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Abstract

These are note that I wrote for my own use, and are rather sketchy.

1 Introduction

In the metric facility location problem, there is a set F of facilities, a set D of
clients, facility i ∈ F has opening cost fi, client j ∈ D has connection cost cij to
facility i ∈ F . The cij are distances that obey the triangle inequality. The goal
is to open a set of facilities and connect every client to an open facility, while
minimizing the total cost.

We have seen in the previous semester approximation algorithms for metric
facility location based on an LP. Deterministic rounding gave an approximation
ratio of 4 (Chapter 4.5 in [3]), and randomized rounding gave an approximation
ratio of 3 (Chapter 5.8 in [3]).

Let us first recall the LP relaxation for facility location, its dual, and an
interpretation for the dual.

Primal LP.
minimize

∑
fiyi +

∑
cijxij subject to:

•
∑

i∈F xij = 1 for every client j ∈ D.

• xij ≤ yi for every client j ∈ D and facility j ∈ F .

• xij ≥ 0 for every client j ∈ D and facility j ∈ F .

• yi ≥ 0 for every facility j ∈ F .

Dual LP.
maximize

∑
vj subject to:

•
∑

j wij ≤ fi for every client j ∈ D and facility j ∈ F .

• vj ≤ wij + cij for every client j ∈ D and facility j ∈ F .

• wij ≥ 0 for every client j ∈ D and facility j ∈ F .

• vj ≥ 0 for every client j ∈ D.
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One may interpret wij as the share of the opening cost that facility i intends
to charge j, and vj as the price that a client is willing to pay in order to cover its
connection cost and facility opening share. No facility is allowed to overcharge,
and every client makes the choice minimizing his payment.

2 A deterministic primal dual algorithm

We present a deterministic primal dual algorithm (taken from Chapter 7.6 in [3])
that gives an approximation ratio of 3.

Every client j raises its budget vj in a uniform rate. With respect to ev-
ery facility i independently, the client computes a partition of the budget, cij
towards the connection cost, and wij = min[vj − cij , 0] towards the opening
cost. A facility i becomes tight once

∑
j wij = fi. At that moment it is opened

and the clients contributing towards opening it are connected to it. We stop
increasing the budget of client i at the moment that it becomes connected, ei-
ther by contributing towards opening a tight facility, or because it can afford
the connection cost to an already open facility.

Let F1 be the set of facilities that are open at the end (when all clients get
connected). A client j might pay shares of the opening costs of several facilities,
if each of them on its own can be supported by j’s budget. We say that two
facilities in F are independent if there is no client who shares (a strictly positive
payment) in the opening costs of both of them.

Of the open facilities F1, keep only a maximal independent subset F2. For
facilities in F1 \ F2, their original clients are each moved to its nearest open
facility.

The dual solution is feasible. A facility i is opened at the moment that∑
j wij = fi, and thereafter no client j can change the dual variable wij . A

client j is connected at the moment that it can afford it, and thereafter, his cost
to any facility does not change.

In the primal solution, the clients originally paying for the opening of F2

have a budget of vj that cover both their connection cost and the opening cost.
For a client j who was originally connected only to F1 \ F2, he need not

contribute anything towards opening costs. Let i be j’s original facility. If i was
closed then it was not independent of some facility i′. Hence there is a client j′

that shared cost both with i and i′. Hence vj′ ≤ vj (this is an inequality because
vj′ stopped increasing no later than at the time that i was opened, whereas vj
increased until the point when j was assigned to i), and cij′ ≤ vj′ , ci′j′ ≤ vj′ ,
and cij ≤ v(j). The triangle inequality implies that ci′j ≤ 3vj .

3 Randomized rounding of the LP

We present a randomized rounding algorithm (taken from Chapter 12.1 in [3])
for the LP, that gives an approximation ratio of 1 + 2

e .
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We recall the following about pairs of optimal primal and dual solutions to
the LP.

Lemma 1 For pairs of optimal primal and dual solutions to the LP, x∗ij > 0
implies that cij ≤ v∗j .

