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Abstract

These are note that I wrote for my own use, and are rather sketchy.

1 Introduction

Feedback vertex set (FVS) is the problem of hitting all cycles of a vertex
weighted graph by vertices. Namely, the input is a graph G(V,E) with nonneg-
ative vertex weights w : V → R+, and the goal is to select a minimum weight
set F ⊂ V whose removal from the graph makes the remaining graph a forest.

The related problem feedback edge set (in undirected graphs), in which edges
rather than vertices have weights, and the goal is to pick a minimum set of edges
that hits all cycles, can be solved in polynomial time. Use a greedy algorithm
to find a maximum weight forest (or spanning tree, if the graph is connected),
and the remaining edges form the solution.

Another related problem is that of triangle hitting by edges, which was
a question in last semester’s take home exam. For it, the following is known.

• Factor 3 approximation using local ratio.

• Factor 2 algorithm based on LP relaxation. The analysis used duality and
complementary slackness, together with fact that in every graph there is
a solution of no more than half the total weight (because bipartite graphs
have no triangles).

• Factor 2 hardness, unless Vertex Cover (VC) can be approximated within
a ratio better than 2.

We return now to FVS. It is not even immediately clear how to get an
O(log n) approximation ratio. For the local ratio technique, the problem is
that there may be cycles larger than log n. For randomized rounding of an
LP relaxation (even though there are exponentially many cycles, one can use
the ellipsoid algorithm to solve a natural LP relaxation of the problem), the
standard analysis based on the union bound does not give much, because the
number of cycles is in general exponential in n, rather than polynomial.
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2 Logarithmic approximation

We present an O(log n) approximation algorithm based on the local ratio ap-
proach. The same algorithm can be viewed as a primal dual algorithm, as done
in Chapter 7.2 in [4]. (There are other small differences in the way we present
the algorithm compared to [4].)

In general, the ratio between what the primal and dual pay for a cycle is
upper bounded by the number of cycle vertices that end up in the solution. In
order to get a good ratio,the problem that needs to be addressed is that of long
cycles. For this we introduce the following cleaning phase that performs the
following operations as long as possible:

• Remove vertices of degree less than 2.

• Contract induced paths into a single vertex of minimum weight on the
path (other vertices will not be in the solution).

• Parallel edges (cycle of length 2): reduce the weight of both vertices at
the same rate until one (or both) of them has weight 0. The local ratio of
this step is 2, because every solution needs to contain at least one of the
vertices.

• Include in F all vertices of weight 0.

Lemma 1 After the cleaning phase ends, either the graph is a forest, or the
shortest cycle has length at most 4 log n.

Proof. It the graph is not a forest, start BFS from an arbitrary vertex. As long
as no cycles are discovered, in every two levels the number of vertices doubles,
because there are no two adjacent degree 2 vertices. Hence this can go on for
at most 2 log n steps. �

Hence we have the following algorithm. Repeat as long as possible:

• Perform a cleaning phase whenever possible.

• Find the shortest cycle. Subtract the weight of the lowest weight cycle
vertices from all cycle vertices. (Hence now the cleaning phase can be
resumed.)

Analysis by local ratio. Alternatively, the weight reduced from the shortest
cycle is the weight given to the dual variable (the cycle), and the primal solution
pays at most 4 log n times dual.

Having established an O(log n) approximation ratio, we ask whether we can
do better.

A difficulty arises because the natural covering LP has an Ω(log n) integrality
gap. Consider a d-regular (unweighted) Ramanujan graph. Its girth (length of
shortest cycle) is Ω(log n). Hence the LP has a fractional solution of weight
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O( n
logn ). The minimum FVS has cost Ω(n), because every subgraph with 3n

4

vertices has at least dn
2 −

dn
4 = dn

4 ≥ n edges, and hence has a cycle.
The above analysis of the Ramanujan graph shows that the standard covering

LP misses constraints that give lower bounds on optimal solution (in the whole
graph and in various subgraphs) in terms of the number of edges. One can
incorporate such constraints in the LP and improve the approximation ratio
to 2. This is done in Chapter 14.2 of [4], were a primal dual algorithm that is
based on the stronger LP is presented. However, we prefer to show here a local
ratio algorithm.

