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LP-duality asserts that if the optimal solution of the primal linear program below exists
and is bounded, then the same holds for the dual linear program, and both optimal solutions
have the same value. (Here Ai denotes row i and Aj denotes column j.)

Primal: minimize cTx subject to
Aix ≥ bi, 1 ≤ i ≤ h
Aix = bi, h < i ≤ m
xj ≥ 0, 1 ≤ j ≤ ℓ.

Dual: maximize bT y subject to
(Aj)T y ≤ cj , 1 ≤ j ≤ ℓ
(Aj)T y = cj , ℓ < j ≤ n
yi ≥ 0, 1 ≤ i ≤ h.

It may happen that neither the primal LP nor its dual are feasible, or that one is
unbounded and the other is not feasible.

Whenever one studies a linear program, it is informative to look at its dual.
Let x and y be feasible solutions to the primal and dual problem. Then they are

optimal iff they satisfy the complementary slackness conditions. Namely yT (Ax − b) = 0
and (cT − yTA)x = 0.

Duality theory places linear programming in NP
∩

coNP, and implies that finding a
feasible solution to a linear program is essentially as difficult as finding an optimal solution.
It can be used in order to prove results that predated LP duality, such as von-Neumann’s
minimax theorem for 0-sum two person games, and Farkas’ lemma (either Ax = b has a
solution with x ≥ 0, or there is a vector y such that yTA ≥ 0 but yT b < 0). We will
comment on the relevance of the minimax theorem to proving lower bounds for randomized
algorithms (Yao’s minimax principle).

If all coefficients of a linear program are integer and the constraint matrix A is totally
unimodular, then the linear program (if feasible) has an integer optimal solution.

Vertex cover (the complement of independent set) can be formulated as:
minimize

∑n
i=1 vi subject to:

vi + vj ≥ 1, for each edge (vi, vj),
vi ∈ {0, 1}, for each vertex vi.

NP-hardness of vertex cover implies that integer programming is NP-hard.
We relax the integer program to a linear program by replacing the vi ∈ {0, 1} constraints

by nonnegativity constraints vi ≥ 0. The gap between the value of the optimal solution for
integer program and its relaxed fractional program is known as the integrality gap. For the
case of vertex cover, it is a multiplicative factor of at most 2.



By studying the dual of this linear program we will derive a polynomial time algorithm
for vertex cover in bipartite graphs.

We shall also use duality and total unimodularity to prove the min-cut/max-flow theo-
rem.

Homework. Hand in by May 17.

1. Helly’s theorem says that for any collection of convex bodies in Rn, if every n+ 1 of
them intersect, then there is a point lying in the intersection of all of them. Prove
Helly’s theorem for the special case that the convex bodies are polytopes. Your proof
should be based on linear programming duality. Try to keep it short (but without
harming correctness).

Guidance. Recall that a polytope is the intersection of half spaces. Hence the
intersection of polytopes is also the intersection of half spaces. Equivalently, it is the
solution to a system of inequalities Ax ≥ b. Hence Helly’s theorem for polytopes is
equivalent to proving that if a system of inequalities Ax ≥ b does not have a solution,
then we can select n+1 of the inequalities such that the resulting system does not have
a solution. This system of inequalities can be cast as the constraints of an LP (you
would need to also choose some objective function for the LP – make the choice that
would make the resulting proof as simple as possible). Going to the dual, one would
like it to be feasible but unbounded (which you will need to prove). Thereafter, by a
variation on the notion of basic feasible solutions one would need to show that n+ 1
nonzero dual variables suffice for an unbounded solution. Removing the remaining
variables and taking the dual of the resulting LP would give an infeasible version of
the primal, but with less constraints. Filling the gaps in the above sketch and putting
all parts together, you should be able to deduce Helly’s theorem.

2. We saw in class that the LP that we gave for maximum matching (the dual of the
LP for vertex cover) has a half integral (all variables receive values from {0, 12 , 1})
optimal solution. Prove that the same holds for the LP for vertex cover. Moreover,
prove that all vertices of the polytope defined by the vertex cover LP are half integral
(a theorem due to Nemhauser and Trotter). Equivalently, for every linear objective
function (costs on the vertices, positive, negative or 0) that one wishes to minimize,
there is an optimal solution that is half integral. (There are several known proofs
for this theorem. One proof, following directly from the definition of a vertex, is
by a shifting argument, showing that every solution that is not half integral can be
expressed as an average of two other solutions. Another proof is by a clever reduction
to the bipartite case.)

3. Prove that the vertex-arc incidence matrix for directed graphs is totally unimodular.
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