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Abstract

The purpose of this lecture is to illustrate the versatility of linear
programming, and show one way of rounding fractional solutions of linear
programs into integral solutions. This rounding procedure is referred to
as faithful implementation, and we present an application of it in the
context of fair allocation of indivisible goods. The manuscript Best-of-
Both-Worlds Fair-Share Allocations by Babaioff, Ezra, and Feige [2021]
contains the relevant material for this topic (and more). For convenience
of the students in the reading course, we present here (almost verbatim)
the portions of that manuscript that are most relevant, and expand on
them in some places.

1 Introduction

We consider fair allocation of indivisible items to agents with additive valuations.
An instance I = (v,M,N ) of the fair allocation problem consists of a setM of
m indivisible items, a set N of n agents, and vector v = (v1, v2, . . . , vn) of non-
negative additive valuations, with the valuation of agent i ∈ N for set S ⊆ M
being vi(S) =

∑
j∈S vi(j), where vi(j) denotes the value of agent i for item

j ∈M. We assume that the valuation functions of the agents are known to the
social planer, and that there are no transfers (no money involved). We further
assume that all agents have equal entitlement to the items. An allocation A is
a collection of n disjoint bundles A1, . . . , An (some of which might be empty),
where Ai ⊆M for every i ∈ N . A randomized allocation is a distribution over
deterministic allocations. We wish to design randomized allocations that enjoy
certain fairness properties.

Before discussing some standard fairness properties, we briefly motivate the
best of both worlds (BoBW) framework, that considers both ex-ante and ex-post
properties of randomized allocations. Consider a simple allocation instance I1
with two agents and two equally valued items. Intuitively, any fair allocation in
this case is an allocation that gives each agent one of the items. Giving both
items to one of the agents and no item to the other agent is not considered fair.
Consider now an instance I2 with two agents and just one item. As we want
to allocate the item (to achieve Pareto efficiency) but the item is indivisible, we
give it to one of the agents, and then the other agent gets no item. The fact that
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some agent receives no item is unavoidable, and in this respect the allocation
is fair. Yet, the agent not getting the item might argue that this deterministic
allocation is unfair as she has the same right to the item as the other agent.
Indeed, we can improve the situation at least ex-ante: We can invoke a lottery
to decide at random which of the two agents gets the item. While for any
realization inevitably one agent is left with nothing, the allocation mechanism
is ex-ante fair (each agent has a fair chance to win the lottery). Going back to
instance I1, we could also have a lottery for I1, and have the winner receive
both items. This too would be ex-ante fair, but ex-post (with respect to the final
allocation) it would not be fair (as we did have the option to choose an allocation
that gives every agent one item). Examples such as those above illustrate why
we want our allocation mechanism to concurrently enjoy both ex-ante and ex-
post fairness guarantees, as each guarantee by itself seems not to be sufficiently
fair.

For the purpose of defining ex-ante fairness properties of randomized allo-
cations, we assume that agents are risk neutral. That is, the ex-ante value that
an agent derives from a distribution over bundles is the same as the expected
value of a bundle selected at random from this distribution. Consequently, when
considering a distribution D over allocations (ofM to N ), we also consider the
expectation of this distribution, which can be interpreted as a fractional alloca-
tion. In this fraction allocation, the fraction of item i given to agent j exactly
equals the probability with which agent i receives item j under D. We natu-
rally extend the additive valuation functions of agents to fractional allocations,
by considering the expected valuation, that is, an additive valuation where the
value of a fraction qj of item j to agent i is qj · vi(j).

