
Lectures 6, 7 beginning of 8– Treewidth and graph minors

Uriel Feige
Department of Computer Science and Applied Mathematics

The Weizman Institute
Rehovot 76100, Israel

uriel.feige@weizmann.ac.il

December 21 and 28, 2017, part of January 4, 2018

1 Introduction

We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory
gives a very general condition under which a graph problem has a polynomial time algorithm
(though the algorithms that come out of the theory are often not practical). We shall review
a small part of this theory, and illustrate how dynamic programming can be used to solve
some NP-hard problems on restricted classes of graphs (those of bounded tree width).

2 Dynamic programming on trees

As a motivating example to the forthcoming notion of tree-width, consider the maximum
weight independent set problem on trees. The input is a tree G(V,E) and a weight function
w : V −→ R. (For simplicity in performing the arithmetic operations, think of the weights
as nonnegative integers.) We wish to find an independent set (a set of vertices no two
of which are adjacent) of maximum weight. This can be solved in polynomial time using
dynamic programming as follows.

Fix an arbitrary vertex r as the root of the tree, and orient all edges away from r. The
subtree rooted at v, denoted by T (v), includes v and all vertices reachable from v under this
orientation of edges. (Hence T (r) = G.) The children of v, denoted by C(v) are all those
vertices u with a directed edge (v, u). Leaves of the tree have no children (with a possible
exception if we chose r to be one of the leaves of G – then it does have children).

Let W (T (v)) denote the maximum weight of an independent set of T (v). We want to
compute W (T (r)). Let W+(T (v)) denote the maximum weight of an independent set of
T (v) that contains v, and let W−(T (v)) denote the maximum weight of an independent set
of T (v) that does not contain v. Then we have

W+(T (v)) = w(v) +
∑

u∈C(v)

W−(T (u))

and

1

W−(T (v)) =
∑

u∈C(v)

max[W−(T (u)),W+(T (u))]

The dynamic program now works by repeating the following procedure:

1. Find a vertex v such that for all of its children u we have already computed W−(T (u))
and W+(T (u)).

2. Compute W−(T (v)) and W+(T (v)) as described above.

Eventually, output max[W−(T (r)),W+(T (r))]. Note that as long as there are unvisited
vertices, these vertices form a tree and hence have a leaf, and this leaf can be chosen in
step 1 of the above procedure. Hence the algorithm never gets stuck.

Many NP-hard graph problems are polynomially solvable on trees. (There are excep-
tions. For example, bandwidth is NP-hard on trees.) We shall show how the class of
graphs for which the above dynamic programming approach works (namely, trees) can be
significantly generalized.

3 Tree decomposition

We now introduce the notion of a tree decomposition of a graph.

Definition 1 A tree decomposition of a graph G(V,E) is a tree T , where

1. Each node i of T is labeled by a subset Bi ⊂ V of vertices of G, referred to as a bag.

2. Each edge of G is in a subgraph induced by at least one of the Bi,

3. For every three nodes i, j, k ∈ T with j lying on the path from i to k in T , Bi
⋂
Bk ⊂

Bj.

Remarks:

1. The condition Bi
⋂
Bk ⊂ Bj is equivalent to the condition that for every v ∈ V , the

set of nodes in T whose bag contains v is connected in T .

2. We shall assume that no two nodes i, j ∈ T have Bi ⊂ Bj . (Otherwise, merge i and j
if they are adjacent, or i and its nearest neighbor on the path to j if they are not.)

3. A graph may have several different tree decompositions. Similarly, the same tree
decomposition (as we defined it) can correspond to several different graphs. We can
define Bi to be not just a set of vertices but also the set of induced edges, and then a
tree decomposition uniquely determines a graph.

Every graph has a trivial tree decomposition for which T has one node including all of
V . This partly motivates the following definition:

2

Definition 2 The tree-width of G is the minimum integer p such that there exists a tree
decomposition G with all subsets of cardinality at most p + 1.

Observe that the tree-width of a graph is equal to the maximum of the tree-widths of
its connected components. Another simple observation is the following:

Lemma 1 Every graph with tree-width p has a vertex of degree at most p.

