
Smoothed analysis for the subset sum and knapsack problems

Uriel Feige

May 7, 2025

1 Introduction

We shall consider two problems that involve sums of integers. (More generally, they may
involve non-integer entries. The integrality assumption is made here only so as to simplify
the presentation.)

In the subset sum problem, there is a set U of n items, where every item i has positive
integer weight wi. In addition there is a target integer weight W . The goal is to select a
set S of items satisfying

∑
i∈S wi = W (or to determine that no such set S exists).

In the knapsack problem, there is a set U of n items, where every item i has positive
integer weight wi and positive integer profit pi. In addition there is a knapsack of integer
capacity W . The goal is to select a set S of items maximizing the profit

∑
i∈S pi, subject

to not violating the capacity constraint
∑

i∈S wi ≤ W .
Both problems are NP-hard, but have pseudo-polynomial time algorithms. Namely, they

can be solved (using dynamic programming) in time polynomial in (n,W) (but NP-hard
for (n, logW)). For example, for the knapsack problem, one can inductively fill up an n by
W table T , where entry Ti,w specifies the most profitable solution of weight w, among those
that include item i but no items from [i+ 1, . . . , n]. Initialize T0,0 = 0 and T0,w = −∞ for
all w ̸= 0. To fill up the table, use the relation Ti,w = maxj<i[Tj, w−wi + pi].

We shall present algorithms that solve (with high probability) random and semi-random
instances of these problems.

2 Average case analysis and smoothed analysis

NP-hard problems are difficult to solve on worst case instances, but may be easy on typical
or average case instances. In average case analysis one considers some natural distribution
over input instances, and tries to determine whether there are polynomial time algorithms
(and if so, which ones) that with high probability (over choice of input instance) manage
to solve random instances from this distribution. For the subset sum problem, we shall
consider the following distribution, parametrized by integers n and N .

Random subset sum. Each weight wi is selected independently uniformly at random
in the range [N + 1, 2N]. A set R of items is chosen uniformly at random (R is referred to
as the planted solution), where each item is in R independently with probability 1

2 . Then
W is set to be equal to

∑
i∈R wi. The input to the problem is (w1, . . . , wn,W). The desired

solution is any set S (not necessarily R) for which
∑

i∈S wi = W .

1

As noted earlier, subset sum can be solved in time polynomial in n andW . AsW ≤ n·N ,
the above distribution is interesting only when N is super-polynomial in n. We shall show
that when N is sufficiently large compared to n (exponential in n2), most instances from
the above distribution can be solved in polynomial time.

For some wide range of intermediate values ofN , no polynomial time algorithm is known,
and also, there is no strong evidence (such as NP-hardness) that no such algorithm exists.
It is conjectured that there is a range of values of N (e.g., N = 2n) for which the problem
is indeed hard.

Smoothed analysis is a framework for illustrating that certain classes of NP-hard prob-
lems with numerical data parameters are likely not to be difficult in practice. The framework
applies to situations in which there is some randomness in the process of generating the
input data. Input instances are modelled as generated in two phases. In the first phase,
an adversary generates an arbitrary input instance. In the second stage, the numerical
parameters are perturbed at random. The goal is to design algorithms that with high prob-
ability solve the perturbed instances optimally, where the probability is taken only over the
perturbation.

When the perturbations are large compared to the original values in the adversarial input
instance, the smoothed instance resembles an average case instance. When the perturba-
tions are very small (with no perturbation at all being the extreme case), the smoothed
instance resembles a worst case instance. Hence the interesting range of parameters for
smoothed analysis is when the perturbations are relatively small, but not too small.

Another possible application for the smoothed analysis framework is as follows. Given
an arbitrary instance, first smooth it (here it is assumed that the smoothing operation can
be done in random polynomial time), and then solve the smoothed instance. If the optimal
solution (or its value) enjoys some Lipschitz continuity with respect to the smoothing oper-
ation, and the smoothing operation is “small”, then the solution to the smoothed instance
may provide a good approximation to the solution for the original instance.