1.1 Notation and terminology

The proportional share of agent i is PSi = vi(M)
n . We say that an allocation

A = (A1, . . . , An) is proportional if every agent i gets value at least PSi (that

is, vi(Ai) ≥ vi(M)
n = PSi), and a fractional (randomized) allocation is ex-ante

proportional if she gets her proportional share in expectation. We say that an
allocation A is proportional up to one item (Prop1) if for every agent i it holds
that vi(Ai) ≥ PSi −maxj∈M\Ai

[vi(j)].
An (fractional) allocation Pareto dominates another (fractional) allocation

if it is weakly preferred by all agents, and strictly so by at least one agent.
An integral allocation is Pareto optimal (PO) if no integral allocation Pareto
dominates it. An allocation (integral or fractional) is fractionally Pareto optimal
(fPO) if it is Pareto optimal, and moreover, no fractional allocation Pareto
dominates it.

As we shall be dealing with randomized allocations, let us introduce termi-
nology that we shall use in this context. A random allocation is a distribution
D over integral allocations A1, A2, . . .. It induces an expected allocation A∗,
where A∗ij specifies for agent i and item j the probability that agent i receives
item j, when an allocation is chosen at random from the underlying distribution
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D. These probabilities can be interpreted as fractions of the item that an agent
receives ex-ante. Hence the expected allocation A∗ can be viewed as a fractional
allocation, in which items are divisible. Conversely, we say that the distribu-
tion D (namely, the random allocation) implements the fractional allocation A∗

when the expectation of D is A∗. Finally, we note that an additive valuation
function can be extended in a natural way from allocations to fractional alloca-
tions, by considering the expected valuation. That is, the value of a pj fraction
of item j to agent i to is pj · vi(j), and the value of a fractional allocation A∗

to agent i is
∑

j∈MA∗ij · vi(j).
For the issue of computing randomized allocations there are two different

notions of polynomial time computation. In a random polynomial time imple-
mentation, there is a randomized polynomial time algorithm that samples an
allocation from the distribution D. In a polynomial time implementation, there
is a deterministic polynomial time algorithm that lists all allocations in the sup-
port of D (implying in particular that the support contains at most polynomially
many allocations), together with their associated probabilities.

2 Faithful Implementation

For additive valuations, there is a very useful lemma that greatly simplifies the
design of BoBW allocations. We refer to it here as the faithful implementation
lemma. The lemma (sometimes with slight variations) was previously stated and
used in BoBW results [4, 5, 6, 1], and was used even earlier in approximation
algorithms for maximizing welfare [8]. Restricted variants of it were introduced
for scheduling problems [7], and were later used for allocation problems [3].

Lemma 1 Let A∗ be a fractional allocation of m items to n agents with additive
valuations. Then there is a deterministic polynomial time implementation of A∗,
supported only on allocations in which every agent gets value (ex-post) equal her
ex-ante value (in the fractional allocation A∗), up to the value of one item. (For
agent i, the corresponding one item is the item most valuable to i, among those
items that are assigned to i under A∗ in a strictly fractional fashion. Moreover,
the values that the agent gets in any two allocations differ by at most the value
of this single item.)

Remark 2 In [2], the statement of this lemma was augmented to also bound
the size of the support of the distribution of the implementation. This aspect is
omitted here.

2.1 Historical context

In this section we provide some historical context as to the development of
various components of Lemma 1.

Consider a fractional allocation A∗ of m items to n agents with additive
valuations. Denote the fractional allocation to agent i by A∗i , with A∗ij denoting

the fraction of item j given to agent i in A∗. Let Mf
i = {j | 0 < A∗ij < 1}
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denote the set of items for which some positive proper fraction (neither 0 nor 1)

is allocated to i, and let f =
∑

i∈N |M
f
i | denote the number of variables that

are strictly fractional.
We consider generating a distribution over integral allocations from the frac-

tional allocation A∗ (a “rounding procedure”). We distinguish between three
kinds of rounding:

• Deterministic rounding. Produces a single integral allocation.

• Randomized rounding. Produces a distribution over integral allocations.

• Implementation. Randomized rounding, where the expectation of the as-
sociated distribution is exactly A∗.

We consider two notions of polynomial-time algorithms for performing ran-
domized rounding.

• Randomized polynomial time. There is a randomized polynomial time
algorithm that samples an integer allocation from the associated distribu-
tion.