Proof: For graph G, consider a tree decomposition T with width p. Consider a leaf l of
T . Its bag includes a vertex v that is not in the bag of its neighbor in T , and hence not in
any other bag either. As |Bl| ≤ p + 1, it follows that the degree of l in G is at most p. 2

We can exactly characterize those graphs having tree-width n− 1.

Proposition 2 An n-vertex graph has tree-width n− 1 iff it is a clique.

Proof: If the graph is not a clique, then some edge (u, v) is missing. In this case, we
can take B1 = V \ {u} and B2 = V \ {v} as a two node tree decomposition of tree-width
n− 2.

Conversely, if G is connected and has a tree decomposition with tree-width below n−1,
then it has a vertex of degree at most n− 2, and cannot be a clique. 2

We shall be interested in graphs with small tree-width. Clearly, the only graphs with
tree-width 0 are independent sets.

Proposition 3 G has tree-width at most 1 iff it is a forest.

Proof: Consider an arbitrary tree G. We build a tree decomposition for it with tree-
width 1 as follows. Pick a root r in G, and orient the edges away from r. Hence each vertex
except for r has one parent vertex. The tree decomposition T of G will have a topology
identical to G, where each node of T corresponds to a vertex of G. The bag of the node
contains the corresponding vertex in G and its parent vertex (if there is one). Hence all
bags have two vertices, except for one bag that contains only one vertex r. Every edge is in
some bag, and for every vertex v in G, the nodes of T that contain it are connected (they
are the node corresponding to the vertex v and to the direct children of v). Consequently,
T is a tree decomposition of G.

Conversely, assume that G has tree-width 1. Then it has a vertex of degree at most 1.
Removing this vertex from G, the tree-width cannot increase. Hence we can recursively
remove vertices of degree at most 1, until we exhaust all vertices in G. This implies that G
is a forest. 2

Definition 3 A series-parallel graph is a graph obtained from an independent set using the
following operations:

1. Add a new vertex and connect it to an existing vertex by an edge.

2. Add a self loop.

3. Add an edge in parallel to an existing edge.

3

4. Subdivide an edge by creating a vertex in the middle.

Proposition 4 G has tree-width at most 2 iff it is a series-parallel graph.

Proof: Let G be a series-parallel graph. We build a tree decomposition for it inductively,
without ever exceeding tree-width 2. We do this by following the inductive construction of
G. The most involved step is step 4 in the construction of series parallel graphs. Suppose
edge (u, v) was subdivided, introducing a vertex w. Prior to the subdivision, the tree
decomposition included a node j such that u, v ∈ Bj . Create a new node labeled by
{u, v, w} and connect it to j.

Conversely, assume a tree decomposition T with tree-width at most 2. We show that
this corresponds to a series-parallel graph. We do this by removing a node from the tree
decomposition, show that this corresponds to removing a vertex from the graph G, and
then show that G can be obtained by adding back the vertex using one of the rules of
Definition 3. Again we illustrate only one case. Take a leaf ` of T . Suppose that it is
labeled by three vertices u, v, w (it cannot be labeled by more than three vertices). Then
w.l.o.g., the neighbor node of ` in T does not contain w. Hence the only possible neighboring
vertices of w in G are u and v. Suppose that both u and v are neighbors of w in G. (If only
one of them is, remove w, and it can later be rejoined using operation 1 of Definition 3.)
Remove w from G and add the edge (u, v) to G, thus obtaining a graph G′ (possibly with
parallel edges). Remove w from the leaf `, thus obtaining a tree decomposition T ′ of G′.
G′ has one less vertex than G and has treewidth at most 2, and hence by the induction
hypothesis G′ is series-parallel. G can be obtained from G′ by operation 4 of Definition 3,
and so G is series-parallel as well. 2

The notion of tree-width connects us to the notion of graph minors.

Definition 4 H is a minor of G if it can be obtained from G by a sequence of operations
of edge deletions, vertex deletions, and edge contractions (merging endponts together).

