality need not be strict.
An example of a two player game with a Nash equilibrium is the battle of sexes, with male and

female players who want to go some movie together, but have different tastes in movies.

Action Romantic
|----------|----------|

Action | 5; 4 | 2; 2 |
|----------|----------|

Romantic | 1; 1 | 4; 5 |
|----------|----------|

There are no dominant strategies, but two Nash equilibria: the top left corner and the bottom
right corner. Each player prefers a different Nash equilibrium.

A famous multi-player example is the stable marriage problem. See Section 2.3.
An example of a game that does not have a Nash Equilibrium is that of matching pennies.

|----------|----------|
1; 0	0; 1
0; 1	1; 0
----------	----------

4

An issue that comes up with Nash equilibrium and not in dominant strategies is that games may
have multiple Nash equilibria. Moreover, different players may prefer different Nash equilibria. This
might make Nash equilibria unstable in practice. (A player may deviate from the recommended
strategy, suffering some loss, but also inflicting loss to others, in the hope that other players deviate
as well, and that a new Nash equilibrium that is more favorable to the player is reached. A strike by
a worker’s union may be explained as an attempt by the workers to switch to a different equilibrium
point between the workers and the employers.)

Subgame optimality. This notion addresses to some extent the issue of multiple solutions of
a game under a given solution concept. It applies to games that take multiple rounds. As players
make moves and the game progresses, the portion of the game that remains is called a subgame. It
is required that the strategies of the players be a solution to these subgames as well.

There are two different motivations for this notion, that we illustrate by examples.
Chess. There is a difference between having a strategy that plays optimally only from the initial

position, and a strategy that plays optimally from any position. For example, assume that it is true
that white has a winning strategy in chess. Then the strategy of playing arbitrarily is optimal for
black (in the sense that no other strategy guarantees a higher payoff), but not subgame optimal (it
does not take advantage of situations in which white has previously blundered.

Ultimatum game. This example illustrates well several aspects of solution concepts. It is a game
for splitting 10 dollars among two players. The column player offers how to split the money, and
the row player may either accept the split, or reject it, in which case neither player gets anything.
For simplicity of the presentation, assume that the first player is allowed to suggest only one of
the following three options (1,9),(5,5),(9,1). In extensive form, the game tree then has six leaves,
whereas in standard form it has three columns and eight rows. The following matrix illustrates the
payoffs for the row player. The payoffs for the column player are 0 or 10− x, depending on whether
the payoff x for the row player is 0 or more.

|-------|-------|-------|
0	0	0
0	0	9
-------	-------	-------
0	5	0
-------	-------	-------
0	5	9
-------	-------	-------
1	0	0
-------	-------	-------
1	0	9
-------	-------	-------
1	5	0
-------	-------	-------
1	5	9
-------	-------	-------

The row player has exactly one dominant strategy - to always accept the offer (the last row).
The column player does not have any dominant strategy.

The game has several Nash equilibria. For example, one of them is that the row player accepts
only (5,5) splits, and the column player offers a (5,5) split. Clearly, the row player prefers this Nash
equilibrium to playing his dominant strategy (which leads to the Nash equilibrium of the column
player offering a (1,9) split). Hence the row player may appreciate a possibility to manoeuver

5

the game towards one of those Nash equilibria that is better from his perspective than the Nash
equilibrium that involves him playing his dominant strategy. However, the dynamics of the game
do not allow this. The column player plays first, and then can play no more. If the column player
plays (1,9), this results in a subgame in which the row player has only two possible strategies, either
to accept or reject. The only subgame optimal decision is to accept. Hence the only subgame perfect
equilibrium is the one in which the row player always accepts. In the case of the ultimatum game,
the notion of subgame perfect equilibrium allows us to select one out of the many Nash equilibria.

It turns out that when the ultimatum game is played in real life (experimental economists have
actually experimented with this game), the row players often do not play their dominant strategy.
Likewise, the column players do not always offer the (1,9) split. An explanation for this is that in
real life scenarios, the payoff matrix does not really represent the true payoffs for the players. Besides
the monitory payoffs represented in the payoff matrix, there are other forms payoffs (feeling of pride,
feeling of fairness, feeling of creating a reputation) that if properly represented in the description of
the game would explain this “irrational” sort of behavior.

1.4 Mixed strategies

In certain games, it is desirable for one of the players to play in a nondeterministic way. Matching
pennies is one such example. Given its zero sum game payoff functions, it is clear that if a player’s
move can be predicted by the other player, he will lose. Another example would be a game of partial
information such as poker. If a player plays deterministically (his moves are dictated only by the
cards that he holds and previous moves that he has seen), then other players may be able to infer
(something about) his cards, and use this information to improve their chance of winning (and hence
the player suffers, the game being a zero sum game). Experienced poker players base their play not
only on information directly available from the play of the hands, but also on other factors, and
hence from the point of view of game theory (that fails to completely model all factors involved),
their play is nondeterministic.

A way game theory models the issue of playing in a nondeterministic way is through the concept
of a mixed strategy, which is a probability distribution over strategies. For example, one mixed
strategy for matching pennies is to play each option with probability 1/2. The point is that a-priori,
other players may be aware of the probability distribution that a player is using in his mixed strategy
(it might be announced, or inferred), but they do not know the actual strategy that is selected until
after they select their own strategies. (There are obvious modifications to this last statement when
one deals with multi-round games.)

It turns out that the notion of mixed strategies opens up the possibility for more solution concepts.
To realize this potential, one assumes that payoff functions are actually utility functions (numerical
values are a linear scale on which preferences have exact values), and moreover that player’s are
concerned only with expected payoff (and not the distribution of payoffs). For example, getting a
payoff of either 3 or 5, each with probability 1/2, is assumed to be equivalent to getting a payoff
of 4 with probability 1. This assumption is often referred to as the players being risk neutral
(with other options being risk seeking or risk averse). Risk neutrality is a natural assumption in
certain situations. For example, if we assume that a player is involved in many independent games
throughout his lifetime each involving a relatively small payoff, and the payoffs from these games add
up, then the law of large numbers shows that the total payoff converges to the sum of expectations,
and hence the function to optimize per game is indeed the expected payoff.

Another situation in which maximizing the expected payoff is natural (regardless of risk neutral-
ity) is if a game has only two possible payoffs for a player (say, either win or lose). In this case,
maximizing the expected payoff is equivalent to maximizing the probability of winning.

Mixed strategies are sometimes criticized as not being realistic (though they become more realistic
when the players are computer programs). The argument is that human players do not really choose
randomly among strategies. This relates more to the descriptive aspects of game theory than the
prescriptive aspects, and hence is not of major concern to us. However, let us point out that this

6

issue is discussed extensively in game theory literature, and various justifications are offered for
mixed strategy. An interesting one is to consider a two player game in which each player is really
a “super-player” composed of a population of individuals. Each individual plays a pure strategy.
Every individual has random encounters with individuals of the other population. Hence here the
randomness is not in the choice of strategies for each individual, but in the choice of encounters,
which effectively corresponds to the super-player corresponding to the other population having a
mixed strategy. In a Nash equilibrium (over the populations), every individual is playing optimally
(in expectation) against the other population. One may say that its strategy is “fitted” to the
environment (the environment for an individual is the other population). If the distribution of
strategies over populations is not at a Nash equilibrium, then there may be some strategy not
currently used by any individual, which is better fitted to the environment. Such a strategy may
then “invade” the space of strategies, and be adopted by many individuals (“survival of the fittest”),
changing the mixed strategy of the respective super-player.

Two player zero sum games and the minimax theorem.
A solution concept for two player zero sum games is offered by the minimax player. It assumes

risk neutral players that have the conservative goal of securing at least some minimum payoff. For
the maximizing player (player 1), this amounts to finding the highest possible value t+ and a mixed
strategy s1 such that mins2 E[u(s1, s2)] ≥ t+. Here u is the payoff function for the maximizing player,
and −u is the payoff function for the minimizing player. The strategy s2 in the above expression
ranges over pure strategies. The value t+ is a max-min value maxs1 mins2 E[u(s1, s2)].

