
Algorithms – handout 5

Permanents and determinants

June 16, 2014

Given an order n matrix A, its permanent is per(A) =
∑

σ

∏n
i=1 aiσ(i) where σ ranges

over all permutations on n elements. Recall that the determinant of a matrix is det(A) =∑
σ(−1)σ

∏n
i=1 aiσ(i) where (−1)σ is +1 for even permutations and −1 for odd permutations.

The determinant can be computed in polynomial time by gaussian elimination, and in
time nω by fast matrix multiplication (a topic that will be reviewed in class). On the other
hand, there is no polynomial time algorithm known for computing the permanent. In fact,
Valiant showed that the permanent is complete for the complexity class #P , which makes
computing it as difficult as computing the number of solutions of NP-complete problems
(such as SAT, Valiant’s reduction was from Hamiltonicity).

For 0/1 matrices, the matrix A can be thought of as the adjacency matrix of a bipar-
tite graph (technically, A is an of-diagonal block of the adjacency matrix), and then the
permanent counts the number of perfect matchings. Computing the permanent of integer
matrices can be reduced in polynomial time to that of computing the permanent of 0/1
matrices.

We shall see Ryser’s formula for computing the permanent, Lovasz’s approach to deter-
mining if a bipartite graph has a perfect matching, and Kirchoff’s tree-matrix theorem for
counting spanning trees. There is a very good exposition of this theorem by Mark Jerrum in
Chapter 1 in the lecture notes in http://homepages.inf.ed.ac.uk/mrj/pubs.html. The same
exposition shows Kasteleyn’s polynomial time algorithm for counting the number of perfect
matchings in planar graphs.

Homework. Hand in by June 30.

1. Let a and b be two n-digit numbers. Naive multiplication takes O(n2) digit multi-
plications, and a comparable number of digit additions (the exact number depends
on carry effects). Show a recursive algorithm, based on breaking the numbers in two
(high order digits and low order digits) that uses roughly O(nlog 3) ≃ O(n1.585) digit
multiplications, and a comparable number of digit additions.

2. The naive algorithm for checking whether a graph has a clique of size 9 takes time
proportional to

(n
9

)
= Θ(n9). Show how fast matrix multiplication can be used to

obtain a running time of roughly O(n3ω) (where ω is the exponent for fast matrix
multiplication). It is an open question whether any faster algorithm exists.