A planar graph is a graph that can be drawn in the plane with no two edges crossing.
Kuratowski showed that a graph is non-planar iff it contains either K5 (a clique on five
vertices) or K3,3 (a complete bipartite graph on six vertices) as a minor. We observe that a
graph is not a forest iff it contains K3 as a minor. It is known (we shall not prove it) that
a graph is not series-parallel iff it contains K4 as a minor. (In particular, K4 is a planar
graph that is not series-parallel.) As forests have tree-width at most 1 and series-parallel
graphs have tree-width at most 2, one may hope that graphs not containing K5 as minors
have tree-width at most 3, especially as K5 itself has tree-width 4. However, this is false.

Proposition 5 The tree width of planar-graphs can be as high as Ω(
√
n).

We shall use the following important lemma in the proof of Proposition 5.

Lemma 6 Let G(V,E) be a graph of tree width p. Suppose that the vertices v ∈ V have
nonnegative weights w(v) with

∑
v∈V w(v) = 1. Then there is a set S of at most p + 1

separating vertices whose removal separates G into parts S1, S2, . . . (possibly only one part)
with the following properties:

4

1. Each part has total weight no more than 1/2.

2. For any two different parts (say, Si and Sj) , all paths from Si to Sj must go through
S.

Proof: Let T be a tree decomposition of G with tree-width p. Observe that the removal
of a non-leaf tree node decomposes the tree into subtrees with no paths connecting different
subtrees. Similarly, the removal of the vertices in the corresponding bag disconnects G into
components (where a component contains the contents of the bags in a subtree, but without
the vertices from the separator bag) with no paths between them.

If T contains a bag of total weight at least 1/2, this bag can serve as the separator. If
every bag has weight less than 1/2, pick an arbitrary root r in T and orient edges away from
r. For a subtree of T rooted at node v, let W (v) be the sum of the weights of the distinct
vertices in the bags of the subtree rooted at v. Observe that W (r) = 1 and the weight of
every leaf is less than 1/2. Let j be a tree node with W (j) ≥ 1/2 and W (u) < 1/2 for all
children u of j. Let S = Bj . Then |S| ≤ p + 1. Now make j the root of T . For child u of j
in T , define S(u) to be the vertices of G appearing in the labels of the subtree rooted at u
but not in S. Then the S(u) are disjoint, and any path connecting a vertex from S(u) to a
vertex in S(u′), where u 6= u′ and both u and u′ are children of j, must go through S. Let
W ′(u) =

∑
v∈S(u)w(v). Then W ′(u) < 1/2. 2

Remark. in Lemma 6 we may instead require that S separates G into two parts S1 and
S2 (one of which may be empty), each of size at most 2n/3. If for some u, W ′(u) ≥ 1/3,
then take S1 = S(u) and S2 = V \ S(u) \ S. If W ′(u) < 1/3 for all u, then we can combine
several S(u) to get a set S1 of weight between 1/3 and 2/3.

We now proof Proposition 5.
Proof: Consider a

√
n by

√
n mesh, and let its tree-width be p. Give each vertex weight

1/n. By Lemma 6 there is a set S of p + 1 vertices whose removal breaks the mesh into
components S1, S2, . . ., none of which contains more than n/2 vertices. Assume for the sake
of contradiction that p + 1 <

√
n/2. Then more than

√
n/2 columns of the mesh are free

– they do not contain any separator vertex. Likewise, more than
√
n/2 rows of the mesh

are free. All the free columns and rows of the mesh are in the same connected component,

giving a component larger than
√
n
√
n
2 = n

2 , contradicting the assumption that p+1 < n/2.
Hence the treewidth of the mesh is at least

√
n/2− 1. 2

Remark. In fact, the treewidth of a
√
n by

√
n mesh is

√
n. We shall only show the

upper bound, but will not prove the tight lower bound. To get a tree decomposition in which
every bag is of size

√
n + 1, consider the following collection of bags Bi,j with 1 ≤ i <

√
n

and 1 ≤ j ≤
√
n. Bag Bi,j contains the first

√
n + 1 − j vertices of row i and the last j

vertices of row i + 1. Arranging the bags in lexicographic order gives a tree decomposition
of the mesh (where the tree is a path).

