
Sorting and selection – handout 1

March 17, 2014

In class (March 10 and March 17) we discussed the deterministic sorting algorithm
insertion sort that uses roughly n log n comparisons (which is nearly best possible) and the
randomized sorting algorithm quicksort, for which we showed a proof that the expected
number of comparisons is roughly 2n log n.

We presented a simple randomized algorithm for selection the median that makes O(n)
comparisons in expectation, and a more complicated one that makes roughly 3n

2 com-
parisons. In passing we encountered some important principles for probabilistic analysis,
namely, linearity of expectation, and concentration bounds for independent random vari-
ables.

We also presented a deterministic median selection algorithm that uses O(n) compar-
isons, and showed that every such algorithm needs to make at least 3n

2 comparisons.
Other principles encountered are divide and conquer algorithms (the use of the splitting

item for quicksort), and Yao’s principle for lower bounding the expected running time of
randomized algorithms.

No class on March 24, due to the Israel CS Theory Day in the Open University. (Par-
ticipation is free, registration is requested. See http://www.openu.ac.il/theoryday2014/.)

Homework - and in (either in Hebrew or English) by Monday March 31.

1) We have seen in class a deterministic algorithm for selecting the median based on
partitioning the items into groups of size 5. The number of comparisons it uses is at most
20n (up to low order terms). Design a similar algorithm based on partitioning the items into
groups of size 7, and prove an upper bound better than 20n on the number of comparisons
that it makes. (If you are not making wasteful comparisons, you should be able to prove a
bound of roughly 16n.)

2) We have seen a proof that every deterministic comparison-based median selection
algorithm needs to make at least 3n/2 comparisons (up to low order terms) in the worst
case. Prove for some δ > 0 of your choice (say, δ = 1

10) that for every deterministic median
selection algorithm, the expected number of comparisons made when the input is a random
permutation is at least (1 + δ)n (up to low order terms). (Rather that fixing a random
permutation in advance, it may be more convenient for the proof to construct the random
permutation “on the fly”. Whenever the algorithm makes a comparison that involves an
item that has not been involved in any previous comparison, at that point the item is given
a random value in {1, 2, . . . , n}, among the values not given to previous items.)


