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1 Introduction

Given an order n matrix A with entries aij , its permanent is

per(A) =
∑
σ

n∏
i=1

aiσ(i)

where σ ranges over all permutations on n elements. Its determinant is

det(A) =
∑
σ

(−1)σ
n∏
i=1

aiσ(i)

where (−1)σ is +1 for even permutations and −1 for odd permutations. A permutation is
even if it can be obtained from the identity permutation using an even number of transpo-
sitions (where a transposition is a swap of two elements), and odd otherwise.

Letting A−ij denote the matrix obtained by removing the ith row of A and the jth
column of A, we have the Laplace expansion (along row i) of the permanent/determinant
of a matrix A of order n:

per(A) =
n∑
j=1

aij · per(A−ij) and det(A) =
n∑
j=1

(−1)i+jaij · det(A−ij)

The determinant can be computed in polynomial time by Gaussian elimination, and
in time nω by fast matrix multiplication. On the other hand, there is no polynomial time
algorithm known for computing the permanent. In fact, Valiant showed that the permanent
is complete for the complexity class #P , which makes computing it as difficult as computing
the number of solutions of NP-complete problems (such as SAT, Valiant’s reduction was
from Hamiltonicity).

For 0/1 matrices, the matrix A can be thought of as the adjacency matrix of a bipartite
graph (we refer to it as a bipartite adjacency matrix – technically, A is an off-diagonal
block of the usual adjacency matrix), and then the permanent counts the number of perfect
matchings. Computing the permanent of integer matrices can be reduced in polynomial
time to that of computing the permanent of 0/1 matrices.
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The permanent and the determinant can both be viewed as multilinear polynomials,
where the entries aij of the respective matrices represent variables. Hence computing the
permanent or determinant can be viewed as evaluating a multinomial at a point given by the
respective matrix (the value of every variable aij of the multinomial is equal to the entry of A
in location ij). Valiant showed how the evaluation of any explicit integer multinomial (one
that may have exponentially many monomials, but there is a polynomial time algorithm
that given a monomial computes its integer coefficient) can be reduced in polynomial time
to computing the permanent of some polynomial size matrix.

2 Computing the permanent

The natural algorithm takes time roughly n!. Ryser showed a quicker way to compute the
permanent, using the exclusion-inclusion formula.

For a nonempty set S of columns, let Ri(S) denote the sum of items in columns S of
row i. Then:

per(A) =
∑
S

(−1)n−|S|
n∏
i=1

Ri(S)

Computing the permanent using the above formula takes time 2n · nO(1).
To see that Ryser’s formula is correct, consider the representation of the permanent

as a multinomial, and observe that Ryser’s formula gives the correct coefficient for every
monomial. For monomials that correspond to permutations, this coefficient is 1 (they
contribute to Ryser’s formula only when S is the set of all columns). For monomials that
involve variables from c < n columns, the number of times that they appear in Ryser’s
formula is

n−c∑
j=0

(−1)n−c+j
(
n− c
j

)
= 0

(Equality with 0 can be seen by the equivalence with fact that with n − c coin tosses,
the probability that an even number of them come up heads is equal to the probability that
an odd number of them come up heads. It all depends on the last coin toss.)

More details can be found in [2] (Chapter 11).

3 Relations with matchings

To see whether a bipartite graph has an even or odd number of perfect matching, compute
the permanent modulo 2 of its bipartite adjacency matrix. This is equivalent to computing
the determinant modulo 2, and hence can be done in time O(nω).

To see whether the number of perfect matchings is divisible by 3, compute the permanent
modulo 3. However, this problem is difficult (NP-hard under randomized reductions).

To see whether a bipartite graph has a perfect matching, Lovasz suggests the following
randomized algorithm that works in time roughly nω. Observe that there is a perfect
matching iff the determinant, with formal variables replacing the 1 entries in the matrix,
is not the 0-multinomial. Let p > n2 be prime, replace the 1 entries by random entries in
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{0, . . . p− 1} and compute the determinant modulo p. If there is no perfect matching, the
answer is 0. If there is a perfect matching, the answer is nonzero with probability at least
(p− n2)/p. This last fact follows from the Schwartz-Zippel lemma.

Lemma 1 Let p be prime, and assume that all computations are performed in Zp (namely,
all coefficients are in {0, . . . p−1} and all computations are done modulo p). Let P (x1, . . . , xk)
be a multilinear polynomial over k variables that is not identically 0. Let x be a random as-
signment to all variables, where the the value of each variable is chosen independently at ran-
dom from {0, . . . p−1}. Then the probability that P (x) 6= 0 is at least (1−1/p)k ≥ (p−k)/p.

Proof: The proof is by induction on k. For the base case k = 1, P (x) is a linear
polynomial ax + b. If a = 0 then b 6= 0, and the polynomial is never 0. If a 6= 0, then
P (x) = 0 only for x = −b/a modulo p, and there is a unique such x in {0, . . . p− 1}.

For the inductive step, assume the lemma for k and prove for k+1. WriteA(x1, . . . xk+1) =
xk+1A1(x1, . . . xk) + A2(x1, . . . xk). Pick random values for x1, . . . , xk first. By induc-
tion, with probability at least (1 − p)k, A1(x1, . . . xk) 6= 0. If so, then when picking
xk+1 at random, with probability (p − 1)/p, xk+1 6= A2(x1, . . . xk)/A1(x1, . . . xk). Hence
P (x1, . . . , xk+1) 6= 0 with probability at least (1− 1/p)k+1. 2

The approach described above can be extended to testing whether a non-bipartite graph
has a perfect matching, and also to actually find a perfect matching, essentially in time nω.
See [1] for more information.