Likewise, the minimizing player seeks a smallest possible value t− and a strategy s2 satisfying
maxs1 E[u(s1, s2)] ≤ t−. The value t− is a min-max value mins2 maxs1 E[u(sm, s2)], where s2 ranges
over mixed strategies, and s1 ranges over pure strategies.

The famous minimax theory of Von-Neumann says that t+ = t−. Namely, for every finite two
player game, for mixed strategies the following equality holds:

max
s1

min
s2

E[u(s1, s2)] = min
s2

max
s1

E[u(sm, s2)]

The expected payoff at this mutually optimal point is referred to as the value of the game. It is
essential that strategies are allowed to be mixed in the minimax theorem, as the game of matching
pennies illustrates.

Observe that the minimax theorem implies that a player may announce his mixed strategy
upfront, and still get the expected payoff guaranteed by the minimax theorem.

A modern proof of the minimax theorem is based on linear programming duality (we will review
this proof later), and implies also a polynomial time algorithm for computing the minimax value.
von-Neumann’s original proof (from 1928) predated the concept of linear programming duality, and
applies also to some classes of games with infinite strategy space.

For matching pennies, the value of the game is 0. The unique optimal mixed strategies for the
players are to play the two options with equal probability. Note however that in this case, if one
of the players plays his optimal mix strategy, then the other player can play arbitrarily without
changing the value of the game. In fact, this is a rather typical situations in many games: when one
player chooses an optimal mixed strategy, the other player has a choice of several pure strategies,
each of which is optimal (in expectation).

Mixed Nash. A mixed Nash equilibrium (defined and proven to exist by John Nash) is a profile
of mixed strategies, one mixed strategy for each player. If has the property that given that the other
players follow this profile, no player has an incentive for deviating from his own mixed strategy. That
is, every strategy in the support of his mixed strategy is a best response to the mixed strategies of
the other players (gives maximum expected payoff among all pure strategies).

Let s̄ denote a profile of mixed strategies, si denotes the mixed strategy that it associates with
player i, and S̄−i denotes the mixed strategies that it associates with the other players. For s̄ to
be a mixed Nash equilibrium it is required that for every player i and for every pure strategy s′i for
player i,

7

E[ui(si, s̄−i)] ≥ E[ui(s′i, s̄−i)]

Mixed Nash equilibria exist for every finite game, with any number of players. Nash proved this as
a consequence of certain nonconstructive fixed point theorems. Later we shall present an algorithmic
proof for the case of two players (though the algorithm is not a polynomial time algorithm). The
question of whether there exists a polynomial time algorithm for computing a mixed Nash equilibrium
will be discussed as well.

It is common to refer to mixed Nash equilibrium as Nash equilibrium and to what we previously
referred to as Nash equilibrium as pure Nash. We shall follow this terminology from now on.

Correlated equilibrium. A mixed Nash is a product distribution over profiles. To realize a
mixed Nash, it suffices that each player has a private source of randomness. In contrast, a correlated
equilibrium will be an arbitrary distribution over strategy profiles. To realize it, some coordination
mechanism involving a common source of randomness is needed. We shall not discuss here in detail
what may serve as a coordination mechanism, but rather mention one common example - that of the
traffic light. In the absence of any prior agreed upon traffic rules, the game played by two drivers
who arrive from perpendicular directions to a traffic junction at the same time resembles the game
of chicken.

Stop Go
|----------|----------|

Stop | 0; 0 | 0; 2 |
|----------|----------|

Go | 2; 0 | -9; -9 |
|----------|----------|

If both players observe a common signal (the traffic light), they can use it to reach a correlated
equilibrium (if you see green, go, and if you see red, stop). Once the correlated equilibrium strategy
is announced, then whenever two drivers arrive at a junction with a traffic light, it is in the interest
of the players to follow its recommendation (if they trust that the other player also follows it).

To be a correlated equilibrium, a distribution over a profile of strategies has to obey the following
condition. First, observe that for every player, given a recommendation by the coordinating device,
there is some marginal probability distribution over the strategy profile of the other players. It is
required that the strategy recommended to the player is a best response strategy with respect to
this marginal profile.

The notion of a correlated equilibrium was first suggested by Aumann. Like Nash equilibrium,
it exists for every finite game (simply because Nash is a special case). It answers two concerns of
game theory. One is that it often can offer an equilibrium of higher expected payoff than any Nash
equilibrium. The other is that there are polynomial time algorithms for computing it (for games in
standard form). We shall discuss the algorithmic aspects later, and here we shall just present an
example showing a correlated equilibrium better than any Nash.

|----------|----------|----------|
2; 1	1; 2	0; 0
0; 0	2; 1	1; 2
----------	----------	----------
1; 2	0; 0	2; 1
----------	----------	----------

8

A correlated equilibrium that picks each nonzero cell with probability 1/6 has expected payoff 3/2
for each player. Given a recommendation, a player cannot improve the expected payoff by deviating
from it. For example, given the recommendation to play the first row, the row player knows that
the column player must have received a recommendation to play one of the first two columns, and
assuming that the column player follows the recommendation, the first row indeed gives the highest
expected payoff. The game has a unique Nash equilibrium, namely, each player chooses a strategy
uniformly at random, and if gives an expected payoff of only 1 to each player.

1.5 Summary of introduction

We defined the notion of a game, and presented some solution concepts for games. These include
the notions of dominant strategies, pure Nash, subgame perfect equilibrium, minimax value, mixed
Nash and correlated equilibrium. We discussed some of the assumptions that are used in making
these definitions, and some of the shortcoming of these definitions.

In later parts, we shall accept the definitions of the solution concepts as given, and discuss
algorithms for computing them.

9

2 Computing equilibria in pure strategies

2.1 Classical complexity classes

We shall assume familiarity with basic computational complexity theory, and standard complexity
classes. Recall that P ⊂ NP ⊂ PSPACE ⊂ EXPTIME. Of these, the only inclusion that
is known to be strict is that of P in EXPTIME. Namely, there are problems in EXPTIME that
provably do not have polynomial time algorithms.

Recall also the notions of hardness and completeness with respect to a complexity class. Ignoring
some of the finer distinctions of complexity theory, we shall say that a problem (a.k.a. language)
π (such as 3-colorability) is hard for complexity class C (such as NP) if for any problem ψ in C
(such as satisfiability), every instance of ψ can be reduced in polynomial time to an instance of π.
A problem π is complete for C if π ∈ C and π is hard for C.

It follows that every problem complete for EXPTIME has no polynomial time algorithm. It is
not known whether the same holds for NP-complete problems (the famous P versus NP question).

2.2 Dominant strategies

For games in standard form, dominant strategies (when they exist) can be found in polynomial time,
by exhaustive search over all strategies. The question of computing dominant strategies becomes
more interesting for games that have succinct representations. Here we shall survey some know
results concerning two player games, and specifically games in which the payoffs are win/lose (and
the complement for the other player). In some games, ties will be allowed (e.g., if the game does
not end). We remark that the first homework assignment (handout 1) relates to such games.

There is a well developed area of combinatorial game theory that we shall not address in this
course. A course on this subject is given in the Weizmann Institute by Aviezri Fraenkel. See more
details in [Conway01, BCG01], for example.

Tasks in program verification are sometimes presented as games. These games often are played
on a finite directed graph, and may continue for infinitely many moves. (We use here the word move
in a sense that is sometimes referred to as turn.) Winning conditions for games that continue for
infinitely many moves often relate to the set of nodes that are visited infinitely often. See [Thomas02]
for example.

Games play an important role in computational complexity as well, because several important
complexity classes have complete problems that are games (and hence these games capture the
essence of these complexity classes). A well known result in this respect relates to the notion of
alternation [CKS81]. Alternation may be thought of as a game of perfect information between two
players played on a board of size n. An important result in [CKS81] is that alternating PTIME is
PSPACE and alternating PSPACE is EXPTIME. This combines two sets of results. One is that
computing winning strategies for any such game can be done in polynomial space if the game is
limited to a polynomial number of moves, and in exponential time if the game can continue for
exponentially many moves. (The games cannot continue for longer without cycling.) The other is
that there are such games where PSPACE or EXPTIME (respectively) is necessary. An example of
a PSPACE-complete game is generalized geography. An example of an EXPTIME-complete game is
generalized chess. This last result helps explain the apparent intractability of playing chess perfectly
even on an 8 by 8 board.

