Graph coloring (homework)

The chromatic number of a graph is the minimum number of colors that suffice for a vertex coloring (in which endpoints of an edge receive different colors). This problem is NP-hard. However, this does not preclude the existence of interesting exponential time algorithms, and some of these algorithms are discussed in the lecture.

Homework assignment.

Given a graph $G(V, E)$, a maximal independent set is an independent set $S \subseteq V$ that cannot be extended by additional vertices (every vertex $v \notin S$ has some neighbor in S). Throughout we use the convention that n denotes $|V|$, and that O^* notation suppresses multiplicative terms that are polynomial in n. For example, n^32^n is expressed as $O^*(2^n)$.

1. Give a polynomial time algorithm that given as input a graph G, outputs a maximal independent set.

2. Let $i(G)$ denote the number of maximal independent sets in the graph G. Give an algorithm that outputs all maximal independent sets in G, whose running time is proportional to the size of the output, namely, $O^*(i(G))$.

3. Prove that for every graph, $i(G) \leq 3^{n/2}$. (Better bounds are known, but not required in this question.)

4. For every p, show a graph on $n = 3p$ vertices (need not be connected) for which $i(G) = 3^p$, and a connected graph on $n = 3p + 1$ vertices for which $i(G) > 3^p$.

5. It is known that $i(G) \leq 3^{n/3}$ [J. W. Moon, L. Moser: On cliques in graphs. Israel Journal of Mathematics 3: 23-28 (1965)], and in this question you may use this fact without proof. Give a 3-coloring algorithm that runs in time $O^*(3^{n/3}) \leq O^*(1.45^n)$.