
Lecture 3

Uri Feige

Starting November 30, 2022

1 The simplex algorithm

The simplex algorithm was designed by Danzig in 1947. We present the main ideas involved.

1.1 A geometric view

Recall that a linear program defines a polyhedron. For simplicity, let us assume here
that this polyhedron is nonempty (i.e., the LP is feasible) and bounded (namely, it is a
polytope). Then we know that the optimal value of the LP is attained at a vertex of the
polytope (equivalently, at a basic feasible solution to the LP). We say that two vertices of
a polytope are adjacent if they are connected by an edge of the polytope.

The basic idea of the simplex algorithm is as follows. One starts at an arbitrary vertex
of the polytope. (The question of how to find a starting vertex will be addressed shortly.)
Thereafter, at every iteration, the algorithm moves to a neighboring vertex of better value
(of the objective function). The algorithm ends when such a move is no longer possible,
meaning that the current vertex is a local optimum compared to all adjacent vertices.

The above description gives only the basic idea. A more serious treatment invloves prov-
ing that the solution found is optimal, showing how one can implement a single iteration,
deciding which of several improving adjacent vertices to move to, how to find a starting
feasible vertex, deal with polyhedrons that are unbounded, with degeneracies, analysing the
number of iterations required (and showing that this number is finite) and so on. An even
more serious treatment involves the many ideas that come into improved implementations
of the simplex algorithm.

1.2 LPs in various forms

In principle, a simplex-like algorithm can be run on linear programs in cannonical form, or
even in general form. However, for reasons of efficiency, the simplex algorithm is run on
linear programs in standard form. This allows for many shortcuts in the implementation.

We note however that there are cases where one runs a simplex-like algorithm on an
LP that is not in standard form. This may happen if the number of constraints is much
larger than the number of variables. Transforming such an LP to standard form greatly
increases the number of variables (by introducing a slack variable for every constraint), an
effect that is undesirable. Moreover, in some cases the number of constraints is so large
that they are not explicitly recorded. Instead, they are generated “on the fly” during the
run of the algorithm, making it impossible to work in standard form. (Later in the course,

1



when we discuss the Ellipsoid algorithm, we shall see scenarios where constraints are not
given explicitly.)

1.3 Finding a feasible solution

In order to start the simplex algorithm, one needs some basic feasible solution. In principle,
the complexity of finding whether an LP is feasible is polynomially related to that of finding
the optimal solution to LPs. Given the ability to find optimal solutions, we can certainly find
feasible solutions. Given the ability to find feasible solutions, we can find optimal solutions
by performing binary search on the value of the objective function (treated as a constraint).
Here we use the fact that the optimal solution, if bounded, is attained at a vertex, and that
numerical precision (representing numbers as rationals) that is polynomially related to the
input size suffices in order to exactly represent a vertex.

Hence in principle, one should not expect to be able to find feasible solutions significantly
more quickly than optimal solutions, and the problem of starting the simplex algorithm is
as hard as the problem of running it. This gives a clue as to how to start the simplex
algorithm.

Recall that we are dealing with LPs in standard form.
minimize cTx
subject to
Ax = b
x ≥ 0
We may assume without loss of generality that b ≥ 0, as we can always multiply con-

straints by −1. Now introduce a vector y of m variables (similar to slack variables) and
consider the new LP in standard form:

minimize 1T y
subject to
Ax+ y = b
x ≥ 0
y ≥ 0
(Here 1T is the all 1 row vector.) In this new program, setting x = 0 and y = b is a

bfs. Hence the simplex algorithm can be started. Let x∗, y∗ be the final bfs found by the
simplex algorithm, and assume that it is optimal. There are three cases:

1. y∗ = 0 and x∗ has exactly m nonzero coordinates. In this case x∗ is a bfs for the
original program, and the nonzero variables are the basic variables.