The exponential time algorithm that computes optimal strategies involves constructing an expo-
nential size graph of all possible positions of the game (where the position may include also the move
number, bounded by the total number of possible positions, so as to avoid cycling), and labelling
positions as win/lose/tie by backward induction.

We mention here two open questions related to games of perfect information.
Parity games. The game graph is a directed bipartite graph. Vertices are numbered from 1 to n.

A token is placed on a starting vertex. Players alternate in moving the token along an outgoing

10

edge from its current location. If a player cannot move, he looses. If the game continues indefinitely,
then the winner is the first player if the highest numbered vertex that is visited infinitely often has
an even number, and the other player otherwise. It is known that determining which player has a
winning strategy is in NP

⋂
coNP , but not known whether it is in P. (See entry in Wikepedia, for

example.)
Reward collecting games. The game graph is a directed bipartite graph. Each vertex has a

nonnegative reward, with all rewards summing up to 1 (this is simply a normalization condition).
There is a token placed on some starting vertex, and the two players, collector and defender alternate
in moving the token along an outgoing edge from its current location. For every vertex visited for
the first time, the collector gets to collect the reward associated with this vertex. Can the defender
prevent the collector from accumulating a reward of at least 1/2? This problem is NP-hard and in
PSPACE, but not much is known beyond this.

2.3 Pure Nash

For games in standard form, a pure Nash equilibrium (if it exists) can be computed in polynomial
time by trying out all strategy profiles, and for each of them checking whether any player has an
incentive to deviate. Hence also here, the main interest is in computing a pure Nash equilibrium for
games given under some succinct representation.

A well known example is the stable matching (a.k.a. stable marriage) problem. There are n
men and n women. Every man has a preference ordering over the women, and every woman has
a preference order over the men. The goal is to find a perfect matching (each man matched to
exactly one woman) that is stable in the following sense: their is no pair of man and woman that
are not matched to each other, but prefer each other over the partners matched to them. Gale and
Shapley [GaleShapley62] showed that a stable matching always exists, and provided a polynomial
time algorithm for finding a stable matching.

First, let us present a multiplayer game that captures the notion of a stable matching. The
players are the men. Each man has n possible strategy, where a strategy of a man is to propose
to a woman. The payoff of a man is computed as follows. If he is the highest ranked man among
the men who proposed to the same woman that he proposed to, the woman accepts him and then
he gets a numerical payoff equal to the rank of the woman in his own preference list (n for highest
ranked woman, 1 for lowest ranked woman). Else his payoff is 0.

We show that stable matching correspond exactly to the Nash equilibria of the above game.
Every stable matching M corresponds to a collection of pure strategies in which each man proposes
to the woman that is matched to him under M . No man has incentive to unilaterally deviate from
this profile of strategies, because by stability of M whatever other woman he will propose to prefers
here current partner, and hence his payoff will drop to 0. Similar arguments show that every Nash
equilibrium corresponds to a stable matching. (Remark: we are dealing here only with pure Nash
equilibrium. Mixed Nash equilibria are not of interest for us here, because the payoff functions do
not correspond to utility functions.)

The algorithm of [GaleShapley62] for finding a stable matching proceeds in rounds. At the
beginning of every round, some of the men are engaged and some are free. Initially, all men are free.
The following describes a single round.

1. Every free man proposes to the woman ranked highest on his preference list, and becomes
engaged.

2. Every woman rejects all her offers except the one made by the man ranked highest on her list.

3. Any man whose offer got rejected removes the rejecting women from his preference list, and
becomes free again.

The algorithm ends when all men become engaged, at which point every man is matched to the
woman whom he is engaged to.

11

Theorem 2.1 The algorithm described above produces a stable matching.

Proof: We say that a woman becomes engaged at the first round in which she receives a
proposal. Observe that once a woman becomes engaged, she remains engaged throughout the run of
the algorithm, though the man to which the woman is engaged may change to a man higher on her
preference list. If at some point, all men are engaged, the algorithm ends in a matching. As long as
some man is free, the algorithm continues. Every woman is somewhere on every man’s preference
list, hence if any man ever exhausts his preference list, then all women must be engaged. As it
cannot be that two women are engaged to the same man, all men are engaged as well. This implies
that the algorithm must end with a matching.

The matching output by the algorithm is stable because every man already tried proposing to
all women higher on his preference list than the woman to which he is matched, and every one of
them already had a proposal from a more preferable man at the time, and hence also at the end of
the algorithm. 2

It is known and not hard to prove that the stable matching produced by the above algorithm
is optimal from the point of view of the men. For every man, in every other stable matching, the
woman he is matched to is not ranked higher in his preference list than the woman he is matched
to under the above algorithm. For women, the opposite holds – there is no worse stable matching.

This stable matching algorithm is used in assigning graduating medical students to hospitals in
the United States. Hospitals make offers to the students, and the students reject all but their best
offer. Hence this system favors the hospitals’ preferences over those of the students.

We remark that given that the algorithm is publicly known, a new game arises. In this game,
every man and every woman supplies a preference list, the outcome of the game is the matching
produced by the stable matching algorithm, and the payoff for a player is the rank (in the player’s
list) of the partner assigned to the player. An interesting question is whether the players have
incentives to play truthfully in this game. Namely, is it always to the benefit of a player to report
his or her true preference list, or may the player win a better partner (from the player’s point of
view) by reporting a different preference list? This is the subject of the homework assignment. One
of the goals of the area of mechanism design is to design games in which players have incentives
to reveal their true preferences. Note that if players do not report their true preferences for the
stable matching algorithm, then the matching produced might not be stable with respect to their
true preferences.

12

3 Computing equilibria in mixed strategies

3.1 Two-player win-lose games of partial information

Games of partial information are considerably more complex to play than games of full information.
The optimal strategies are not necessarily deterministic – one needs to consider mixed strategies.
For win-lose games, there is a natural quantity for a player to optimize, namely, the probability of
winning. It might have any value between 0 and 1. One source of difficulty is that in games of
partial information, the effective length of a game (number of moves, or turns) cannot be bounded
simply by the number of possible positions, because the players do not necessarily know in which
position the game is. As a consequence, the number of moves may even be infinite. (This subject is
touched upon in a homework assignment.)

Among the interesting results concerning two player games of partial information is that the
question of which player has a higher probability of winning is undecidable if the number of moves is
unbounded, and EXPTIME-complete if the number of moves is polynomial. Moreover, these results
hold also with respect to approximation of the winning probability. See [Reif84, FeigeShamir92,
Shamir92, FeigeKilian97] for some results on this topic.

3.2 Linear programming

Many optimization problems can be formulated as linear programs. The main features of a linear
program are the following:

• Variables are real numbers. That is, they are continuous rather than discrete.

• The objective function is a linear function of the variables. (Each variable effects the object
function linearly, at a slope independent of the values of the other variables.)

• Constraints on the variables are linear.

A solution satisfying all constraints is feasible. A feasible solution that also optimizes the objective
function is optimal.

Linear programs are often represented using matrix and vector representation. For example, the
following is a representation of a linear program in canonical form. x,b,and c are column vectors,
whereas A is a matrix.

minimize cT x
subject to
Ax ≥ b
x ≥ 0
In a linear program in general form, the constraints are linear but may involve inequalities of

both types (≤ and ≥), as well as equalities (=). Variables may be required to be nonnegative ≥ 0,
or else be unconstrained. Another useful form of a linear program is the standard form:

minimize cT x
subject to
Ax = b
x ≥ 0
All forms are equivalent in terms of their expressive power, and it is simple to transform a linear

program in general form to standard form and to canonical form.
For linear programs in standard form, it is convenient to assume that the constraints (rows of

the matrix A) are linearly independent. If the rows are not linearly independent, then it suffices
to consider rows of A that constitute a basis for the row space (a maximal linearly independent
set of row vectors). Either every solution that satisfies the constraints that correspond to the basis
satisfies all constraints, or the LP is infeasible.

