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1 Coloring 3-colorable graphs

Let G be a 3-colorable graph on n vertices. In this section we design algorithms
for approximate coloring, in the sense that they do legally color G, but use more
than 3-colors. We remark that it is known that coloring 3-colorable graphs with
4 colors is NP-hard.

Every graph of maximum degree ∆ can be colored by ∆ + 1 colors, using
inductive coloring. An early approximate coloring algorithm of Wigderson is
based on the observation that the neighborhood of a vertex in a 3-colorable
graph is bipartite, and hence can efficiently be colored by at most two colors.
Hence as long as the graph has a vertex of degree at least

√
n, color and remove

its neighborhood, and when no such vertex remains, apply inductive coloring.
This uses O(

√
n) vertices.

Karger, Motwani and Sudan [1] show that if ∆ is large and the graph happens
to be colorable with much fewer colors (say, 3), then there is a polynomial time
algorithm that colors it with o(∆) colors. Their paper is very readable, and
here we sketch only some of the details as specialized to 3-colorable graphs.

Recall the SDP for the theta function as presented in an earlier lecture. We
show how it can be used to obtain approximation algorithms for coloring.

For a 3-colorable graph with n vertices and m edges, using the SDP we
obtain a unit vector solution in which for every edge (i, j), ⟨vi, vj⟩ = −1/2. (In
fact, as SDPs are not guaranteed to be solved exactly, one would get a solution
with ⟨vi, vj⟩ ≤ − 1

2 + ϵ, where ϵ can be made arbitrarily small. For sufficiently
small ϵ, say ϵ = 1

n2 , the analysis goes through with only negligible effect on the
number of colors used.)

Consider a representation ofRn in the standard orthonormal basis (e1, . . . , en).
To round the vector solution of the SDP, pick a random vector r in which the
value of each coordinate of r is chosen independently at random, distributed
according to the standard normal distribution ϕ(x) = 1√

2π
e−x2/2 with mean

0 and variance 1. This is known to give a spherically symmetric distribution
where each direction is also distributed according to the normal distribution.
(Moreover, orthogonal directions have independent distributions. This last fact
is not needed for the analysis of the approximation ratio.)

Here is an intuitive argument showing that the distribution is spherically
symmetric. By the central limit theorem, a standard normal random variable
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can be thought of as the sum on N2 independent auxiliary random variables
of values ± 1

N , for some very large N . Multiplying the random variable by α is
essentially equivalent to multiplying the number of auxiliary random variables
by α2. Adding two normal random variables gives a new normal random variable
based on the sum of the two sets of auxiliary random variables. Representing
an arbitrary unit vector x =

∑n
i=1 αiei in the standard basis, the coefficients

satisfy
∑

(αi)
2 = 1, hence the component of r in direction x is also distributed

like the sum of N2 auxiliary random variables.
In algebraic form, spherical symmetry follows by observing that the density

function at a point x =
∑

αiei is ϕ(x) =
1√
2π

∏n
i=1 e

−α2
i/2 = 1√

2π
e−

∑n

i=1
α2

i /2 =
1√
2π

e−|x|2/2, where |X| is the Euclidean norm of x. Hence ϕ(x) depends only

on the norm of x and not on the direction of x, implying spherical symmetry.
Let N(x) =

∫∞
x

ϕ(y)d(y) denote the tail of the normal distribution. It is
known that

ϕ(x)(
1

x
− 1

x3
) ≤ N(x) ≤ ϕ(x)

1

x

(We do not prove the above inequality, but remark that for x ≥ 2 it is easy

to see the N(x) = Θ(ϕ(x)x ). The lower bound follows from N(x) ≥ 1
xϕ(x + 1

x ).
The upper follows because starting at y = x and advancing in steps of size 1/x,
the value of ϕ(y) drops at least in an exponential rate, and hence the integral
can be upper bounded by a geometric sum.)

Let c be a value to be optimized later. The rounding technique first selects
a set S of vertices that contains all vertices i with ⟨vi, r⟩ ≥ c, and then removes
one endpoint of every edge induced by S so as to remain with an independent
set. The analysis of this rounding technique is based on linearity of expectation
(a principle that applies even if random variables are not independent).

The expected number of vertices in S is nN(c). To compute the expected
number of edges in S, let (i, j) be an edge. We need ⟨vi, r⟩ ≥ c and ⟨vj , r⟩ ≥ c
implying ⟨vi + vj , r⟩ ≥ 2c. Note that vi + vj is also a unit vector because
(vi+ vi)

2 = 1+2(−1
2 )+1 = 1. Hence the expected number of edges is mN(2c).

We shall pick the smallest c such that nN(c)−mN(2c) ≥ nN(c)/2. (Then, in
expectation removing one endpoint of every edge is S, at least half the expected
vertices remain and form an independent set.) Let d = 2m/n denote the average
degree. Hence we need nϕ(c)(1c − 1

c3 ) ≥ dnϕ(2c) 1
2c . When d is a sufficiently

large constant (and then we will have 1
c3 ≤ 1

2c ), this simplifies to a sufficient

condition of e3c
2/2 ≥ d. Hence we shall choose c =

√
2 ln d
3 . At this point the

expected number of vertices in S is nN(c) ≥ 1
2c

√
2π

e
ln d
3 ≥ Ω( n

d1/3
√

log d
). By

repeatedly removing independent sets in this manner, we obtain a coloring with
O(∆1/3

√
log∆ log n) colors. (The maximum degree ∆ serves as a convenient

upper bound on all average degrees d encountered in the iterations of the algo-
rithm. A tighter parameter than ∆ is the average degree of the vertex induced
subgraph of maximum average degree. This parameter can easily be approxi-
mated within a ratio of 2 by a greedy algorithm that repeatedly removes vertices
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of lowest degree, and can also be computed exactly in polynomial time using
flow techniques.)

The above rounding technique is randomized. Our analysis provides a lower
bound on the expected size of the independent set that is found in a single iter-
ation. As always in such situations, one can transform this to a high probability
of success, by repeating each iteration many times with independent choices of
random normal vectors r, and taking the largest independent set that is found.
Likewise, often randomized algorithm whose analysis is based on expectations
can be derandomized (e.g., through the method of conditional expectations),
but this topic is beyond the scope of this course.

There is no approximation known for 3-coloring that uses fewer than d1/3

colors (where d = 2m
n is the average degree of the graph). As a function of

n, there have been various improvements to the approximation ratio. For ex-
ample, by using the observation by Wigderson referred to above (for vertices
of degree above n3/4), one can color 3-colorable graph by n1/4 colors. Further
improvements are known.

Adapting the KMS analysis to k-colorable graphs gives a coloring using
Õ(∆1− 2

k ) colors.
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