2. y∗ = 0 and x∗ has less than m nonzero coordinates. In this case x∗ is a bfs for the
original program, and one can complete the set of nonzero variables to a basis (by
adding 0-variables whose respective columns are linearly independent).

3. y∗ ̸= 0. In this case the original LP is not feasible.

Hence to start the simplex algorithm on an LP, one first runs the simplex algorithm on
an initialization LP.

2



1.4 The linear algebra of the simplex algorithm

Consider a linear program in standard form.
minimize cTx
subject to
Ax = b
x ≥ 0
We assume at this point that there are no degeneracies (every bfs has m nonzero vari-

ables), and that we are given some bfs. In this case, a single iteration of the simplex
algorithm will do the following:

Move to an adjacent bfs with lower value of cTx. If no such adjacent bfs exists, stop.
We shall show now that such an iteration can be performed in polynomial time.
Let xB = xB(1), . . . , xB(m) be the current bfs, and let B = (AB(1) . . . AB(m)) be the

corresponding basis matrix.
Let xj be a nonbasic variable, and lets check whether it is profitable to have it enter the

basis.
We know that at the beginning of the current iteration,
BxB = BxB +Ajxj = b.
Define direction variables dB, dj that indicate by how much we change the current value

of the basic variables and of xj . (For other variables, their corresponding value in the vector
d is 0.) Then they need to satisfy BdB +Ajdj = 0, implying

dB = −B−1Ajdj .
When dj = 1, the change in the objective function is
c̄j = cj − cTBB

−1Aj ,
which is called the reduced cost.

We want xj to enter the basis only if the reduced cost is negative. We remark here that
if xj is already in the basis, B−1Aj is just the indicator vector for xj , implying that c̄j = 0.

If the reduced cost is negative, we can move in the direction of d to a distance θ, until
one of the previous basic variables becomes 0. Hence:

θ = mini∈basis[−
xi
di
].

The xi for which θ is realized leaves the basis.
If no di < 0, then the optimum is −∞.
The issue of degeneracies may cause problems (force θ = 0), and they will be addressed

at a later section.

Lemma 1 The new solution reached by one iteration of the simplex algorithm is also a bfs.

Proof: If not (meaning that the corresponding columns have a linear dependency) then
in the vector d leading to it we would necessarily have had di = 0 for the variable that
left the basis (because setting dj = 1, the equation BdB +Ajdj = 0 has a unique solution,
and the assumed linear dependency implies that it has a solution with di = 0), which is a
contradiction. 2

Lemma 2 Let x be a bfs with basis matrix B (and matrix N corresponds to the rest of A),
and let c̄ be the corresponding vector of reduced costs for all nonbasic variables. Then

1. If x is optimal and nondegenerate, then c̄ ≥ 0.

3



2. If c̄ ≥ 0, then x is optimal.

Proof: To prove 1, observe that if c̄j < 0, then moving in the direction of the corre-
sponding d reduces the objective function.

To prove 2, let y be an arbitrary feasible solution, and define d = y − x. Then Ad = 0,
implying BdB +NdN = 0, and dB = −B−1NdN . Now we can compute the change in cost
that results from a move by d.

cTd = cTBdB + cTNdN = (cTN − cTBB
−1N)dN = c̄N

TdN
As dN ≥ 0, and we assumed that c̄N ≥ 0, the change in cost is positive. 2

1.5 Handling degeneracies

If a bfs is degenerate, then we may be required to choose θ = 0 and there is no progress in
the objective function in a single iteration. In this case, we do perform a change of basis
(but stay in the same vertex of the polyhedron).

A problem that might occur is cyclying. We may continue changing bases in a cyclic
function without ever leaving the vertex (even if the vertex is not optimal). One can design
examples were cycling occurs, and it has been reported to occur in practice. There are
several ways for avoiding cycling:

1. A generic way. A degeneracy is a result of numerical coincidence. Slightly perturbing
b at random will eliminate it. However, this approach is not favored because it is
computationally costly – requires high precision. Moreover, care must be taken not
to ruin feasiblity of the LP.