13

Consider an LP in standard form, with m linearly independent constraints and n variables. Let
B be a submatrix of A containing exactly m linearly independent columns. This is a basis of the
column space of A. Let xB be the set of basic variables corresponding to the columns of B. If
B−1b ≥ 0, then the following is a basic feasible solution: the basic variables are set to B−1b, and
the nonbasic variables are set to 0. Clearly this solution is feasible. Note that it satisfies n linearly
independent constraints with equality: the m constrains of Ax = b, and n−m of the nonnegativity
constraints. The other (nonnegativity) constraints are also satisfied, though not necessarily with
equality.

Each basis gives at most one basic feasible solution. (It gives none if the condition B−1b ≥ 0
fails to hold.) Two different bases may give the same basic feasible solution, in which case the basic
feasible solution is degenerate (more than n−m variables are set to 0).

The following lemma is well known and we omit its proof.

Lemma 3.1 Every LP in standard form is either infeasible, or the optimal value is unbounded, or
it has a basic feasible solution that is optimal.

Lemma 3.1 implies that in order to solve an LP optimally, it suffices to consider only basic
feasible solutions. As there are at most

(
n
m

)
basic feasible solutions, we can solve LPs optimally in

this time.
Recall Cramer’s rule for solving Bx = b, where B is an invertible order n matrix. The solution

is

xj =
detBj

detB
for 1 ≤ j ≤ n, where here Bj is the matrix B with column j replaced by b. If each entry in B and
b is an integer with absolute value at most M , then each xj is a rational number with numerator
and denominator bounded by at most Mnn!. This can be used to show that the length of numbers
involved in a basic feasible solution are polynomially related to the input size. (Moreover, it can
be shown that when a system of linear equations is solved by Gaussian elimination, the length of
intermediate numbers produced by the algorithm is also polynomially related to the input size.)

The notion of a BFS can be extended to LPs in general form. Ignoring nonnegativity constraints,
if a feasible and bounded LP has m linearly independent constraints, that it always has a BFS with
at most m nonzero variables.

A well known algorithm to solve linear programs is the simplex algorithm. It is not a polynomial
time algorithm, though it appears to be pretty fast in practice. (Technically, simplex is a family
of algorithms that differ by the pivot rule that they use. It is still open whether there is some
clever choice of pivot rule that would make the algorithm polynomial. The ellipsoid algorithm does
solve linear programs in polynomial time, though its running time in practice is quite slow. (The
simplex algorithm is slower than the ellipsoid algorithm on worst case instances, but appears to be
faster on average.) There are interior point methods that are both polynomial time in the worst
case and pretty fast on average. (It is still not known whether there are strongly polynomial time
algorithms for linear programming, whose number of operations depend only on n and m but not
on the precision of the numbers involved.)

An important concept related to linear programming is the notion of duality. Let us first illustrate
it on an example.

There are n foods, m nutrients, and a person (the buyer) is required to consume at least bi units
of nutrient i (for 1 ≤ i ≤ m). Let aij denote the amount of nutrient i present in one unit of food j.
Let ci denote the cost of one unit of food item i. One needs to design a diet of minimal cost that
supplies at least the required amount of nutrients. This gives the following linear program.

minimize cT x
subject to
Ax ≥ b
x ≥ 0

14

Now assume that some other person (the seller) has a way of supplying the nutrients directly, not
through food. (For example, the nutrients may be vitamins, and the seller may sell vitamin pills.)
The seller wants to charge as much as he can for the nutrients, but still have the buyer come to
him to buy nutrients. A plausible constraint in this case is that the price of nutrients is such that
it is never cheaper to buy a food in order to get the nutrients in it rather than buy the nutrients
directly. If y is the vector of nutrient prices, this gives the constraints AT y ≤ c. In addition, we
have the nonnegativity constrain y ≥ 0. Under these constraints the seller wants to set the prices of
the nutrients in a way that would maximize the sellers profit (assuming that the buyer does indeed
by all his nutrients from the seller). This gives the the following dual LP:

maximize bT y
Subject to
AT y ≤ c
y ≥ 0

As one can replace any food by its nutrients and not pay more, one gets weak duality, namely, the
dual provides a lower bound for the primal. Weak duality goes beyond the diet problem and holds
even if A, b, c have some entries that are negative. That is, for every pair of feasible solutions to the
primal and dual LPs we have:

bT y ≤ (Ax)T y = xT AT y ≤ xT c = cT x (1)

In particular, weak duality implies that if the optimal value of the primal is unbounded then the
dual is infeasible, and if the optimal value of the dual is unbounded, then the primal is infeasible.

Assume that there is a pair of solutions x∗ and y∗ for which the values of the primal and dual
LPs are equal, namely cT x∗ = bT y∗. Then necessarily both x∗ and y∗ are optimal solutions to their
respective LPs. In economics, the vector y∗ is refereed to as shadow prices. These optimal solutions
need to satisfy the inequalities of (1) with equality. This gives the following complementary slackness
conditions:

(Ax∗ − b)T y∗ = 0 (2)

(c−AT y∗)T x∗ = 0 (3)

Condition (2) has the following economic interpretation. If a certain nutrient is in surplus in the
optimal diet, then its shadow price is free (a free good). Condition (3) can be interpreted to say that
if a food is overpriced (more expensive than the shadow price of its nutrients) then this food does
not appear in the optimal diet.

The following table explains how to obtain the dual of a primal LP that is in general form. Here
Aj denotes a row of matrix A and Aj denotes a column.

min cT x max bT y

Aix ≥ bi i ∈ I+ yi ≥ 0
Aix = bi i ∈ I= yi free

xj ≥ 0 j ∈ J+ yT Aj ≤ cj

xj free j ∈ J= yT Aj = cj

Note that the dual of the dual is the primal.
Weak and strong duality apply also in this case. More specifically, if the optimum to the primal

is bounded, then so is the optimum to the dual, and vice versa. If the optimum to one of the LPs is
unbounded, then the other is not feasible. It may also happen that neither one of them is feasible.

15

3.3 Max-min mixed strategies

A fairly pessimistic solution concept for games is that of a max-min strategy. This is a choice
of strategy that would maximize the payoff in the “worst case” – no matter what strategies the
other players use, a certain minimum payoff is guaranteed. This notion becomes more interesting
when mixed strategies are involved, and the player wishes to guarantee a minimum expected payoff.
(Players have risk neutral utility functions.)

Proposition 3.2 For any game in standard form and any player:

1. If the payoffs are rational numbers, then the probabilities involved in a max-min strategy are
rational.

2. A max-min strategy can be computed in polynomial time.

Proof: W.l.o.g., let player 1 be the player for which we need to compute a max-min strategy.
Let A be a payoff matrix for player 1, where its columns are indexed by the strategies of player 1,
whereas its rows are indexed by profiles of strategies for the other players. We let Aj denote the jth
row of A. Let xi be the probability with which player 1 plays strategy i. Then a max-min strategy
for player 1 is the solution to the following linear program.

maximize t
subject to
Ajx− t ≥ 0 (for every j)∑

xi = 1
x ≥ 0
The proposition follows as an immediate corollary to the theory of linear programming. 2

The solution concept of a max-min strategy is often too pessimistic to be of interest. However,
for one important class of games, that of zero sum (or constant sum) two person games, it is a very
useful solution concept. The reason is the celebrated minimax theorem of Von-Neumann.

Theorem 3.3 For every (finite) two person zero sum game, the payoff guaranteed to a player under
his mixed max-min strategy is equal to the maximum payoff that the player can get by playing a (pure)
strategy against the mixed max-min strategy of the other player.