Proof. By complementary slackness for xij , and nonnegativity of wij . �

We assume that optimal solutions are complete, meaning that x∗i,j > 0 im-
plies that x∗i,j = y∗i . This can be assumed w.l.o.g., because an incomplete
solution can be transformed into a complete solution for an equivalent instance,
in which we make |D| identical copies (in terms of opening costs and connection
costs) of facility i. After sorting the clients in order of increasing x∗ij , we set
y∗ij = x∗ij − x∗i,(j−1), and connect client j (if x∗ij > 0) to the first j copies.

For client j, let C∗j =
∑

i∈F cijx
∗
ij denote its expected assignment cost.

We say that a client j and a facility i are neighbors if x∗ij > 0.
The randomized rounding algorithm is as follows.

• Initially, all clients and all facilities are active. Clients can change status
to assigned or discarded. Facilities can change status to open or discarded.

• If there is an active client, let j be the client minimizing v∗j + C∗j .

• Open one facility i at random with probability x∗ij . Assign j to i. Discard
all neighboring facilities of j and their neighboring clients.

• When no active client remains, if there still are active facilities, open each
active facility i independently with probability y∗i .

• Connect each client to its nearest open facility.

A key observation is that the set of active clients and the client considered
in step t depend only on the step number, and not on the outcomes of random
decisions in previous steps.

Lemma 2 The expected opening cost of the rounded solution is not more than
that of the LP.

Proof. Every facility i had exactly one step it which it is considered, and at
that step it is opened with probability y∗i . �

Lemma 3 There is a contention resolution rule (see Section 4) that ensures
that for every client j and every neighboring facility i, the probability that j
ends up connected to i is at least (1− 1

e )x∗ij.
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Proof. Here we use the fact that the instance is complete.
If j was ever a minimizing client, no neighboring facility of j was considered

in an earlier round, and the lemma holds. Hence we may assume that j was
never a minimizing client.

The set of facilities considered in every step is independent of random de-
cisions (due to the key observation). Use bounds for fair contention resolution
from Section 4 (where pi is the probability that a facility that is a neighbor of
j is opened at step i) to show that there is probability at least (1 − 1

e )y∗i to
connect to each neighboring facility i. �

As a consequence of Lemma 3 we can assume the following:

• For each client, there is probability at least 1 − 1
e of connecting it to a

neighboring facility.

• Conditioned on connecting client j to neighboring facility open, its ex-
pected connection cost is at most C∗j .

Lemma 4 Conditioned on not having a neighboring facility open, the expected
connection cost of client j is at most 2v∗j + C∗j .

Proof. Client j can be connected to a facility i′ opened by the first j′ that is
a distance 2 neighbor of j. Note that v∗j′ + C∗j′ ≤ v∗j + C∗j . Let S be the set of
facilities in the intersection of the neighborhoods of j and j′. The assignment
cost of j to any facility in S is at most v∗j . For j′, there are two cases to consider.

• The expected assignment cost of j′ to S is at most C∗j′ . Use the fact that
the assignment cost of j′ to i′ is at most v∗j′ .

• The expected assignment cost of j′ to S is more than C∗j′ . Use the fact
that the expected assignment cost of j′ to random i′ 6∈ S is at most C∗j′ ,
and the assignment cost of j′ to any facility in S is at most v∗j′ .

In any case, using the triangle inequality through a random vertex in S, the
expected assignment cost of j is at most

v∗j + v∗j′ + C∗j′ ≤ 2v∗j + C∗j

�

If follows that the total assignment cost is at most∑
j∈D

(1− 1

e
)C∗j +

1

e
(2v∗j + C∗j ) =

∑
j∈D

(C∗j +
2

e
v∗j )

Hence the expected cost of the solution is at most∑
j∈D

(C∗j +
2

e
v∗j ) +

∑
i∈F

fiy
∗
i ≤ (1 +

2

e
)LP ∗
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4 Fair contention resolution

Suppose that there are k candidates, and we need to select at most one of them.
Each of the candidates i is eligible independently with probability pi. (The
source of the problem is the independence. When the events of being eligible
are mutually exclusive, as is the case for opening facilities within a single step
of the algorithm of Section 3, the contention resolution problem does not arise.)
If no candidate is eligible, no candidate is selected. If only one candidate is
eligible, we select that candidate. If more than one candidate is eligible, we have
a choice which of them to select. The rule used for this choice is referred to as
a contention resolution scheme, and it may be randomized, and may depend on
the values pi of the eligible candidates and of the non-eligible candidates. The
contention resolution scheme that we use affects the end probability zi with
which candidate i is selected. A contention resolution scheme is ρ-fair if for
every candidate, zi ≥ ρpi. A contention resolution scheme is fair if it is ρ-fair
for the highest possible ρ. This ρ equalizes for all candidates the conditional
probability of being chosen, given that they are eligible.