Tree-width is connected to planarity via the following theorem of Robertson and Sey-
mour, whose proof is beyond the scope of the course.

Theorem 7 Let H be a planar graph. If G has no H-minor, then the treewidth of G is
bounded by some function of H, independent of G.

Observe that indeed H must be planar in the above theorem, as for every nonplanar H,
planar grids form a graph family with no H-minor and unbounded treewidth.

5

4 Coloring

Recall that a legal k-coloring of a graph colors the vertices with k colors such that adjacent
vertices receive different colors. The chromatic number of a graph is the minimum k that
allows a legal k-coloring. Computing the chromatic number is NP-hard.

Proposition 8 Every graph with tree-width p has chromatic number at most p + 1.

Proof: The proof is via the method of inductive coloring. We have seen that a graph
G(V,E) of tree-width p has a vertex v with degree at most p. If the rest of the graph is
legally colored by p+ 1 colors then we can also (p+ 1)-color G by assigning to v one of the
colors not assigned to its neighbors. As the subgraph induced on V \{v} also has tree-width
at most p, the proof follows by induction. 2

Though planar graphs have unbounded tree-width, the method of inductive coloring
does apply to them. As every planar graph has a vertex of degree at most 5, planar graphs
are 6-colorable. By the fact that planar graphs do not contain K5, it follows that they are
5-colorable. Consider the five neighbors of a vertex v of degree five. Two of them are not
adjacent, and can be contracted to v while preserving planarity, giving a graph G′. A legal
5-coloring of G′ can be extended to a 5-coloring of G because now two of the neighbors of
v have the same color.

The famous 4-color theorem says that every planar graph is 4-colorable. Current proofs
of this theorem are complicated and use extensive computer assisted case analysis.

Hadwiger conjectured that every graph that does not contain Kp+1 as a minor is legally
p-colorable. This conjecture is still open. If true, it would generalize the 4-color theorem.
A weaker form of the conjecture is known to hold. (Namely, every graph that does not
contain Kp as a minor is legally f(p)-colorable, where f(p) is a slowly growing function of
p. In particular, f(p) ≤ O(p

√
log p). The proof is based on the fact that inductive coloring

of G fails only if there is a subgraph of high minimal degree, but then this subgraph must
have a large clique as a minor.)

Deciding whether a planar graph is 3-colorable is NP-hard. On the other hand, for
graphs of bounded tree-width, their chromatic number can be determined in polynomial
time. This can be done via dynamic programming on the tree decomposition of the graph.
We use the following theorem, whose proof is deferred to Section 4.1:

Theorem 9 For graphs that have bounded tree-width, a corresponding tree decomposition
can be found in polynomial (in fact, linear) time.

Given a tree decomposition T of tree-width p for k-colorable graph G, we legally color
G with k colors as follows. Pick an arbitrary root r for T and orient edges away from r.
For node j in T , let T (j) denote the subtree of T rooted at j, and let V (j) denote the set
of vertices of G in bags of T (j). We use the fact that |Bj | ≤ p + 1. For each node j ∈ T ,
we maintain an indicator vector cj of length kp+1. Each entry corresponds to one possible
(not necessarily legal) k-coloring of the vertices of Bj . This entry is 1 if the k-coloring can
be completed to a legal k-coloring of the subgraph induced on V (j), and 0 otherwise. Note
that the vector cj can be completely determined from the vectors cu of all the children u of
j, and from Bj , because for a coloring of V (j) to be legal, it suffices that it is legal on Bj

6

and on V (u) for each child u of j separately – there is no interaction between the children of
j except through edges present in Bj . Hence using dynamic programming we can eventually
compute cr, and if cr has a nonzero entry then G is k-colorable.