We shall consider the following smoothed version of the knapsack problem.
Smoothed knapsack. The adversary first selects an arbitrary instance for the knap-

sack problem. Thereafter, weights of items are perturbed at random. For simplicity and
concreteness, we consider the following perturbation, parametrized by δ > 0. For each
weight wi, we select uniformly at random ri in the range [0, δW], and the perturbed weight
becomes ŵi = wi + ri. (The perturbation is not symmetric around 0, so that we never end
up with an item of negative weight.) The profits of items are not perturbed.

The smaller the parameter δ, the more the smoothed input instance resembles the
adversarial input instance. The running time of the algorithm that we shall present for
smoothed knapsack runs in time polynomial in n and 1

δ , and hence remains polynomial as

long at δ ≥ Ω
(

1
nO(1)

)
.

As subset sum seems like a simpler problem than knapsack (it has fewer parameters),
and average case analysis seems simpler than smoothed analysis (there is no adversary), it
is natural to first present an algorithm for random subset sum, and only afterwards present
an algorithm for smoothed knapsack. Nevertheless, we shall consider smoothed knapsack
before we consider random subset sum, as the algorithm for smoothed knapsack is in a sense
more elementary.

2

3 The smoothed knapsack problem and the isolating lemma

The book [8] contains three chapters on smoothed analysis. This section is based on Chapter
15 (a part in that chapter that is based on [2]), but is simplified so as to mostly convey the
main ideas, at the cost of presenting a less general result.

Let us first recall that there are fully polynomial time approximation schemes (FPTAS)
for knapsack. The following lemma is based on one of them.

Lemma 1 Let W ∗ ≤ W denote the weight of an optimal solution to the knapsack problem
and let P ∗ denote its profit. Suppose that for a given input instance it is known that for
some explicit ϵ > 0, no solution of weight in the range (W ∗,W ∗ + ϵW] has profit at least
P ∗. Then the input instance can be solved in time polynomial in (n, 1ϵ).

Proof: We shall run two algorithms, at least one of which will produce the optimal
solution.

The first algorithm assumes that W ∗ > (1 − ϵ
2)W . Modify the weights as follows. Let

k = ϵW
2n . Round down each weight wi to the nearest multiple of k (consequently, also W

can be rounded down to the nearest multiple of k), giving weight w′
i (and W ′). Observe

that with the new weights, the original optimal solution remains both feasible and optimal.
Now the dynamic programming table has size n · ⌊Wk ⌋ = O(n

2

ϵ), and the problem instance
can be solved in time polynomial in (n, 1ϵ).

The second algorithm assumes that W ∗ ≤ (1 − ϵ
2)W . In this case each weight wi is

rounded up (rather than down) to the nearest multiple of k (again, W can be rounded
down to the nearest multiple of k), and the analysis proceeds as for the first algorithm. 2

We now consider smoothed instances of the knapsack problem.
Assume some consistent tie breaking rule among solutions of equal profit. We assume

that this rule breaks ties in favour of lower weight solutions. Let G denote the optimal
solution for the smoothed instance, let P ∗ denote its profit, and let W ∗ denote its weight.
Note that W ∗ ≤ W . The following lemma is a variation on the isolating lemma of [7].

Lemma 2 With probability at least 1 − ϵn
δ , there is no solution of weight in the range

(W ∗,W ∗ + ϵW] that has profit at least P ∗.

The lemma may sound surprising, as the number of solutions of weight in a range of
width ϵW may well be exponential in n.

Proof: We denote the perturbed weights by ŵi. If
∑

i ŵi ≤ W ∗, then there is no set
of weight above W ∗, and there is nothing to prove. Hence we assume that

∑
i ŵi > W ∗.

Consequently, G misses at least one item.
For 1 ≤ i ≤ n, let Ui denote the collection of all sets of items that do not include item i.