2. At a degenerate vertex, decide at random which of several plausible nonbasic variables
enters the basis, and which plausible basic variable leaves the basis. Eventually, with
probability 1, one gets out of the vertex.

3. Use some deterministic pivoting rule that ensures getting out of the vertex. This is
the preferred approach. One such rule is Bland’s rule: when there is a choice between
different variables (to enter or leave the basis), always choose the variable of smallest
index.

1.6 Pivot selection

Many nonbasic variables may have negative reduced cost. Hence one needs a rule to resolve
the ambiguity of the simplex algorithm. Many options are possible here. Among them we
have:

1. Choose the variable with most negative reduced cost.

2. Choose the variable with greatest impact on the objective function (minimizing θc̄j).

3. Choose an anticycling rule.

The performance of the simplex algorithm and the complexity of implementing it de-
pends on the particular pivot selecting rule. A major open question asks whether there is

4



a pivot selection rule that guarantees a polynomial number of iterations. We shall discuss
this question later in Section 1.9.

In practice, in most cases and with many of the pivot selection rules, the number of
iterations of the simplex algorithm is typically O(m).

1.7 Implementation issues: dynamic algorithms and the tableau method

The way we described the simplex algorithm appears to invert a matrix B in every iteration
(so as to compute xB = B−1b), giving a complexity of roughly m3 operations per iteration.
Moreover, potentially one needs to compute B−1Aj for every nonbasic variable (so as to get
the associated vector dB), making the complexity O(m2n). However, we note that between
consecutive iterations, the matrix B changes by only one column, a fact that can be used
in order to speed up the algorithm. We illustrate his by presenting the tableau version of
the simplex algorithm.

Let us first recall how Gaussian elimination computes the inverse of a matrix B. One
appends to it the identity matrix I to obtain a matrix C = [I;B]. Then one performs row
operations until the submatrix B is transformed into a matrix I, and at this point the result
is [B−1; I]. A very useful fact to note is that performing these row operations is equivalent
to multiplying C on the left by B−1. (Every row operation is equivalent to multiplying by a
matrix, and B−1 is the unique solution to the matrix equation X[I;B] = [B−1; I].) Hence
if one would append a column y to the matrix C, then the same row operations on the
matrix [I;B; y] would lead to the matrix [B−1; I;B−1y]. If one is not explicitly interested
in the matrix B−1, but only in the product B−1y, then there is no need to carry around
the first component of the matrix, and it suffices to consider a matrix [B; y] and perform
on it row operations until the B changes to I.

Now lets get back to the simplex algorithm. Recall that we wish to compute quantities
such as xB = B−1b, and that dB depends on B−1Aj (where Aj is a column corresponding
to a nonbasic variable). Recall that we may view A as [B;N ]. Consider now the matrix
[B;N ; b]. Performing row operations we can obtain the matrix [I;B−1N ;B−1b]. Altogether,
the number of row operations performed to obtain this matrix is O(m2), giving a total of
O(m2n) basic operations.

Now we reach the main point. In the next iteration of the simplex algorithm, only one
column is exchanged between B and N . Exchanging the locations of these columns in the
matrix [I;B−1N ;B−1b] gives a matrix whose left portion is identical to I, except for one
column. Now m row operations suffice in order to reach the next [I;B−1N ;B−1b]. Hence
the number of operations per iteration can be reduced to O(mn).

It is convenient to add a row [cTB; c
T
N ; 0] to the matrix above. Performing row operations

that make the first component of this row equal to cTB − cTBB
−1B = 0, one obtains [0; cTN −

cTBB
−1N ;−cTBB

−1b], which gives the reduced costs and the value of the objective function
(negated).