The running time of the algorithm can be estimated as follows. Every tree decomposition
T of graph G has at most n nodes. (A leaf l of T has in its label a vertex v of G not appearing
anywhere else in T . Removing v from G, the tree T is updated by removing at most the
leaf l. Continue recursively.) Hence T has at most n edges. At each edge (i, j) we look
at most kp+1 times (once for each coloring of its parent node i). Each time we look at an
edge we at most scan the whole indicator vector cj of length kp+1 of the child node j. As
k ≤ p + 1, the running time is proportional to npO(p) (assuming that a tree decomposition
is given). Note that for fixed p, this running time is linear (assuming fixed-time random
access to the adjacency matrix of G).

Thus we see that dynamic programming algorithms that work on trees often extend
to graphs of bounded tree-width. To appreciate this extension, observe that graphs with
bounded tree-width need not “look like” trees (e.g., series-parallel graphs).

4.1 Finding a tree decomposition

We provide here part of the proof of Theorem 9. We may assume that p ≥ 2 (as p = 1
corresponds to trees). For a graph on n vertices and treewidth p we show how to find a
tree decomposition with treewidth at most 8p in time nO(1)2O(p). For constant p (or even
p logarithmic in n), this running time is polynomial in n. Given a tree decomposition
of treewidth 8p, finding a tree decomposition of optimal treewidth p can be done using
dynamic programming, though details of this are omitted here.

Given a graph G, the construction of the tree decomposition is inductive. At an inter-
mediate stage, we already have some bags connected as a partial tree decomposition (for
part of G), and the following properties hold:

1. The partial tree decomposition is a legal tree decomposition for the subgraph induced
on all vertices that are already in bags.

2. Each bag has at most 8p vertices.

3. The vertices of G not yet in bags form several connected components in G (possibly
only 1). For each such connected component C there is an associated bag B (that
depends on C) that contains all neighbors of vertices in C (except those already in
C). Note: a vertex might be in several bags, so a neighbor of C might be in several
bags, but at least one copy of it must be in B.

4. For each such connected component C, the number of neighbors of C in the corre-
sponding B is at most 6p.

To initiate the inductive construction, take any 6p vertices and let them form a bag.
The above properties surely hold.

Let us now consider an inductive step. We need to add one more bag to the partial
tree decomposition, where this bag contains at least one more vertex not yet in bags, while
maintaining the four properties above.

7

Let C be an arbitrary connected component (not yet in bags) connected to bag B, and
having at most 6p neighbors there. If C has strictly less than 6p neighbors in B, then create
a new bag B′ composed of these neighbors and one vertex of C, and connect it to B. This
satisfies all four properties above.

It remains to deal with the case that C has exactly 6p neighbors in B. Denote this set of
neighbors by X. Consider now for the sake of the argument the optimal tree decomposition
for G. (This tree decomposition is unknown to the algorithm. Later we will see how the
algorithm can be run despite this.) By the remark following Lemma 6 there is a bag S
in this optimal tree decomposition that separates X \ S into two parts X1, X2, each with
at most 4p vertices. Let S′ = S ∩ (B ∪ C). Pick an arbitrary vertex v ∈ C, create a bag
B′ = X ∪ S′ ∪ {v} and connect it to B. Observe that |B′| ≤ 6p + (p + 1) + 1 ≤ 8p (the
last inequality holds because p ≤ 2), as desired. Observe also that the new partial tree
decomposition includes at least one new vertex, and moreover, it is a tree decomposition
of the subgraph induced by the vertices in its bags. The main point that remains to show
is that properties 3 and 4 above holds. Let C ′ be an arbitrary connected component of
C \ B′. Its neighbors are in B′ and in no other bag. C ′ can have neighbors in either X1

or X2 but not both (as otherwise S′ did not separate X1 from X2). Hence it has at most
4p + (p + 1) + 1 ≤ 6p neighbors in B′, as desired.

The part missing from the above algorithm is the question of how to find S as above
(as the optimal tree decomposition is not given). This can be done by exhaustive search.
Partition X in all possible ways into three parts X1, X2 and S ∩X (of sizes at most 4p, 4p
and p+1 respectively). There are at most 36p ways of doing so. For each such partition find
the minimum cardinality set of vertices that separates between X1 and X2. Modifying G
by unifying X1 into one vertex s and X2 into another vertex t, this becomes the minimum
vertex (s, t)-cut problem in the modified graph. This can be solved in polynomial time
using max-flow min-cut techniques. In particular Menger’s theorem applies, equating the
maximum number of vertex disjoint s-t paths with the size of the smallest vertex s-t cut,
because s and t are not adjacent in the modified graph (there are no edges between X1 and
X2).