3 A factor 2 approximation

The algorithm and analysis presented here are taken from [1]. The first hint that
a factor 2 approximation may be possible comes from the following proposition.

Proposition 2 On unweighted d-regular graphs,

• FVS can be approximated within a ratio not worse than 2.

• Moreover, every minimal solution (one for which the removal of any vertex
from it makes the solution infeasible) obtains this approximation ratio.

Proof. The proposition is clearly true for d = 2. We prove it for d ≥ 3.
The optimal solution F ∗ satisfies nd

2 − d|F
∗| < n− k, implying

|F ∗| > n(
1

2
− 1

2d− 2
).

Any minimal solution |F | satisfies 2|F | ≤ (n−k)(d−1) (because every vertex
in FVS has at least two edges into non-isolated vertices in the remaining graph).
This implies

|F | ≤ n(1− 2

1 + d
).

For d ≥ 3 the approximation ratio is better than 2. �

The above proposition gives hope that a factor of 2 is achievable also in the
general case. What is the appropriate statement for general weighted graphs?
What relation between weight and degree insures factor 2 approximation?

Under the condition that the graph is clean (passed a cleaning phase), we
have such a relation. We shall call a cycle C in a graph G independent if all
vertices of C have degree 2 in G, and semi-independent if all vertices of C but
one have degree 2 in G. Note that after the cleaning phase, G does not have
any independent or semi-independent cycles.

Lemma 3 Let G be a clean graph in which for every vertex, w(v) = d(v)− 1.

• Then FVS can be approximated within a ratio not worse than 2.
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• Moreover, every minimal solution obtains this.

Proof. Let us define:

p(v) =
d(v)

2
− 1.

The optimal solution F ∗ satisfies m−
∑

v∈F∗ d(v) < n− |F ∗|, implying

w(F ∗) > m− n =
∑
v

(
dv
2
− 1) =

∑
v∈V

p(v) = p(V ).

Any minimal solution F satisfies 2|F | ≤ w(V −F ) = 2m−n−w(F ) implying

w(F ) ≤ 2m− n− 2|F |.

This proves the lemma when |F | ≥ n
2 , but not in general. (We do get partial

results. As the graph is clean, contracting degree 2 vertices we have thatm ≥ 3n
2 ,

and after putting them back in we have m ≥ 5n
6 . This gives a ratio no worse

than 11.)
We now improve over the above analysis. Consider a minimal solution F .

Each vertex v ∈ F is blocked by two edges into a connected component of V −F
(as removing v from F will then close a cycle). We refer to the corresponding
two edges as the blocking edges for v (if there is more than one way of choosing
the two blocking edges – we pick one such pair arbitrarily).

Consider any tree T in V − F with t vertices that blocks a vertex of F .
A key observation is that E(T, F ) ≥ 3. This can be seen as follows. Every
vertex of T has degree at least 2 in G. If the tree has at least 3 leaves, then
E(T, F ) ≥ 3. If it is an isolated vertex then together with the blocked vertex
we have two parallel edges. If T is a path, then either E(T, F ) ≥ 3 or G has two
adjacent vertices whose sum of degrees is 4. All options except for E(T, F ) ≥ 3
are excluded because G is clean.

We also have

E(T, F ) =
∑
v∈T

dv − 2(|T | − 1) = 2p(T ) + 2.

Let F (T ) be the set of vertices that are blocked by T . Then:

|F (T )| ≤ bE(T, F )

2
c ≤ E(T, F )− 2 = 2p(T ).

The second inequality holds because E(T, F ) ≥ 3.
As all vertices of F are blocked, we have that |F | ≤ 2

∑
T p(T ) ≤ 2p(V −F ).