4 Counting spanning trees

Recall that counting matchings is NP-hard. Here we sketch the famous matrix-tree theorem
of Kirchoff, that shows how to efficiently count spanning trees.

Recall that the Laplacian LG of a graph G is the matrix DG − AG, where DG is a
diagonal matrix with the degrees of the vertices along its diagonal, and AG is the adjacency
matrix of G.

Theorem 2 For an n vertex graph G, let LG denote its Laplacian matrix, and let L̂ denote
an order n − 1 matrix derived from LG by choosing an arbitrary index 1 ≤ i ≤ n, and
removing row i and column i from LG. Then the number of spanning trees in G is exactly
det(L̂).

There are several proofs for Theorem 2. The one we provide is similar to the one in [2]
(Chapter 34).

We shall use the Binet-Cauchy expansion of the determinant.

Lemma 3 For r by c matrices A and B with r < c the following holds:

det(ABT ) =
∑
S

det(AS)det(BS)

where AS is the block S of columns from A, with |S| = r.
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We defer the proof of Lemma 3 to later and proceed to describe the algorithm for
counting spanning trees.

Given a graph G with n vertices and m edges, direct its edges arbitrarily. Consider the
n by m incidence matrix M of the directed graph with vertices as rows, edges as columns,
and +1 and −1 entries for incoming and outgoing edges.

Restrict attention to a submatrix of M induced by a set S of n − 1 columns (edges),
and denote this submatrix by MS . As there are n vertices, either the set S is a spanning
tree of G, or the subgraph of G whose edges are S has at least two connected components.
In the latter case, the rank of MS is at most n− 2, because for each connected component,
summing up its rows gives the 0 vector (as each edge contributes both +1 and −1), and
hence these rows induce a linear dependency. If S forms a spanning tree, then the rank
of MS is n − 1, because in this case there is no subset of k < n rows that forms a linear
dependency (in every such subset there is an edge for which only one of the endpoints
remains, and the corresponding entry cannot be cancelled out by other rows in the subset).
Remove an arbitrary row from MS to get a matrix B. If S is a spanning tree the rank
of B is n − 1, and otherwise the rank is smaller than n − 1. Hence B has full rank and
nonzero determinant iff the edges of S form a spanning tree. Being a matrix with at most
one +1 and at most one −1 entry in each column, the matrix is totally unimodular, and
hence its determinant is either 0 or ±1. It follows that det(BBT ) = det(B)det(BT ) = 1 if
the columns form a spanning tree (because then B has full rank and its determinant cannot
be 0), and 0 otherwise.

Hence removing one row from from M (we denote the resulting matrix by M̂) and having
S range over all blocks of n− 1 columns, we have proved that the number of spanning trees
is exactly

∑
B det(BB

T ). But by Lemma 3 (with r = n− 1 and c = m) this last expression
is exactly equal to det(M̂M̂T ), which can be computed in polynomial time.

Observe that MMT is exactly the Laplacian L(G) of the graph (degrees along the
diagonal, −1 in entry Li,j if there is an edge (i, j)). Observe further than M̂M̂T can be
obtained from the Laplacian by removing one row and one column (both with the same
index). This proves Theorem 2.

We now prove the Binet-Cauchy formula (Lemma 3).
Proof: Recall that we assumed that r < c. It is instructive to note that for c = r the

Binet-Cauchy formula is the known equality det(ABT ) = det(A)det(B), and for r > c we
have that the rank of ABT is at most c < r, and hence det(ABT ) = 0. (The right hand
side of the Binet-Cauchy formula is undefined in this case.)

Returning to r < c, let ∆ be an order c diagonal matrix with formal variables xi along
the diagonal. We show that

det(A∆BT ) =
∑
S

det(AS)det(BS)
∏
i∈S

xi

are identical as formal polynomials, and the Binet-Cauchy formula follows by setting xi = 1
for all i.

Observe that A∆BT is an order r matrix with entries that are linear forms in the xi
variables. Hence det(A∆BT ) is a homogeneous polynomial of degree r. For monomials with
fewer than r distinct variables, their coefficient must be 0. This can be seen by substituting
arbitrary values in these variables and 0 in the rest. The rank of A∆BT in this case
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becomes smaller than r, and hence the polynomial restricted only to these variables is the
0 polynomial. The coefficients of other monomials (say, defined over a set S of r variables)
can be determined by substituting 1 for the S variables and 0 for other variables. Then
A∆BT = AS(BS)T and the coefficient of

∏
i∈S xi is indeed det(AS)det(BS). 2

5 Homework

1. How does the statement (and proof) of Lemma 1 change if the multinomial is not
multilinear, but instead, has total degree at most d? (That is, if in every monomial,
the sum of degrees of the variables is at most d.)

2. Cayley’s formula says that the number of spanning trees of the complete graph on n
vertices is nn−2. Cayley’s formula has many proofs. Use the matrix-tree theorem to
prove Cayley’s formula. (For the proof, it may be useful to recall that the determinant
of a matrix equals the product of its eigenvalues, and that adding the identity matrix
to a matrix increases every eigenvalue by 1.)
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