Let Pi denote the maximum profit of a feasible solution (of weight at most W) within Ui,
and let Gi denote the corresponding solution. Observe that for every i ̸∈ G it holds that
G = Gi. Let Wi denote the minimum weight of a feasible solution within Ui among those
that have profit at least Pi − pi, and let Bi denote the corresponding solution. (It might
happen that Bi = Gi.) Note that Wi + ŵi ≥ W ∗, as otherwise G would not be the optimal
solution (recall the tie breaking rule favouring solutions of lower weight).

Let B denote the collection of sets of weight in the range (W ∗,W ∗+ϵW] that have profit
at least P ∗. We need to show that B is empty. Suppose otherwise. Observe that for every

3

set B ∈ B there must be an item i in B but not in G. For every i ̸∈ G, let Bi ⊂ B denote the
collection of sets in B that contain i. For B to be non-empty, it must be that at least one of
the Bi is non-empty. For Bi to be non-empty, it must be that W ∗ < Wi + ŵi ≤ W ∗ + ϵW .
We refer to this event as Ei. Fixing all weights and perturbations except for ri, we see that
Pr[Ei] ≤ ϵW

δW . The lemma follows from a union bound over all i ̸∈ G (and noting that there
are at most n such values of i). 2

Corollary 3 In the smoothed model for knapsack described above, the optimal solution can
be found with high probability in time polynomial in n and in 1

δ .

Proof: Choose ϵ to be much smaller than δ
n . By Lemma 2, there is high probability

that there is no solution of weight in the range (W ∗,W ∗ + ϵW] that has profit at least P ∗.
If this event holds, Lemma 1 provides an algorithm with the desired time complexity. 2

4 The random subset sum problem and lattice basis reduc-
tion

The algorithm that we present for the random subset sum problem is taken from [4], and
is based on an algorithm for lattice basis reduction [5]. We shall start with some basic
background on lattices (a minimum that suffices in order to understand the results of this
section). The interested reader is advised to consult other sources (such as [6], on which
the following presentation is based) for more information on lattices and the associated
algorithms.

Let a1, . . . , an ∈ Qn be a set of n linearly independent vectors of dimension n, with
rational entries. Let A = (a1, . . . , an) be the associated n by n matrix with the vectors as
its columns. The lattice generated by A, denoted by L(A), is the set of all vectors that are
integer linear combinations of columns of A. Namely, L(A) = {

∑n
i=1 λiai | λi ∈ Z}. The

vectors a1, . . . , an form a basis for L(A). The same lattice L may have several different bases
(matrices A as above that generate it), but all basis matrices have the same determinant (up
to sign). Hence we define the determinant of the lattice, det(L) as |det(A)|, where A is any
basis matrix for the lattice L. Geometrically, |det(A)| is the volume of the parallelohedra
spanned by the basis vectors. (E.g., for n = 2, it is the area of the parallelogram whose
vertices are {(0, 0), a1, a2, a1 + a2}.) Denoting the ℓ2 norm of a vector a by |a|, we have
Hadamard’s inequality |det(A)| ≤ Πn

i=1|ai|.
Given a lattice L(A), the basis reduction problem is to find a basis b1, . . . , bn of L(A)

with Πn
i=1|bi| as small as possible. This problem is NP-hard.

Given a lattice L(A), the shortest vector problem (SVP) is to find a nonzero vector
b ∈ L(A) with |b| as small as possible. This problem is NP-hard under randomized reduc-
tions [1]. The length of the shortest non-zero lattice vector in a lattice L is denoted by
λ(L). It is known that λ(L) ≤ O(

√
n) · (det(L))1/n. There is no polynomial time algorithm

known for finding a non-zero lattice vector of length nO(1) · (det(L))1/n.
Lenstra, Lenstra and Lovasz [5] defined the concept of a reduced basis of a lattice.

