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We showed a randomized 3/4-approximation algorithm for max-SAT, based
on taking the best of two solutions: one is a uniformly random solution, and the
other is obtained by randomized rounding of a linear programming relaxation.

We discussed the method of conditional expectations for derandomization.
Given a randomized algorithm, the method allows us (if we can compute expec-
tations efficiently) to obtain a deterministic algorithm whose approximaton ratio
is at least as good at the expected ratio offered by the randomized algorithm.

We revisited the metric facility location problem, and showed a randomized
rounding approach that gives an approximation ratio of 3.

For minimizing congestion in the integer multicommodity flow problem we
will show an approximation ratio of O(log n), which improves to nearly 1 as
the optimal congestion grows. This will make use of the Chernoff bounds. One
convenient variation of these bounds is stated here. (Note: stronger bounds
are known, which may be helpful in cases in which one is interested in tighter
results).

Theorem 1 Let X1, . . . , Xn be independent random variables, where Xi takes
either value 0 or ai for some 0 ≤ ai ≤ 1. There for X =

∑
Xi and µ = E[X],

L ≤ µ ≤ U , and δ > 0,

Pr[X ≥ (1 + δ)U ] < e−Uδ
2/3

and

Pr[X ≤ (1− δ)L] < e−Lδ
2/2

Moreover,

Pr[X = 0] < e−µ

Homework – hand in by January 23. (Grader: Yael Hitron. Recall con-
ventions for homework from Handout 1.)

1. Recall the LP relaxation for metric facility location, and the randomized
rounding approach that was shown to give a solution of expected cost no
worse that three times the optimal cost. Show an example that illustrates
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that the analysis of the randomized rounding technique is tight. Namely,
for arbitrarily small ε > 0, design an instance of metric facility location,
present for it an optimal solutions to the LP relaxation and an optimal
solution for the dual, such that the expected cost of the rounded solution
is no better that (3− ε) times the optimal cost.

2. (Extension of Problem 5.1 in [WS11].) In the max k-cut problem the input
is an undirected graph G(V,E). The goal is to partition V into k parts
V1, . . . , Vk so as to maximize the number of edges that are cut (an edge is
cut if its two endpoints are in different parts).

(a) Give a randomized algorithm that in expectation cuts at least k−1
k |E|

edges.

(b) Give a deterministic algorithm that cuts at least k−1
k |E| edges.

(c) Suppose that |V | is divisible by k and it is required that all parts are

of equal size |V |k . Give a randomized algorithm that in expectation

cuts at least k−1
k |E| edges.

(d) Suppose that |V | is divisible by k and it is required that all parts are

of equal size |V |k . Give a deterministic algorithm that cuts at least
k−1
k |E| edges.

3. (Based on questions 5.3 and 5.6 in [WS11].) In the maximum directed
cut problem (sometimes called MAX DICUT), we are given as input a
directed graph G = (V,A). Each directed arc (i, j) ∈ A has nonnegative
weight wi,j ≥ 0. The goal is to partition V into two sets U and W = V −U
so as to maximize the total weight of the arcs going from U to W (that
is, arcs (i, j) with i ∈ U and j ∈W ).

(a) Give a randomized 1
4 -approximation algorithm for this problem.

(b) Show that the following integer program models the maximum di-
rected cut problem:

maximize
∑

(i,j)∈A wijzij subject to

zij ≤ xi, for every arc (i, j) ∈ A,

zij ≤ 1− xj , for every arc (i, j) ∈ A,

xi ∈ {0, 1}, for every vertex i ∈ V ,

zij ∈ {0, 1}, for every arc (i, j) ∈ A.

(c) Consider a randomized rounding algorithm for MAX DICUT that
solves a linear programming relaxation of the integer program and
puts vertex i in U with probability 1

4 + xi

2 . Show that this gives
a randomized 1

2 -approximation algorithm for the maximum directed
cut problem.
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