• Deterministic polynomial time. There is a deterministic polynomial time
algorithm that lists all integral allocations in the support of the distri-
bution, together with the associated probability of each allocation. In
particular, this implies that the size of the support is upper bounded by
some polynomial in n and m.

We list several faithfulness properties that may be associated with the round-
ing.

1. Ex-post faithfulness, which satisfy both of the following properties:

(a) Faithfulness from above. In the rounded integral allocation A, every
agent i gets a bundle of value at most her fractional value, up to the
value of one of her fractionally allocated items. That is, vi(Ai) ≤
vi(A

∗
i ) + maxj∈Mf

i
[vi(j)].

(b) Faithfulness from below. In the rounded integral allocation A, every
agent i gets a bundle of value at least her fractional value, up to the
value of one of her fractionally allocated items. That is, vi(Ai) ≥
vi(A

∗
i )−maxj∈Mf

i
[vi(j)].

For an implementation of a fractional allocation, Ex-post faithfulness fol-
lows from the following single property:

• Small spread. For every agent i, the difference in values that i receives
in any two rounded integral allocations is at most maxj∈Mf

i
vi(j).

We refer to a distribution over allocations as a faithful implementation of
A∗ if it is an implementation that satisfies small spread.
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2. Ex-ante faithfulness. In the randomized rounding, every agent i gets in ex-
pectation value at least equal to her fractional value. E[vi(Ai)] ≥ vi(A∗i ).
Observe that by definition, an implementation of the fractional allocation
is ex-ante faithful.

Faithful rounding of fractional solutions has a long history, where in different
times researchers added additional ingredients (from those mentioned above)
that they wished to satisfy. We briefly mention a few past relevant works.

Independent randomized rounding has numerous applications for approxi-
mation algorithms. The rounding allocates each item to at most one agent,
independently of the allocation of other items. That is, each item j is indepen-
dently (from other items) allocated to at most a single agent, with each agent i
getting item j with probability equal to A∗ij . This procedure provides a random-
ized polynomial time implementation for the fractional allocation (and hence is
ex-ante faithful), but it does not provide ex-post faithfulness guarantees.

Deterministic (polynomial time) rounding that is faithful from above was
developed in [7] in the context of scheduling problems. For allocation problems,
faithfulness from below is a more natural requirement, and this version was pre-
sented in [3]. A randomized polynomial time faithful implementation (showing
that the small spread property holds and making explicit use it) was presented
in [8]. A randomized polynomial time faithful implementation for a more gen-
eral setting (referred to as a bi-hierarchy) was presented in [4]. Later work was
concerned with deterministic (rather than randomized) polynomial time faithful
implementations, with one approach described in [5], and a somewhat simpler
approach presented in [1]. Lemma 1 summarizes the above discussion.

2.2 The Birkhoff – von Neumann theorem

Before proving Lemma 1, let us recall the Birkhoff – von Neumann theorem.
We start with some background.

Let G(U, V ;E) be a bipartite graph where U is the set of left-hand side
vertices, V is the set of right-hand side vertices, and E is the set of edges. A
matching M in G is a subset of edges such that each vertex is incident with at
most one edge of M . The matching is perfect if each vertex is incident with
exactly one edge of M . A perfect matching may exist only if |U | = |V |, and we
shall assume that |U | = |V | = n. A perfect matching exists if and only if Hall’s
condition holds: for every set S ⊆ U , the number of neighbors that S has (in
V ) is at least |S|. A perfect matching, if it exists, can be found in polynomial
time. (More generally, a maximum size matching can be found in polynomial
time, and likewise a maximum weight matching, if edges have weights.)

A fractional matching is an assignment of non-negative weights to the edges,
where the sum of weights incident with each vertex is at most 1, and exactly 1
for a perfect fractional matching. The bipartite adjacency matrix A of a perfect
fractional matching (the vertices of U index the rows, the vertices of V index the
columns, and entry Aij equals the weight of edge (i, j)) is doubly stochastic (it
is a nonnegative matrix all whose row sums and all whose column sums equal 1).
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We now state the Birkhoff – von Neumann theorem.