Proof: Let A be the payoff matrix for the column player, and −A be the payoff matrix for the
row player. Then the LP for a max-min strategy for the column player was given in the proof of
proposition 3.2. For the row player, let yj be the probability with which he plays strategy j. Then
the LP for the max-min value for the row player is the following.

maximize t
subject to
−AT

i y − t ≥ 0 (for every i)∑
yj = 1

y ≥ 0
Simple manipulations show that the LP for the row player is equivalent to the dual of the LP for

the column player. To construct this dual, associated a variable yj with every row Aj and a variable
z with the constraint

∑
xi = 1. Also, make a change of variable of s = −t, changing the objective

function to the equivalent minimize s, and changing the constraints to Ajx+ s ≥ 0. Then the dual
becomes:

maximize z
subject to
AT

i y + z ≤ 0 (for every i)∑
yj = 1

y ≥ 0

16

Renaming z as t, one gets the LP for the row player.
Both LPs are feasible and bounded. Strong duality now implies the minimax theorem 2

Another useful observation concerning two player games is the following.

Proposition 3.4 In a two player game, the support of a max-min strategy need not be larger than
the number of strategies available to the other player.

Proof: This follows by taking a basic feasible solution for the max-min LP. 2

The minimax theorem plays an important role in connecting between two notions of randomness
in algorithms. A randomized algorithm can be viewed as a probability distribution over deterministic
algorithms. A worst case performance measure for it is the probability that it outputs the correct
answer on the worst possible input. A distributional algorithm is a deterministic algorithm that is
used in a case that the inputs are drawn at random from some known distribution. An average
case performance measure for the algorithm is the probability (over choice of input) that it answers
correctly. One can set up a zero sum game in which the row player chooses an algorithm and the
column player chooses an input. The row player wins if the algorithm gives the correct answer on
the chosen input.

Fixing a finite collection of algorithms and a finite collection of possible inputs, Yao’s minimax
principle says that the worst case performance of the optimal randomized algorithm (success proba-
bility on worst input) is exactly equal to the best average case performance against the worst possible
distribution over inputs.

Another useful observation is that if the collection of algorithms is small, then the support of
the difficult distribution may be small as well, and vice versa.

3.4 Multiplayer Nash

Recall that a (mixed) Nash equilibrium is a profile of mixed strategies, such that for every player,
every strategy in the support of his mixed strategy is a best response (in expectation) to the profile
of mixed strategies played by the other players.

Theorem 3.5 Every finite game has a Nash equilibrium.

A Nash equilibrium can be thought of as a “fixed point” of a game, in the sense that no player
has an incentive to unilaterally deviate from it. (Note however that a player may be indifferent
to deviating from a Nash equilibrium, in the sense of not caring how exactly to mix over his best
response strategies.) Nash’s proof of Theorem 3.5 was based on applying a different fixed point
theorem, namely Brouwer’s fixed point theorem that states that every continuous function from a
compact convex body to itself has a fixed point.

Here is a sketch of how Nash’s theorem can be proved using Brouwer’s fixed point theorem. Let
t be the number of players, and let ni be the number of strategies available to player i. The set of
all profiles of mixed strategies is a compact convex body G in Rd, where d =

∑t
i=1 ni. One now

defines a continuous function F from G to itself in a way that any fixpoint of F corresponds to a
Nash equilibrium of the game. One such function is the following. Let gi,j(x) be the “gain” for
player i with respect to profile x if he switches to pure strategy j. Observe that g is a continuous
function (it is a polynomial in x). Define:

F (x)i,j =
xi,j + max[0, gi,j(x)]

1 +
∑ni

k=1 max[0, gi,k(x)]

Observe that in every point x of F , for every player i, at least for one value of j it must hold
that max[0, gi,j(x)] = 0, because it could not be that every pure strategy is strictly better than the
mixed strategy. Hence in a fixed point x of F , for all i and j it must hold that max[0, gi,j(x)] = 0. If
j is in the support of the fixed point than it must be that gi,j(x) = 0, as otherwise averaging implies

17

that there must be some other strategy j′ with gi,j′(x) = 0. This means that the mixed strategy is
composed only of best responses, and hence is a Nash equilibrium.

The reader may observe that the function F above can be thought of as a way of imposing
dynamics on the space of profiles, where at a step one moves from profile x to profile F (x). Though
this dynamical system is guaranteed to have a fixed point, the proof does not guarantee that starting
from an arbitrary point, a fixed point is ever reached (or that the dynamics eventually get arbitrarily
close to a fixed point).

The proof of Nash’s theorem is nonconstructive, due to the fact that Brouwer’s fixed point
theorem is nonconstructive. There is no polynomial time algorithm known for computing a Nash
equilibrium. Part of the difficulty is that there are games (Nash shows such an example with
three players) in which in every Nash equilibrium, the strategies in the support are played with
nonrational probabilities (even though all payoffs have integer values). In a homework assignment
we will see a three player game with an irrational Nash (though this game also has some rational
Nash equilibria). Hence (at least in the case where there are more than two players), one would
need to represent a Nash equilibrium either symbolically (for example, allow square root notation),
or approximately using rational numbers. For standard models of computation, the latter option
may be more convenient. Hence one may consider a notion of an ε-Nash, where ε > 0 is a parameter
that measures how close a profile of strategies is to being a true Nash. There are several notions of
distance that one may consider, and we list here the three main ones.

1. ε-close. Here one seeks a profile of mixed strategies that is close in some metric to a profile
of strategies that represents some true Nash. One possible metric to use here is the `∞ norm.
Namely, x is ε-close to a true Nash if there is a true Nash x′ such that for every strategy, the
probability that it is played in x differs from that in x′ by at most ε.

2. ε-well supported. Here one normalizes all payoffs so that they are between 0 and 1. Then
one seeks a profile x in which for every player, every strategy with nonzero probability gives
expected payoff within ε of the expected payoff of the best response.

3. ε-Nash. Again, one first normalizes the payoffs. Then one seeks a profile x in which for every
player, his mixed strategy gives expected payoff within ε of the expected payoff of the best
response.

Of all three notions, the one that we call an ε-Nash is in a sense the weakest. Clearly, every
ε-well supported Nash is also an ε Nash. It is also not difficult to see that for every game, there is a
constant N that depends only on the game (for example, the total number of strategies) such that
every ε/N -close Nash is an ε-Nash. The notion of ε-well supported Nash is not much stronger than
ε-Nash. Every ε2-Nash can be transformed into an O(ε)-Nash. (This is left as homework.)

The notion of an ε-close Nash is perhaps too strong as the following argument shows (taken
from [EtessamiYannakakis07]).

One can design three person games with integer payoffs that have only one Nash, and in this
Nash probabilities are irrational. Now add a fourth player to the game whose payoffs depends on the
strategies played by only one of the other players, and the payoffs of the first three players do not
depend on the strategy played by the fourth player. Hence the best response strategy of the fourth
player is determined by comparing sums of irrational numbers and determining which is larger. An
ε-close Nash would tell us which of these irrational numbers is larger. This connects to the following
well known open question. Is there a polynomial time algorithm that given integers a1, . . . , an and
b, can tell whether

∑√
ai > b? This problem is even not known to be in NP.

The argument above refers to games with four players. However, one can extend it to games
with three players using the following theorem of Bubelis [Bubelis79].

Theorem 3.6 Every game G with d > 3 players and rational payoffs can be reduced in polynomial
time to a game G′ with three players and rational payoffs in which player 1 in G′ simulates all players

18

in G in the following sense. In every Nash for G′, the mixed strategy x for player 1 corresponds
(after scaling by d) to a Nash of G. Every Nash profile x of G corresponds (after scaling by 1/d) to
a mixed strategy of player 1 in G′ that is part of a Nash for G′.

(In fact, in Theorem 3.6 the scaling factor can be made nonuniform: 1/di for player i with∑
1/di = 1. By setting d4 close to 1, there is almost no loss in ε with respect to ε-closeness when

moving from the four player game to the three player game.)
Given the above discussion, the interesting challenges are computation of ε-Nash of three player

games, and Nash for two player games.

3.5 Two player Nash

In some senses, computing Nash for two player games is an easier task than for three player games.
Given the support S1 for player 1 and S2 for player 2 of a Nash, the mixed strategies x and y

associated with them need to satisfy the following linear constraints:

• Nonnegativity: x, y ≥ 0.