As an example, suppose that there are two candidates with p1 = p > 1
2 and

p2 = 1 − p. A possible contention resolution rule to use when both candidates
are eligible is to choose each one of them with probability 1

2 . This results in

z1 = p2 + 1
2p(1 − p) = 1+p

2 p1 and z2 = (1 − p)2 + 1
2p(1 − p) = 2−p

2 p2. In this

case ρ = min[ 1+p
2 , 2−p2 ] = 2−p

2 ≤ 3
4 (when p ≥ 1

2 ). A fair contention resolution
rule (when both candidates are eligible) would choose candidate 1 w.p. 1 − p
and candidate 2 w.p. p. This results in z1 = p2 + p(1− p)2 = (1− p+ p2)p1 and
z2 = (1− p)2 + p2(1− p) = (1− p+ p2)p2. In this case ρ = 1− p+ p2 ≥ 3

4 (when
p ≥ 1

2 ).
In general, the value of the best ρ is the solution to the following linear

program. In the LP, the pi are constants, and the zi as variables. In addition,
there are variables ziS for every set S of candidates, and candidate i ∈ S,
specifying the probability that i is chosen given that S is eligible. For a set S
of candidates, p(S) =

∏
j∈S pj

∏
j 6∈S(1 − pj) denotes the probability that S is

the set of eligible candidates.
Maximize ρ subject to:

• zi ≥ ρpi for every candidate i.

•
∑

i∈S ziS = 1 for very set S of candidates.

• zi =
∑

S|i∈S p(S)ziS for every candidate i.

• ziS ≥ 0 for every set S of candidates, and candidate i ∈ S.

The optimal value of ρ is

ρ∗ =
1−

∏
i(1− pi)∑
i pi

and a way of achieving it without solving the LP is presented in [1]. Here we
present a weaker bound that suffices for our purpose.
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Lemma 5 If
∑
pi = 1 then there is a contention resolution rule that ensures

ρ ≥ 1− 1
e .

Proof. Assume for simplicity that the pi are rational. Let q be an integer
for which piq is integral for all i. We view the situation as if there are q sym-
metric mini-candidates, each eligible independently with probability 1

q . Such a
situation is equivalent to one in which each candidate i is represented by piq
mini-candidates, and conditioned on being eligible (which happens with proba-
bility pi), each of its mini-candidates is eligible independently with probability
1

qpi
. Resolve conflicts among eligible mini-candidates (of all candidates) uni-

formly at random. The winning candidate is the one whose mini-candidate was
selected (if there were eligible mini-candidates).

The probability that there is at least one eligible mini-candidate is exactly
1−(1− 1

q )q > 1− 1
e . Conditioned on there being an eligible mini-candidate, each

mini-candidate is equally likely to be chosen (by symmetry). Hence candidate

i is chosen with probability at least piq
1− 1

e

q = (1− 1
e )pi. (This proof approach

suffices for the lemma but is not tight, because there might not be any eligible
mini-candidates even if there are eligible candidates.) �

5 Towards optimal approximation ratios

There are approximation ratios better than 1 + 2
e known for metric facility

location. One such algorithm is given in [2], a paper which is the subject of a
homework assignment. There have been further improvements, but we do not
yet know the best possible approximation ratio.

The known hardness of approximation result is a ratio of roughly 1.463 (see
Chapter 16.2 in [3]). Here is a high level sketch of how it is derived. There is
a natural reduction from set cover, in which sets are facilities, items are clients,
the connection cost from a set to its items is 1 , and 3 to other items. For the set
cover instance, it is NP-hard to distinguish between the case that k sets cover
all items, and the case that for every k′, any collection of k′ sets leaves a fraction
of (k−1

k )k
′

items uncovered. Making the opening cost of each facility γ n
k , choose

the γ that gives the largest gap between yes instances and no instances.
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