The exact definition involves bounds on the relations between the basis vectors and their
Gram-Schmidt orthoganalization, and on the relations between norms of consecutive basis
vectors, and will not be presented here. They proved additional results that imply the
following theorem (and much more).

4

Theorem 4 There is a polynomial time algorithm that given a basis matrix A for a lat-
tice L, finds a reduced basis B = (b1, . . . , bn). Moreover, for every reduced basis, |b1| ≤
2(n−1)/2λ(L) and Πn

i=1|bi| ≤ 2n
2/4 · det(L).

Later Schnorr [9] showed that for every fixed ϵ > 0 one can find a basis with |b1| <
(1 + ϵ)nλ(L) and Πn

i=1|bi| ≤ (1 + ϵ)n · det(L), in time polynomial in n (the degree of the
polynomial grows as ϵ decreases).

We now return to the random subset sum problem, and describe the algorithm of La-
garias and Odlyzko [4] for it.

Recall that the input to the problem is (w1, . . . , wn,W), that we wish to find a set
S satisfying

∑
i∈S wi = W , and that such a set is guaranteed to exist (the set R in the

procedure of generating random subset sum instances). We assume that W ̸= 0 as otherwise
the empty set is the unique solution.

Let k be the smallest integer satisfying k > 2n/2
√
n. Set up a lattice L of dimension

n+ 1 whose basis vectors are:
a1 = (1, 0, . . . , 0, k · w1)
a2 = (0, 1, . . . , 0, k · w2)
. . .
an = (0, 0, . . . , 1, k · wn)
an+1 = (0, 0, . . . , 0, k ·W)
Observe that all vectors in this lattice have integer entries, and entries divisible by k in

coordinate n+ 1.
The set R induces a vector vR of norm

√
|R| ≤

√
n in this lattice. This vector vR is

obtained by adding those vectors ai for i ∈ R and subtracting an+1. Hence, vR(i) = 1 if
i ∈ R, vR(i) = 0 if i ̸∈ R, and vR(n+ 1) = 0.

When N is sufficiently large, it turns out that with high probability over the choice of
the random subset sum instance, the planted R is the unique solution to the subset sum
problem, and moreover, vR is the shortest non-zero vector in the lattice L. In fact, all other
vectors in the lattice either have norm exponentially larger than that of vR, or are multiples
of vR. Consequently, using the algorithm of Theorem 4 (which we shall refer to as the LLL
algorithm) to find in L a short non-zero vector, the returned vector x will be a multiple of
vR, and then R can easily be recovered from x.

We shall indeed use the above lattice and the LLL algorithm in order to find a vector
x from which we recover R. However, our procedure for recovering R from x will be more
complicated than necessary. In particular, it might use several (at most n) iterations of the
LLL algorithm, each time on instances with fewer items of non-zero weight. The advantage
of our procedure is that its analysis is somewhat simpler. We now present our procedure
for recovering R from x.

Let x denote the solution returned by the LLL algorithm in the current iteration, and
let S be the set of those coordinates of x whose value in x is non-zero.

1. If n+ 1 ∈ S, the algorithm fails.

2. If
∑

i∈S wi = W , return S and end.

3. If
∑

i∈S wi > W , the algorithm fails.

5

4. If
∑

i∈S wi < W , include S as part of the solution, and set up a new subset sum
instance to find the remaining part of the solution. In the new instance the items of
S are discarded (hence the dimension of the new lattice is smaller than that of the
previous lattice), the weights of other items are unchanged, and the new value of W
is W −

∑
i∈S wi. Run the next iteration with this new instance.

We now prove that if N is sufficiently large, the algorithm (with the recovery procedure
as above) is unlikely to fail (over the choice of random subset sum instance).

Lemma 5 With probability at least 1−2(
n2

2
+O(n logn))/N over choice of random subset sum

instance, the instance is such that the above algorithm cannot fail in its first iteration.