• Probability distribution:
∑

xi =
∑

yj = 1.

• Best response for player 1: u1(x′, y) ≥ u2(x”, y) for every pure strategies x′ ∈ S1 and x”.

• Best response for player 2: u2(x, y′) ≥ u2(x, y”) for every pure strategies y′ ∈ S2 and y”.

The probabilities involved in the mixed strategies are solutions to a linear program and hence
(when taking a basic feasible solution) are rational and can be represented using polynomially many
bits.

We now proceed to describe the Lemke-Howson algorithm that can be used for finding a Nash
equilibrium in two player games. It also provides a proof that in two player games, Nash equilibria
must exist (and hence also proves the minimax theorem).

Consider a two player game (given by payoff matrices A and B) and scale all payoffs so that they
are between 1 and 2. We shall assume first that the game is non-degenerate. The non-degeneracy
condition can be stated formally (includes conditions such as that every k by k submatrix has full
rank), but may be informally thought of as saying that there are no “numerical coincidences”. This
assumption will imply that there are no ties in the Lemke-Howson algorithm (new strategies to be
picked up or dropped are uniquely defined).

The Lemke-Howson algorithm maintains for each player a vector of nonnegative weights associ-
ated with pure strategies, a vector x for player 1 and a vector y for player 2. These weights can be
viewed as probabilities in a mixed strategy, though they need not sum up to 1. The invariant that
is maintained throughout the algorithm is that all but one of the strategies in the support of these
vectors are best responses with respect to the vector of the other player, and have payoffs of 1. Here,
the notion of a payoff of strategy i for player 1 is taken in the sense of

∑
j aijyj and the notion of

a payoff of strategy j for player 2 is taken in the sense of
∑

i bijxi. The one exceptional strategy is
strategy 1 for player 1. The initialization phase proceeds as follows.

1. Set all weights to 0.

2. Arbitrarily, choose one strategy for one of the players. W.l.o.g., let it be strategy s1 for
player 1. Raise its weight until player 2 has a response t1 with payoff 1. (Our non-degeneracy
assumptions implies that this t1 is unique.)

3. Raise the weight of t1 until player 1 has a response s2 with payoff 1. (Again, the non-degeneracy
assumption implies that s2 is uniquely determined.)

19

If after the initialization phase s1 = s2 then s1 is a best response to t1 and vice versa, and we are
done. If s1 6= s2 then the main body of the algorithm takes place. The main body of the algorithm
maintains after each step one of the following two types of configurations:

1. The support s(x) of x is equal in size to the support s(y) of y. In addition there is one more
strategy p (for pivot) for player 1 that is a best response to y and currently has a weight of 0.

2. |s(x)| = |s(y)|+1. In addition there is one more strategy p for player 2 that is a best response
to x and currently has a weight of 0.

After the initialization phase the algorithm is in the first of the two configurations.
Each of the two configurations offers a possible move to each one of the players as follows.

1. |s(x)| = |s(y)|.

(a) Move for player 1. Pick up p into the support of x. Now x contains one more free variable
than the number of constraints (best responses) in y. Hence raising xi that corresponds
to p can be offset by changing the other values in s(x) while still maintaining that all
strategies in s(y) have payoff 1. A step for player 1 is raising xi until either some other xj

reaches 0 (and then we remain in configuration 1 and sj becomes the new pivot strategy),
or some new yj becomes a best response (and then we move to configuration 2 with sj as
the new pivot strategy). (One of the two must happen since payoffs are strictly positive.)

(b) Move for player 2. Ignore p. Ignoring also s1, there is one more free variable in the
support of y then constraints (best responses) in x. Maintaining the constraints, move
along the line implied in y in the direction that lowers the payoff of pi. Stop when either
some yj reaches 0 (and then we move to configuration 2 and sj becomes the new pivot
strategy), or some new xj becomes a best response (and then we remain in configuration 1
and sj becomes the new pivot strategy).

2. |s(x)| = |s(y)|+ 1.

(a) Move for player 1. Ignore p. Now x contains one more free variable than the number of
constraints (best responses) in y. Maintaining the constraints, move along the line implied
in x in the direction that lowers the payoff of p. Stop when either some xj reaches 0 (and
then move to configuration 1 and sj becomes the new pivot strategy), or some new yj

becomes a best response (and then remain in configuration 2 and sj becomes the new
pivot strategy).

(b) Move for player 2. Pick up p into the support of y. Ignoring s1, there is one more
free variable in the support of y then constraints (best responses) in x. Hence raising
yi that corresponds to p can be offset by changing the other values in s(y) while still
maintaining that all strategies in s(x) − s1 have payoff 1. A step for player 2 is raising
yi until either some other yj reaches 0 (and then we remain in configuration 2 and sj

becomes the new pivot strategy), or some new xj becomes a best response (and then we
move to configuration 1 with sj as the new pivot strategy).

We may describe the Lemke-Howson algorithm in terms of a directed state graph. Each state in
the graph is a configuration given by the sets s(x), s(y) and the pivot strategy p. The non-degeneracy
condition implies that given a configuration, the probability with which each strategy is played in
this configuration is determined uniquely, and hence no two states share the same configuration. It
follows that the number of possible states is exponential in the number of pure strategies available
to the players (and not larger). The state graph for the Lemke-Howson algorithm has out-degree 2.
A crucial observation is that the pivoting process is reversible. Hence edges of the state graph are
bidirectional. There are certain special states of degree 1. One is the configuration reached after

20

the initialization phase. The other states of degree 1 are those in which either the strategy to be
dropped is s1 (and then player 2 has no move) or the strategy to become a best response is s1

(and then player 1 has no move). In either case, these are Nash equilibria. As a graph has an even
number of vertices of odd degree, it follows that there must be an odd number of Nash equilibria,
and in particular, at least one. To find one Nash equilibrium, start from the trivial state and let the
players alternate in turns. This process is guaranteed to reach a Nash equilibrium.

The Lemke-Howson algorithm is not a polynomial time algorithm. There are known families of
examples that require an exponential number of steps to reach a fixed point [SavaniStengel04].

Many games are degenerate, in which case the Lemke-Howson algorithm cannot be run as de-
scribed. A standard approach of dealing with degeneracies is by introducing small perturbations to
the payoffs (e.g., for a very small ε, reward player 1 by εi for playing strategy i). The new game
will not be degenerate, and its Nash will be ε-Nash of the original game (and vice versa). In fact,
when ε is sufficiently small, the support of every Nash in the new game will be a support of a Nash
in the original game. There are versions of the Lemke-Howson algorithm that do not introduce an
explicit perturbation but instead follow some pivot rule that is equivalent to introducing a small
perturbation.

It is not known whether there is a polynomial time algorithm for computing a two-player Nash.
It is know that many variations of this question are NP-hard. For example, consider the following
two player game that we call here the k-clique game.

The payoff matrix A for the row player has n+1 rows and n columns. The top n by n submatrix
is the adjacency matrix of a graph G. All the entries of the bottom row are k−1

k . For the column
player, the top n by n submatrix is the identity matrix, and the bottom row is all 0.

Theorem 3.7 If G does not have a clique of size k, then in all Nash equilibria of the k-clique game
the support for the row player is the last row, and the payoff for the column player is 0. If G has a
clique of size k, then there are Nash equilibria in which the support for the row player has at least k
rows, and the expected payoff for the column player is positive.

Proof: Consider an arbitrary Nash equilibrium, and let j the column played by the column
player with highest probability. If this probability yj > 1/k then in the Nash, the row player cannot
be playing row j (because the expected payoff of row j is strictly smaller than 1− 1/k, whereas the
payoff of row n+1 is always 1−1/k). Hence the expected payoff for the column player when playing
column j is 0, implying that he has no strategy with positive payoff. This in turn implies that the
row player is playing row n + 1 at this Nash.

Assume now that the row player is playing some strategy i < n + 1 with positive probability.
This implies that the column player is playing each strategy with probability at most 1/k. Let S be
the set of columns played by the column player with positive probability, and observe that |S| ≥ k.
Then to be best responses, all rows corresponding to S must be played by the row player. Moreover,
to be best responses, the expected payoff for each such row is at least 1 − 1/k (which is the payoff
guaranteed by row n+1). We now show that the subgraph of G induced on S must have a k-clique.