Summarizing, when working in tableau form we do the following:

1. For simplicity, think of the columns of A as being rearranged so that the basic variables
are first. (This need not be done in practice.) Then we have the matrix [B;N ; b].
Extend it by the cost row [cTB; c

T
N ; 0].

5



2. Perform row operations until one gets the matrix X = [I;B−1N ;B−1b]. Then perform
row operations to modify the cost row to [0; cTN − cTBB

−1N ;−cTBB
−1b].

3. Find a column j with negative reduced cost. (If there are several such columns,
use your pivot selection rule to decide among them.) If there is no such column,
stop, and then the last column of the matrix gives the bfs and the (negation of the)
corresponding value of the objective function.

4. If Xij < 0 for all 1 ≤ i ≤ m then stop and report that the objective function is
unbounded.

5. Compare the last column to column j, to find min[Xi(n+1)/Xij ] over all i with positive
Xij . (If there are several such i, use your pivot selection rule to decide among them.)

6. Exchange columns i and j and go back to step 2. (The exchange need not be done
explicitly in practice.)

A toy example of how the simplex algorithm is run is given as homework.

In practice, one rarely runs the tableau version of the simplex algorithm. A major reason
for this is that this version fails to capitalize on special structure of the matrix A.

• If A has a very large aspect ratio n ≫ m, then one uses techniques that do not hold
all of N simultaneously, but just enough so as to find a variable to pivot on.

• Often the matrix A is very sparse (most entries are 0). The tableau version destroys
this property. Other versions of the simplex algorithm, like the so called revised
version, take advantage of sparsness and reduce the number of operations per iteration.

• Sometimes the matrix A has special structure that allows one to decompose it into
smaller blocks, and then one runs versions of the simplex algorithm that take advan-
tage of the block structure.

1.8 Column geometry

We give here another geometric view of the simplex algorithm.
k + 1 vectors y1, . . . , yk+1 in Rn are affinely independent if the k vectors (yi − yk+1)

for 1 ≤ i ≤ k are linearly independent. The convex hull of y1, . . . , yk+1 in Rn is called a
k-dimensional simplex.

Consider an arbitrary linear program in standard form:
minimize cTx
subject to
Ax = b
x ≥ 0
We wish it to have some additional properties, that will be explained shortly. We

describe a transformation that allows us to achieve these properties.
Let M be large enough so that for every basic feasible solution

∑
xi < M . Let us add an

auxiliary slackness variable y ≥ 0, and the constraint y+
∑

xi = M . Dividing all constraints

6



by M , and introducing a new variable z for the objective function, we may bring the LP to
the following form:

minimize z
subject to
Ax = b
cTx = z∑

xi = 1
x ≥ 0
The last two constraints can be viewed as convexity constraints. They require the vector

b to be a convex combination of the columns of A (rather than just a nonnegative linear
combination), and the objective function z to be a convex combination of the entries of the
vector c (and the coefficients in both convex combinations are the same).

Now consider the following geometric picture (which you can draw and visualize assum-
ing that m = 2, where m is the number of rows in A). The geometric picture is drawn in
Rm+1, where the last coordinate (the vertical one) is called the z direction.

There are vectors (points in Rm+1) yi, one for each variable of the LP, where yi is com-
posed of column Ai and one extra coordinate with value ci. There is a line in Rm+1 parallel
to the z direction that corresponds to all points that have b as their first m coordinates.
We call it the b line.

A basic feasible solution is a set B of m + 1 affinely independent vectors from the yi
vectors, such that the b line intersects their convex hull (which is a simplex). The hyperplane
on which this simplex lies is called the dual plane. This is the set of points that can be
expressed as

∑
λiyi for yi ∈ B and

∑
λi = 1. The value of the objective function is the

value of the z coordinate at the point of intersection.
During a pivot operation, we move from simplex to simplex, where the two simplices

differ in one vertex.
The reduced costs have a geometrical interpretation in this picture (whose proof is left

as homework). The reduced cost of variable xj is exactly the distance one needs to travel
from yj in the z direction until one eventually intersects the dual plane. If yj lies below this
dual plane, then the reduced cost is negative.