Proof: Fix R (the set of items in the planted solution for the subset sum instance). Re-
calling that λ(L) ≤ |vR| ≤

√
n, Theorem 4 implies that |x| ≤ 2((n+1)−1)/2λ(L) ≤ 2n/2

√
n <

k. Together with the fact that entries in coordinate n + 1 are multiples of k, this implies
that n + 1 ̸∈ S. In remains to show that

∑
i∈S wi ≤ W . For the sake of contradiction,

suppose that
∑

i∈S wi > W . Then there is a coordinate i ̸∈ R for which x(i) ̸= 0. For i ̸∈ R,
let Yi denote the set of all vectors in L for which coordinate i is non-zero, and the ℓ2 norm
is smaller than k. To prove the lemma, we need to prove that with high probability (over
choice of random input instance) Yi is empty.

Every coordinate of a vector in Yi has absolute value smaller than k, and coordinate
n + 1 must be 0. Our proof considers all possible candidate vectors in Yi. For simplicity,
we take the set of candidate vectors to be all vectors x satisfying x = (x(1), . . . , x(n), 0) ∈
[−k + 1, k − 1]n+1, even though this set includes vectors whose norm is too large. Hence
the number of candidate vectors is at most (2k)n. For each candidate vector we bound
from above the probability (over choice of random subset sum instance) that it is indeed
a lattice vector. Observe that x = (x(1), . . . , x(n), 0) is a lattice vector if and only if∑n

i=1w(i) · x(i) = c ·W for some integer c (and then x =
∑n

i=1 x(i) · ai − c · an+1).
Observe that for every vector x = (x(1), . . . , x(n), 0) ∈ [−k + 1, k − 1]n+1, it holds that

|
∑n

i=1w(i) · x(i)| < 2N · k · n. Let m denote the number of different integer multiples of W
in the range [−2kNn, 2kNn]. Observe that m ≤ 4kn, as W > N .

Consider a candidate vector x = (x(1), . . . , x(n), 0), and i ̸∈ R such that x(i) ̸= 0. In
the random subset sum instance, first pick at random all value wj for j ̸= i. This already
determines W . Let c be an integer such that −2kNn ≤ cW ≤ 2kNn, and recall that there
are at most m such choices of c. Consider the bad event bi,c that

∑n
j=1wj · x(j) = c ·W .

For bi,c to hold, we need to pick wi so that wi =
1

x(i)

(
c ·W −

∑
j ̸=iwj · x(j)

)
. There is at

most one integer value for wi that satisfies this last equality. Now pick wi at random in the
range [N + 1, 2N]. The probability that bi,c holds is at most 1

N . Summing over all possible

values for c, the probability that at least one bad event bi,c holds is at most m
N ≤ 4kn

N .
Taking a union bound over all candidate vectors, the probability of a bad event is at most

(2k)n 4kn
N < 2(

n2

2
+O(n logn))/N . 2

Theorem 6 With probability at least 1 − 2(
n2

2
+O(n logn))/N over choice of random subset

sum instance, the instance is such that the above algorithm finds a feasible solution.

6

Proof: Observe that the proof of Lemma 5 shows that with probability at least 1 −
2(

n2

2
+O(n logn))/N , the sets Yi defined in that proof are empty. We show that if these sets

are empty, the algorithm cannot fail (in any of its iterations).
Suppose that the algorithm fails to recover R. Let ℓ > 1 be the first iteration in which S

of that iteration contains a coordinate not in R. Modify the vector x returned in iteration
ℓ so as to get a vector x′, by adding 1 in every coordinate that belongs to a set S that
was returned in an iteration before ℓ. We have that |x′| ≤ |x| + n. For ℓ > 1 we have
that |x| ≤ 2n/2

√
n− 1 ≤ k − n (the last inequality holds only for large enough n, but the

proof of the theorem can be made to work for all n by making minor modifications to the
algorithm). Hence |x′| ≤ k and x′ ∈ Yi, contradicting the assumptions that Yi is empty.
2

Summarizing, if N is sufficiently large (N ≥ 2n
2
suffices if n is sufficiently large), the

LLL algorithm solves (with high probability over choice of instance) random subset sum
instances with planted solutions.