By averaging, there must be a column in S for which at least a k−1
k fraction of the rows of S

have payoff 1. Put the corresponding vertex in the clique, and continue with a set S′ ⊂ S of those
vertices that had payoff 1. For S′, using the fact that no column has probability greater than 1/k,
averaging shows that there must be a column in S′ for which at least a k−2

k−1 fraction of the rows of
S′ have payoff 1. Continuing in this fashion, we can extract a clique of size k−1 and still have some
row left in S′, which can serve as the kth vertex in the clique.

Finally, observe that if S is any maximal clique of size at least k, then both players playing
uniformly over S gives a Nash with payoff 1 − 1/|S′| for the row player and 1/|S′| for the column
player. 2

Theorem 3.7 shows (among other things) that in a game with non-negative payoffs, it is NP-hard
to determine whether there is a Nash equilibrium in which the column player has expected positive

21

payoff, and to determine whether there is a Nash equilibrium in which the row player has a mixed
strategy (rather than a pure strategy).

The Lemke-Howson algorithm places Nash in the class PPAD [Papadimitriou94], standing for
Polynomial Parity Argument Directed. This class assumes a state graph of degree two (similar to
the state graph of the non-degenerate Lemke-Howson algorithm), but these graphs are directed in a
consistent way (a vertex has at most one incoming edge and one outgoing edge). There is a way of
assigning a consistent set of directions to the Lemke-Howson graph, though this is not easy to state.
Assigning a direction is easier for the directed graph of a related problem, that associated with the
proof of the two-dimensional Sperner lemma. (The proof of Sperner’s lemma was presented in class,
and is not presented here because it will be a pity to present it without an accompanying drawing.
The direction there is determined by whether the unique color is to the left or to the right of the
movement.) Recently, it was shown that two player Nash is complete for PPAD [ChenDeng06] (even
for ε-Nash for polynomially small ε [ChenDengTeng06]). As computing an ε-Nash for multi-player
games is in PPAD (this is not easy to see, but will appear in the full version of [DGP06]), this implies
a reduction from multi player games to two player games, preserving the concept of ε-Nash (though ε
needs to be very small for the two player game). For other problems in PPAD, see [Papadimitriou94].
Some problems related to PPAD computations are known to be very difficult. This is touched upon
in the homework assignment. Finding the other end of a PPAD computation is PSPACE complete
(since reversible computation is universal [Bennett73]). Reversible Turing machines are not in PPAD
because in a PPAD problem one is allowed to output any sink (or any nonstandard source) and in
reversible computation one seeks a particular sink.

Research questions.

1. Is there a direct (relatively simple) reduction from finding an ε-Nash in a 3-player game to
finding a Nash in a two player game?

2. Is there a direct (relatively simple) reduction from finding a Nash in a two player game to
finding an ε-Nash (with polynomially small ε) in a two player game?

The question of finding ε-Nash in two player games has received much attention. For sufficiently
large ε (e.g., ε > 0.34) there are known polynomial time algorithms. For every Nash and any ε, there
is a nearby ε Nash with support size O(ε−2 log n). This implies that optimization over ε Nash can
be done by enumeration in time nO(ε−2 log n). See [LMM03].

3.6 Correlated equilibrium

Consider a multi-player game and let s1, s2, . . . , sN be all its possible strategy profiles. Let pi(sj)
denote the payoff to player i if strategy profile sj is played. Let sj ⊕i s′ be the strategy profile that
results from sj by replacing the strategy for player i by strategy s′ (where s′ is a strategy available
to player i).

Recall that a correlated equilibrium is a probability distribution over strategy profiles that no
player has an incentive to deviate from. Formally, let xj be the probability associated with strategy
profile sj . Then a correlated equilibrium needs to satisfy the following set of constraints. For every
player i, for every strategy s for player i and every strategy s′ for player i:

∑
s∈sj

pi(sj)xj ≥
∑
s∈sj

pi(sj ⊕i s′)xj

where the sums are taken only over those strategy profiles in which player i plays strategy s. Adding
the nonnegativity condition x ≥ 0 and the requirement

∑
xj = 1 that probabilities sum up to 1,

we see that a correlated strategy is a feasible solution to a polynomial size (if the game is given
in standard form) linear program. This linear program is indeed feasible, because a mixed Nash
equilibrium is a correlated equilibrium. The discussion above provides the proof to the following
proposition.

22

Proposition 3.8 Given a game in standard form in which all payoffs are rational, a correlated
equilibrium can be computed in polynomial time. Furthermore, for any linear objective function (with
rational coefficients) over the payoffs to the players, one can find in polynomial time a correlated
equilibrium maximizing the objective function, and moreover, the probabilities involved will all be
rational.

The above proposition helps make correlated equilibria a desirable solution concept, when it ap-
plies (when there is some trusted party that draws a random profile from the distribution implied by
the correlated equilibrium, and presents to every player his recommended strategy and no additional
information about the strategies recommended to other players).

23

Homework assignments

Please keep the answers short and easy to read.

5 November 2008

Read chapter 1 in [NRTV07].

The family of and-or games is a family of two-player constant-sum games given in extensive form
(as a game tree). There are two players, min and max. The game tree is a full binary tree of depth
n and N = 2n leaves. Every leaf has a value, which is the payoff given to max, which can be either
1 (win) or 0 (loose). The payoff to min is the complement of the payoff to max (when max looses
min wins). The game starts at the root of the tree. Number the layers of the tree from 0 at the root
to n at the leaves. At even numbered layers, min chooses a move (an edge leading from the current
node to the next layer), and at odd layers max chooses a move. After n moves a leaf is reached, each
player gets his respective payoff, and the game ends.

1. How would an and-or game be represented in standard form? In particular, how many rows
and how many columns will the game matrix have?

2. Prove that in every and-or game one of the players has a strategy that forces a win for that
player regardless of the strategy of the other player. (Hint: you may use induction.) Show
an algorithm of time complexity poly(N) for computing such a strategy. (Space complexity is
also important in practice. Space poly(n) suffices for computing an optimal move.)

3. What is the smallest number of leaves that can have value +1 and still max will have a winning
strategy? Explain.

4. Prove that in every and-or game, at least one of the players has a dominant strategy.

5. Show an example of an and-or game in which min does not have a dominant strategy.

6. What is the largest number of leaves that can have value +1 and still max will have a dominant
strategy but no winning strategy? Explain.

7. Show an algorithm of time complexity poly(N) for computing a subgame perfect Nash equi-
librium for an and-or game.

24

12 November 2008

Reading: you are assumed to know basic notions in computational complexity (definitions of
classical complexity classes such as P, NP, PSPACE and EXPTIME, the notions of hardness and
completeness). If needed, refresh your memory on these concepts. See for example [Papadimitriou].

In class we showed the well known algorithm for finding a stable matching (a.k.a. stable marriage)
of Gale and Shapely [GaleShapley62]. This algorithm is also presented in Chapter 10 in [NRTV07],
in Wikipedia, and elsewhere.

Consider the following game with 2n players, n men and n women, each having his/her own
preference list over partners of the other sex. In this game, every man and every woman supplies
a preference list (either their true preference list, or some other preference list), the outcome of
the game is the matching produced by the stable matching algorithm when run on the supplied
preference lists (the algorithm where the unengaged men propose), and the payoff for a player is the
rank (in the player’s list) of the partner assigned to the player. An interesting question is whether
the players have incentives to play truthfully in this game. Namely, is it always to the benefit of a
player to report his or her true preference list, or may the player win a better partner (from the
player’s point of view) by reporting a different preference list?

1. We remarked (without proof) in class that the algorithm is optimal for the men. Prove that for
every man, reporting his true preference list is a dominant strategy. (Remark: this homework
turned out to be too difficult, especially as originally I gave a misleading hint, and the proof
in [NRTV07] has gaps in it.)

