
Sorting and selection – handout 1

November 9, 2017

In class (November 2 and 9) we discussed the deterministic sorting algorithm insertion
sort that uses roughly n log n comparisons (which is nearly best possible) and the random-
ized sorting algorithm quicksort, for which we showed a proof that the expected number of
comparisons is roughly 2n lnn.

We presented a simple randomized algorithm for selecting the median (quickselect) that
makes O(n) comparisons in expectation, and a more complicated one that makes roughly 3n

2
comparisons. In passing we encountered some important principles for probabilistic anal-
ysis, namely, linearity of expectation, and concentration bounds for independent random
variables.

We also presented a deterministic median selection algorithm that uses O(n) compar-
isons, and showed that every such algorithm needs to make at least 3n

2 comparisons.
Other principles encountered are divide and conquer algorithms (the use of the splitting

item for quicksort), and Yao’s principle for lower bounding the expected running time of
randomized algorithms, and the principle of deferred decisions for analysing randomized
algorithms.

No class on November 16.

Homework – hand in (either in Hebrew or English) by November 23.

1) We have seen in class a deterministic algorithm for selecting the median based on
partitioning the items into groups of size 5. The number of comparisons it uses is at most
18n. Design a similar algorithm based on partitioning the items into groups of size 7, and
prove an upper bound better than 18n (e.g., 17n or 16n) on the number of comparisons that
it makes. (When analysing the algorithm, you may assume for simplicity that all relevant
numbers are divisible by 7.)

2) We have seen a proof that every deterministic comparison-based median selection
algorithm needs to make at least 3n/2 comparisons (up to low order terms) in the worst
case. Prove for some δ > 0 of your choice (say, δ = 1

10) that for every randomized algorithm
there is some input on which the expected number of comparisons that it makes is at least
(1 + δ)n (up to low order terms). [Hints: use Yao’s principle. Then, rather than fixing
a random permutation in advance, use the principle of deferred decisions: whenever the
algorithm makes a comparison that involves an item that has not been involved in any
previous comparison, at that point the item is given a random value in {1, 2, . . . , n}, among
the values not given to previous items.]