5 Homework

1. Give an algorithm that solves the knapsack problem in time polynomial in (n,maxi pi).
(Such an algorithm is useful when profits are polynomially bounded but weights are
not.)

2. In our random planted model for the subset sum problem, the weights are chosen
independently uniformly at random in the range [N + 1, 2N]. Adapt the analysis of
the algorithm to the case that the range is [1, N].

3. Suppose that you are given an algorithm A that finds the optimal solution to the
shortest lattice vector problem (SVP) in time t(n).

Consider the following problem, referred to here as small even set (SES). The input is
a set S of m vectors v1, . . . vm, with each vi in {0, 1}d. The goal it to find a non-empty
small subset S′ ⊂ S of vectors such that

∑
i∈S′ vi gives a vector all whose entries are

even. (If addition is performed modulo 2, this corresponds to a 0-vector, and hence
a linear dependency in the finite field (GF2)

d. In particular, this implies that |S′|
need not be larger than d + 1.) Suppose that S is such so that there are two small
disjoint subsets, S1 and S2, such that

∑
i∈S1

vi =
∑

j∈S2
vj . (Observe that S1 ∪ S2 is

a solution to the SES problem, but there may be other solutions to the SES problem
that cannot be decomposed into S1 and S2 as above.) Show that algorithm A (which
does not know S1 and S2) can be used in order to find a solution for the SES problem
of size at most |S1|+ |S2|, in time t(m+ d) · (m+ d)O(1).

(The above question is motivated by an approach of [3] for refuting random instances
of 3SAT.)

The algorithm presented for the smoothed model for the knapsack problem was based
on dynamic programming. The algorithm presented for the random model for subset sum
was based on lattice basis reduction. The next set of questions are somewhat open ended,
and can serve as a basis for discussions.

7

1. Can the dynamic programming approach replace the lattice basis reduction approach
in the setting of the random model for subset sum? If yes, how? If no, why not?

2. Can the lattice basis reduction approach replace the dynamic programming approach
in the setting of the smoothed model for the knapsack problem? If yes, how? If no,
why not?

Another open ended question is the following. Propose a smoothed model for the subset
sum problem, and an interesting range of parameters (for the model) for which a polynomial
time algorithm solves instances in your model (with high probability, over choice of random
smoothing).

References

[1] Miklos Ajtai: The Shortest Vector Problem in L2 is NP-hard for Randomized Reduc-
tions. STOC 1998: 10–19.

[2] Rene Beier, Berthold Vocking: Random knapsack in expected polynomial time. J.
Comput. Syst. Sci. 69(3): 306–329 (2004).

[3] Uriel Feige, Jeong Han Kim, Eran Ofek: Witnesses for non-satisfiability of dense ran-
dom 3CNF formulas. FOCS 2006: 497–508.

[4] Jeffrey Lagarias and Andrew Odlyzko: Solving Low-Density Subset Sum Problems. J.
ACM 32(1): 229–246 (1985).

[5] Arjen K Lenstra, Hendrik Willem Lenstra, Laszlo Lovasz: Factoring polynomials with
rational coefficients. Mathematische annalen 261, 515–534 (1982).

[6] Laszlo Lovasz: An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM
(1986). https://epubs.siam.org/doi/book/10.1137/1.9781611970203

[7] Ketan Mulmuley, Umesh V. Vazirani, Vijay V. Vazirani: Matching is as easy as matrix
inversion. Comb. 7(1): 105–113 (1987).

[8] Tim Roughgarden (Editor): Beyond the Worst-Case Analysis of Algorithms. Cam-
bridge: Cambridge University Press (2021).

[9] Claus-Peter Schnorr: A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms. Theor. Comput. Sci. 53: 201–224 (1987).

8