Theorem 3 Every doubly stochastic matrix is a convex combination of permu-
tation matrices. Equivalently, every perfect fractional matching in a bipartite
graph can be decomposed into a weighted sum of perfect (integral) matchings.
Moreover, such a decomposition can be found in polynomial time.

For completeness, let us briefly recall the proof (or a proof) of Theorem 3.
The setting is that of a bipartite graph G with n vertices on each side. The per-
fect fractional matching associates non-negative weights with the edges, where
the sum of weights incident with each vertex is exactly 1. The goal is to find
a collection M = M1,M2, . . . of integral matchings, together with nonnegative
coefficients λ1, λ2, . . ., such that the fractional matching is the same as

∑
i λiMi.

That is, the weight of every edge e in G is equal to the sum of coefficients of
those matchings that contain e.
Proof. Consider the graph G′ that contains only those edges of G of positive
weight. Observe that G′ satisfies Hall’s condition. Namely, for every set S of
vertices on the left hand side, the number of neighbors that S has on the right
side is at least |S|. (Otherwise, in G, at least one neighbor of S would need to
be incident with weight larger than 1.) Hence G′ contains a perfect matching.
Find in G′ a perfect matching M1 (this can be done in polynomial time), and
let ε be the smallest weight of an edge of M in G. Put M1 in M with weight
λ1 = ε, and reduce in G the weight of every edge of M1 by ε. The number
of edges of positive weight in G decreases by at least 1, and in the new G,
every vertex is incident with weight exactly 1− ε. The above argument can be
repeated, extracting the matchings of M and their associated coefficients one
by one. After at most n2 repetitions, G has no more positive edges, and the
procedure ends. �

Observe that we may view a perfect fractional matching in a bipartite graph
as a fractional allocation, where the left hand side vertices are the agents and
the right hand side vertices are the items. Hence Theorem 3 provides a polyno-
mial implementation of this fractional allocation by integral allocations. In this
respect, Theorem 3 is a special case of Lemma 1.

2.3 Proof of Lemma 1

We now prove Lemma 1 (based on a proof given in [1]).
Proof. We reduce the setting of Lemma 1 to that of the Birkhoff – von Neumann
theorem, showing how we can take the fractional allocation A∗ and generate
from it a distribution over matchings of “clones” of each agent, that can be use
to generate a distribution over allocations that is a faithful implementation of
A∗. For every agent i we do the following. Let fi =

∑
j A
∗
ij denote the total

sum of fractions of items (not their values) received by i under A∗. We replace

i by dfie clones c1i , . . . , c
dfie
i as follows. Sort all items in order of decreasing vi

value. This gives a priority order for the following sequential “eating” process.
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The clones of i “eat” the fractional allocation of i, where each clone in its turn
consumes one unit of the fractional allocation (starting consuming only after
the prior clone completed consuming), where the unit is chosen according to
the priority order. The last clone might have less than a single unit to consume.

Having done the above for all agents, we now have a fractional matching
between clones and items. This is not a perfect fractional matching (the last
clone of an agent may consume less than one item), but the Birkhoff – von
Neumann theorem still applies (e.g., one can add dummy clones and items as
needed so as to complete the instance to a perfect fractional matching on a larger
bipartite graph). Hence we can decompose the fractional matching into integral
matchings. In every integral matching, every agent gets the items received by
her clones.

Ex-post faithfulness follows from the fact that for every agent i, in every
integral allocation, each of i’s clones (except for perhaps the last one) receives
one item. Let Si,max (Si,min, respectively) be the set of items obtained by
taking for each of i’s clones the highest priority (lowest priority, respectively)
item that the clone may possibly receive. Then every allocation that agent i may
receive has value in the range [vi(Si,min), vi(Si,max)]. Observe that vi(Si,min) ≥
vi(Si,max) − maxj∈Mf

i
vi(j). This last statement can be verified by removing

the most valuable item (that of clone 1) from Si,max, and then using the fact
that for every j ≤ 1, the item of clone j in Si,min is at least as valuable as the
item of clone j + 1 in Si,max. This established the small spread property, which
implies ex-post faithfulness.