5 A general polynomial time algorithm

Robertson and Seymour show a general condition under which a graph property has a
polynomial time algorithm. We review here without proofs some of the main ingredients of
their theory.

Define a partial order on graphs such that H ≤ G iff H is a minor of G (isomorphic
graphs are considered identical). A family F of graphs is closed w.r.t. taking minors if
G ∈ F implies H ∈ F for every H < G. There are several ways of expressing a minor closed
family F :

1. Via a graph property. For example, the family of planar graphs, the family of graphs
of tree-width at most 2, etc. Sometimes such a representation is not known.

2. As an explicit list of graphs. This representation might be infinite.

3. By a list O of graphs not in F . Again, this representation might be infinite.

8

4. Note that if H ∈ O then H cannot be a minor of a graph in F . Hence we may
equivalently think of O as a list of forbidden minors – those graphs that never appear
as minors of graphs in F .

5. The list O may be redundent in the sense that it might contain two graphs H1 and H2

with H1 < H2. Removing H2 from O, we can still define F as those graphs that do
not have minors in O. Removing graphs from O in this way, we remain with a list O of
forbidden minors that is minimal – no forbidden minor is contained in another. This
list is referred to as an obstruction set. For example, for planar graphs O = K5,K3,3,
and for graphs of tree-width at most 2, O = K4.

Let us study more carefully the forbidden minor representation. In what sense is it
better than the explicit list of graphs representation? For planar graphs, we see an obvious
advantage – the list of forbidden minors is finite (just two graphs). But is this a coincidence?
This brings us to Wagner’s conjecture.

A partial order over an infinite set is a well-quasi-order (wqo) if it does not contain an
infinite antichain, where an antichain is a set of elements no two of which are comparable.
(A wqo is required to also not have any infinite down-chain, but this condition easily holds
in our context.) Wagner conjectured that the minor-induced partial order for graphs is
a wqo. Robertson and Seymour proved this conjecture. It follows that for every minor
closed family F of graphs, the number of minimal elements (minors) in the corresponding
obstruction set is finite (because they form an antichain), and hence F can be represented
by a finite list of forbidden minors. We note that the theorem of Robertson and Seymour
does not tell us how to find the obstruction set – it just proves its existence. For planar
graphs we know the obstruction set. For many other minor-closed families we do not know
it.

Robertson and Seymour go a step further. They use their theory to design polyno-
mial time algorithms for certain key problems. For example, they show that the following
problem has a polynomial time algorithm for every fixed k:

Disjoint paths: given an undirected graph G and k pairs of vertices (s1, t1), . . . (sk, tk),
are there vertex disjoint paths connecting si and ti for every pair?

To appreciate this algorithm, note that the same problem is NP-hard on directed graphs,
even when k = 2.

Likewise, they design an algorithm that for every fixed H checks whether H is a minor of
G(V,E). The running time of the algorithm is polynomial in V , O(|V |3), where the leading
constant depends only on H (in a way that grows super-exponentially with H). When H
is part of the input, the problem is NP-hard.

This leads to the following general theorem:

Theorem 10 Every property of graphs that is inherited by minors (such as being embed-
dable on a surface of genus g, having a linkless embedding in 3-dimensional space, etc.) can
be decided in polynomial time.

The algorithm implied by the theorem is the list of forbidden minors for the infinite
family of graphs having the graph property, coupled with the algorithm for checking minor
inclusion. As remarked earlier, the theory just shows the existence of a polynomial time

9

algorithm, but does not necessarily produce such an algorithm. Moreover, the algorithm
just answers yes or no, without necessarily supplying a witness in the usual sense (e.g.,
the algorithm may decide that the graph has a linkless embedding without actually finding
one).

10