2. Show that all players following the strategy of reporting their true preference lists is not
necessarily a Nash equilibrium of the game. Namely, show an example (n = 3 suffices for this
purpose), where a woman can benefit (eventually be matched by the algorithm to a man that
she prefers more) by reporting a preference list that is different from her true preference list.

3. Prove that this game always has some pure Nash equilibrium (though as question 2 shows, in
this Nash equilibrium some players might not be reporting their true preferences).

25

19 November 2008

Reading: linear programming is a very useful algorithmic technique that has a well developed
theory behind it. If this subject is new to you, it is recommended that you read more about it.

The surprise examination paradox.
A teacher announces that in the following week there will be a surprise examination. A clever

student argues by backward induction that having a surprise examination is impossible. (The exam
cannot be on the last day because by then the students will not be surprised by it. Having agreed
that it cannot be on the last day, by the time the day before last arrives, the students expect it to be
given on that day. And so on.) Here we consider a multi-round two player zero sum game between
a teacher and a student. In every round the teacher has two possible actions: either A (to give an
exam) or B (not to give an exam). In every round, the student has two possible actions: either A
(to study towards an exam) or B (not to study). In every round, both players play simultaneously.
In the unbounded version of the game, the game ends on the first round on which at least one of
the players plays A. If on that round both play A the student wins, and if only one of them played
A the teacher wins. If the game never ends, no player wins (it is a tie). In the bounded version of
the game, the game is known to last for at most 4 rounds. If no player wins by the 4th round (no
player played A in any of the first 4 rounds), then the student wins.
Please keep the answers to the following questions short and easy to read.

1. In the bounded game, what is a max-min strategy for the teacher? What is a max-min strategy
for the student? How would you provide a simple proof that each of the strategies that you
present is indeed a max-min strategy?

2. In the unbounded game, is there a max-min strategy for the teacher? For the student? Explain.

Food for thought (no need to hand in):

1. We said in class that a two player game of perfect information can be assumed not to repeat
the same position twice (when it does the game can be declared a tie). Does this observation
apply to the surprise examination game?

2. Does the surprise examination game have a mixed Nash equilibrium? If not, then what solution
concept would you suggest for this game?

26

26 November 2008

Reading: More information on the computation of of Nash equilibria can be found in chapters 2
and 3 of [NRTV07].

1. Prove that for every finite two-player zero-sum game, in every Nash equilibrium every player
is playing a max-min (mixed) strategy.

2. A pure strategy s in a two player game is said to be dominated if for every mixed strategy t
of the other player, strategy s is not a best response with respect to t. Clearly, a dominated
strategy cannot be part of a Nash equilibrium. Show that there is a polynomial time algorithm
for detecting whether a two player game (given in standard form) has a dominated strategy.
(Hence such strategy can be removed prior to attempting to find a Nash equilibrium.)

3. Show that there is a universal constant c (say, c = 4) such that in every two person game with
payoffs between 0 and 1, every ε-Nash can be changed into a c

√
ε-well supported Nash that is

supported only on strategies that appear in the support of the given ε-Nash.

27

3 December 2008

1) Consider the following three player game. Player A has strategies a1 and a2, player B has
strategies b1 and b2, and player C has strategies c1 and c2. The payoffs are described below. The
name of a player appearing in a strategy profile means that the player gets a payoff of 1. Otherwise
the payoff is 0. For example, on profile (a1,b2,c2) players A and B each gets a payoff of 1 and player
C gets a payoff of 0.

b1 b2 b1 b2
|----------|----------| |----------|----------|

a1 | | B | a1 | C | A; B |
|----------|----------| |----------|----------|

a2 | A | A; C | a2 | B; C | |
|----------|----------| |----------|----------|

c1 c2

Equivalently, the payoff for each player can be described as follows: if a player plays his first
strategy he gets a payoff of 1 iff the two other players play their second strategy. If a player plays
his second strategy, he gets a payoff of 1 iff the player preceding him (in the cyclic order A-B-C-A)
plays his first strategy.

Find all Nash equilibria of this game, and prove that no other Nash equilibrium exists. (For the
proof, you may need to solve a system of algebraic equations that expresses the conditions for a
profile of strategies being a Nash equilibrium.)

2) Recall that problems in PPAD are problems whose input includes an implicit description of a
directed graph with at most exponentially many nodes. There is a polynomial time algorithm that
given the name of a node figures out from the implicit description the edges incident with the node.
Every node has at most one incoming edge and at most one outgoing edge. One is given a source
node (has no incoming edge), and the goal is to find any sink node (has no outgoing edge). The
matching-sink problem is more specific and requires one to output the sink node that lies on the
end of the path of the given source node. Prove that matching-sink is NP-hard. (Hint: related to
exhaustive search.) Remark: matching-sink is in fact PSPACE-complete.

28

References

[Bennett73] C. H. Bennett, ”Logical reversibility of computation,” IBM Journal of Research and
Development, vol. 17, no. 6, pp. 525-532, 1973.

[BCG01] E. Berlekamp, J. H. Conway, R. Guy. Winning Ways for your Mathematical Plays (2nd
ed.). A K Peters Ltd. 2001.

[Bubelis79] V. Bubelis. On Equilibria in Finite Games. Int. Journal of Game Theory, Vol 8, Issue
2, page 65- 79, 1979.

[CKS81] Ashok K. Chandra, Dexter Kozen, Larry J. Stockmeyer: Alternation. J. ACM 28(1): 114-
133 (1981)

[ChenDeng06] Xi Chen, Xiaotie Deng: Settling the Complexity of Two-Player Nash Equilibrium.
FOCS 2006: 261-272

[ChenDengTeng06] Xi Chen, Xiaotie Deng, Shang-Hua Teng: Computing Nash Equilibria: Approx-
imation and Smoothed Complexity. FOCS 2006: 603-612

[Conway01] John Conway. On Numbers And Games (2nd ed.). A K Peters Ltd. 2001.

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, Christos H. Papadimitriou: The complexity
of computing a Nash equilibrium. STOC 2006: 71-78

[EtessamiYannakakis07] Kousha Etessami, Mihalis Yannakakis: On the Complexity of Nash Equi-
libria and Other Fixed Points. FOCS 2007: 113-123

[FeigeKilian97] Uriel Feige, Joe Kilian: Making Games Short. STOC 1997: 506-516.

[FeigeShamir92] Uriel Feige, Adi Shamir: Multi-Oracle Interactive Protocols with Constant Space
Verifiers. J. Comput. Syst. Sci. 44(2): 259-271 (1992).

[FraeLich81] Aviezri Fraenkel and D. Lichtenstein (1981). ”Computing a perfect strategy for n by
n chess requires time exponential in n”. J. Comb. Th. A (31): 199214.

[GaleShapley62] D. Gale and L. S. Shapley: ”College Admissions and the Stability of Marriage”,
American Mathematical Monthly 69, 9-14, 1962.

[LMM03] Richard J. Lipton, Evangelos Markakis, Aranyak Mehta: Playing large games using simple
strategies. ACM Conference on Electronic Commerce 2003: 36-41

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V. Vazirani (Editors), Algorithmic
Game Theory, Cambridge University Press, 2007.

[Papadimitriou] Christos Papadimitriou. Computational Complexity. Addison-Wesley. 1994.

[Papadimitriou94] Christos H. Papadimitriou: On the Complexity of the Parity Argument and
Other Inefficient Proofs of Existence. J. Comput. Syst. Sci. 48(3): 498-532 (1994).

[Reif84] John H. Reif: The Complexity of Two-Player Games of Incomplete Information. J. Comput.
Syst. Sci. 29(2): 274-301 (1984).

[SavaniStengel04] Rahul Savani, Bernhard von Stengel: Exponentially Many Steps for Finding a
Nash Equilibrium in a Bimatrix Game. FOCS 2004: 258-267

[Shamir92] Adi Shamir: IP = PSPACE. J. ACM 39(4): 869-877 (1992).

[Thomas02] Wolfgang Thomas. Infinite Games and Verification (Extended Abstract of a Tutorial).
CAV 2002: 58–64.

29