The above provides a deterministic polynomial time implementation of A∗

as a distribution D over polynomially many allocations A1, A2, . . . A`, where
every allocation in the support is ex-post faithful. �

2.4 Applications to BoBW results and uses of linear pro-
gramming

Using Lemma 1, one trivially gets the following BoBW result,

Proposition 4 For allocation of indivisible goods to agents with additive valu-
ations, there is a deterministic polynomial time implementation of a fractional
allocation that is ex-ante proportional, and the implementation is supported on
allocations that are (ex-post) Prop1.

Proof. Consider the uniform fractional allocation, that assigns a fraction of
1
n of every item to every agent. It is ex-ante proportional (and also envy-
free, a fairness notion not discussed here), as all agents get the same fractional
allocation. Applying Lemma 1, it is implemented in deterministic polynomial
time by allocations that are Prop1. �

Lemma 1 can be combined with linear programming to give even stronger
results. The idea is to use linear programming to select a fractional allocation
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which is more favorable than the uniform fractional allocation, and provide a
faithful implementation of that allocation. We provide a few examples of how
this is done.

In all cases, the input to the linear program (LP) is the additive valuation
functions of the agents. The variables of the LP are xij specifying the fraction
of item j allocated to agent i. An additional variable z denotes the objective
function that we seek to optimize.

We assume that each valuation function vi is scaled so that vi(M) = n, and
so the proportional share of each agent is 1. Recall that we also assume that
all items are goods, namely, vi(j) ≥ 0 for every agent i and item j. (Items that
are not goods are referred to as chores.) In this case, we may desire to give
every agent more than her proportional share ex-ante, if possible. This desire
can be interpreted in several different ways. One is in a min-max sense, making
the least happy agent as happy as possible. This gives rise to the following LP,
referred to as LP1.

maximize z subject to:

1. xij ≥ 0 for every agent i and item j. (Agents cannot receive negative
fractions of items.)

2.
∑

i xij ≤ 1. (The total fraction of item j that is allocated does not ex-
ceed 1.)

3.
∑

j xij · vi(j) ≥ z for every agent i. (Every agent receives a fractional
bundle of total value at least z.)

Observe that all constraints above are linear in their variables, and so is
the objective function. Hence, this is a linear program. As linear programs
can be solved in polynomial time, a fractional allocation maximizing z can be
found in polynomial time. The value of z is at least 1 (as the uniform fractional
allocation is a feasible solution to the LP), but can potentially be much higher
(up to n, if agents desire disjoint sets of items), and hence leads to a BoBW
result that is stronger than that of Proposition 4.

Another interpretation of the desire to improve over the proportional share
is in an aggregate sense, maximizing welfare (the sum of values received by all
agents), conditioned on each agent receiving at least her proportional share.
This gives rise to the following LP, referred to as LP2.

maximize z subject to:

1. xij ≥ 0 for every agent i and item j. (Agents cannot receive negative
fractions of items.)

2.
∑

i xij ≤ 1. (The total fraction of item j that are allocated do not ex-
ceed 1.)

3.
∑

j xij · vi(j) ≥ 1 for every agent i. (Every agent receives a fractional
bundle of total value at least her proportional share.)
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4.
∑

i

∑
j xij ≥ z. (The total welfare is at least z.)

Observe that the fractional allocation found by LP2 is necessarily fraction-
ally Pareto Optimal. As such, for every implementation of it, every integral
allocation in the support of the implementation is also fractional Pareto Opti-
mal. This gives the following strengthening of Proposition 4.