Combining the above we have:

w(F ) = 2p(F ) + |F | ≤ 2p(F ) + 2p(V − F ) = 2p(V ) ≤ 2w(F ∗).

�
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Turning the Lemma 3 into a local ratio algorithm requires an extra idea
beyond those that we have seen so far. The third step of the following algorithm
is introduced because the lemma guarantees a factor 2 approximation only for
minimal solutions. Had the guarantee been given for all solutions (or in other

words, if we had w(F ∗) ≥ W (V )
2 ), then step 3 would not be needed.

1. Cleaning step: Whenever possible, clean G.

2. Reduce step: When cleaning is not possible, reduce γ(dvi
− 1) from the

weight of every vertex vi, for largest γ that does not create negative
weights. Take weight 0 vertices into F .

3. Reverse removal: When the graph becomes empty, process F in reverse
order. From every group of edges that was added at a step, keep a min-
imal set (minimal, not minimum, and not just greedy as greedy need
not produce a minimal FVS) that preserves an FVS. Call the resulting
solution B.

It is not difficult to see that F is a FVS, but in need not provide a factor 2
approximation, because for graphs Gi at the beginning of reduce steps, F ∩Gi

need not be a minimal FVS for Gi.

Lemma 4 Reverse removal ensures that on each step we do not pay a local
ratio greater than 2. Moreover, B is a feedback vertex set.

Proof. Let F be the FVS found by the algorithm in its forward phase, and let
B ⊂ F be the set that remains after the backward phase. Let Gi (with G1 = G)
be the sequence of graphs encountered in the beginnings of iterations. For every
vertex v ∈ B, we can trace how its weight w(v) decreases from w1(v) = w(v)
to 0 along the different iterations, where iteration i is charged for the value
wi(v)− wi+1(v).

We prove by backward induction that for every i, B ∩Gi is a minimal FVS
for Gi. Hence the associated step is charged with a local ratio no worse than 2
(compared to whatever the optimal solution is charged at the same step).

For Gt that was followed by a cleaning step, we do not pay a local ratio larger
than 2. Paying a factor of 2 may happen only if the cleaning step included
handling two parallel edges such that both vertices in their end points have
degree larger than 2. (In fact, such cleaning steps are not needed for the proof
of Lemma 3. They are only needed if one of the endpoints has degree 2, and
then reverse removal ensures that from this semi-independent cycle we take only
one vertex and not two. Hence cleaning can be changed so that the local ratio
for cleaning steps is reduced to 1.)

Consider now Gt that was followed by a reduce step in which the weight
of some vertices V0 were reduced to 0, giving a graph Gt+1 on the remaining
vertices, and adding V0 to F . By induction, the vertices of B ∩ Gt+1 are a
minimal FVS for Gt+1. In Gt, the only cycles that V0 needs to cover are those
that involve at least one vertex of V0. V0 cannot contribute towards covering
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any of the cycles in Gt+1, hence they cannot make any vertex of B ∩ Gt+1

redundant. As every vertex of V0 that is redundant is removed from F we have
that B ∩ Gt is a minimal FVS for Gt. Observe that future backward steps
cannot add vertices of Gt to the F (because only vertices of weight 0 are put
into F ). �

The approximation ratio of 2 proved for FVS is optimal, under standard
assumptions.

Proposition 5 The approximation ratio for FVS is not better than that of VC.

Proof. Reduction from VC: add to every edge e = (i, j) a distinct auxiliary
vertex ve and the edges (i, ve), (j, ve). �

It is interesting to note that in (unweighted?) graphs of maximum degree 3,
FVS can be solved in polynomial time [3] (by reduction to the Matroid parity
problem), whereas VC is NP-hard.

Related question: comes in four versions. Find smallest number of edges
(or vertices) that hit all cycles of length exactly (or at most) k.

If k = n, the exact version is not approximable as it implies deciding Hamil-
tonicity.

For constant k, strong hardness results appear in [2]. Still, for the edge
version and even k, it is not known if an approximation better than k is possible,
and for any k, potentially a ratio of k/2 is possible.
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