Proposition 5 For allocation of indivisible goods to agents with additive valu-
ations, there is a deterministic polynomial time implementation of a fractional
allocation that is ex-ante proportional and fPO, and the implementation is sup-
ported on allocations that are (ex-post) Prop1 and fPO.

Remark 6 An alternative proof (taken from [5]) for Proposition 5 achieves ad-
ditional desirable properties (such as ex-ante envy-freeness) beyond those spec-
ified in Proposition 5. The Nash Social Welfare (NSW) of allocation A =

(A1, . . . , An) is
(∏

i∈N vi(Ai)
) 1

n . In case of fractional allocations, we use the
notation fNSW. Selecting a fractional allocation that maximizes fNSW is not
a solution to a linear program (the fNSW objective is not linear), but such an
allocation can be found in polynomial time nevertheless (details omitted). Using
Lemma 1 one can implement a fractional allocation that maximizes fNSW. Such
a fractional allocation has (ex-ante) desirable properties that go beyond giving
every agent at least her proportional share and being fPO.

3 Homework

The combination of linear programming and (parts of) Lemma 1 has previously
been used in order to obtain various approximation algorithms for NP-hard
optimization problems. The homework presents two such cases. In both cases,
you may use without proof Lemma 1 and the fact that LPs can be solved in
polynomial time.

3.1 Scheduling so as to minimize makespan

The input is a set of n machines, a set of m jobs, a threshold t, and nonnegative
processing times pij for every machine i and job j, specifying how long it would
take to process job j on machine i. The goal is to allocate each job to a single
machine (though the same machine can receive many jobs) so that no machine
receives jobs with total processing time (on that machine) larger than t. We
refer to such an allocation as a schedule of makespan at most t.

Give a polynomial time algorithm that given such an input instance either
proves that no schedule with makespan at most t exists, or finds a schedule of
makespan at most 2t.

Remark 7 The factor 2 approximation for makespan was first proved in [7]. It
is still not known whether there is a polynomial time algorithm with an approx-
imation ratio better than 2 for this problem.
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3.2 Maximizing welfare for budget additive agents

For the problem of allocating indivisible items, the valuation function vi of an
agent i is said to be budget additive if vi(e) ≥ 0 for every item e, and if there is
some budget Bi such that for every set S of items, vi(S) = min[Bi,

∑
e∈S vi(e)].

Given the budget additive valuation functions v1, . . . , vn of n agents, the goal
is to find an allocation A = (A1, . . . , An) that maximizes welfare, namely, max-
imizes

∑
i vi(Ai). The maximum welfare problem is easily solvable for additive

valuations (give each item to the agent that values it most), but is NP-hard for
budget additive valuations.

Design a polynomial time algorithm for allocating indivisible goods to agents
with budget-additive valuations, that outputs an allocation whose welfare is at
least a 3

4 fraction of the maximum welfare.
An additional lemma that you may use is the following.

Lemma 8 Let X be a nonnegative random variable with expectation µ, and
supported only on values in some range [a, b] (with 0 ≤ a ≤ µ ≤ b). Let B
satisfy B ≥ max[µ, b − a]. Consider the random variable Y whose value is
Y = min[X,B]. (That is, one draws a random value for X, and if this value
is larger than B then it is replaced by B.) Then the expectation of Y satisfies
E[Y ] ≥ 3

4µ.

(A hint for those attempting to prove Lemma 8: fixing µ, a, b, B, first show
that the worst case is when the distribution of X is supported only on a and b.)

Remark 9 The factor 3
4 approximation was proved in [8]. It is not known

whether there is a polynomial time algorithm with an approximation ratio better
than 3

4 for this problem.

References

[1] Haris Aziz. Simultaneously achieving ex-ante and ex-post fairness. In In-
ternational Conference on Web and Internet Economics, pages 341–355.
Springer, 2020.

[2] Moshe Babaioff, Tomer Ezra, and Uriel Feige. Best-of-both-worlds fair-share
allocations. CoRR, abs/2102.04909, 2021.
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