A degeneracy is a place where the b line intersects a simplex of lower dimension (e.g., a
line joining two points, when m = 2).

Remark: If the optimum value of the original LP is unbounded, then this is indicated
by having y = 0 at the optimal solution for the new LP.

1.9 Is the simplex algorithm a polynomial time algorithm?

Starting at an arbitrary bfs, how many pivot operations does it take the simplex algorithm
to reach the optimal solution? This depends on the pivot rule that is used.

Klee and Minty show that under certain pivot rules, there are LPs that require an
exponential number of pivot operations. The basic idea of their proof is as follows. A cube
in n dimensions has 2n vertices. They would like to cause the simplex algorithm to visit all
vertices of a cube. The simplex algorithm moves from a vertex to an adjacent vertex only if
the respective reduced cost is negative. The Klee-Minty LP is based on a so called squashed
cube. This gives the following LP, where ϵ is some parameter satisfying 0 < ϵ < 1/2.

minimize −xn

7



subject to:
ϵ ≤ x1 ≤ 1,
ϵxj−1 ≤ xj ≤ 1− ϵxj−1, for 2 ≤ j ≤ n.
By adding slackness variables, one gets an LP in standard form, 3n variables and 2n

constraints (and 3n nonnegativity constraints). The simplex algorithm may visit all 2n

vertices and still in every step improve the value of the objective function.
For almost all known deterministic pivot rules, there are known examples of linear

programs where the simplex algorithm visits exponentially many vertices.
The diameter of a polytope is the number of edges in the shortest path between the two

most distant vertices in the skeleton graph of the polytope (with vertices of the polytope
being vertices of the graph, and edges of the polytope being the edges of the graph). The
famous Hirsch conjecture says that every d-dimensional polytope defined by m halfspaces
has diameter at most m− d. A counter example to the conjecture (with diameter at least
m − d + 1) has been provided in [4]. The strongest upper bound known on the diameter
is mlog d, given by Kalai [2] – see Section 1.10. However, Kalai’s proof does not give a
polynomial time computable pivot rule.

There are known randomized pivot rules under which the simplex algorithm takes at
most m

√
n pivot steps (in expectation) [3]. Subexponential lower bounds for some random-

ized pivoting rules are provided in [1].
In practice, the number of pivot operations performed by the simplex algorithm is small,

often O(m). Average case analysis for the simplex algorithm may potentially explain its
empirical success. Here are three random models that were considered, and in each of the
it was shown that a polynomial number of pivot operations (under some specific pivot rule)
suffice with high probability (where probability is taken over choice of input instance).

1. Random constraint matrix. Each entry of the constraint matrix is chosen indepen-
dently at random as a Gaussian random variable with mean 0 and variance 1.

2. Random polarity. All coefficients of the LP (namely, A, b and c) are chosen in an
arbitrary manner. All constraints are inequalities. Only the direction of the inequality
(“≤” versus “≥”) is chosen independently at random per inequality.

3. Smoothed analysis (of Spielman and Teng [5]). The LP is chosen arbitrarily, and
the constraint matrix A is scaled so that it has no entries larger than 1 in absolute
value. Then random “noise” is added to A, where the entries of the noise matrix are
independent Gaussian random variables with mean 0 and variance σ2. For every LP,
it is shown that in this model the simplex algorithm runs with high probability in
time that is polynomial in 1/σ2, where probability is taken over the choice of noise
matrix.

It would be nice to strengthen smoothed analysis so that the noise per entry is small
compared to the value of the entry (rather than being small compared to the maximum
entry of A). In particular, this will force 0 entries to remain 0.

1.10 On the diameter of polytopes

A polytope of dimension n is simple if it has no degeneracies, namely, every vertex is incident
with exactly n edges, and likewise, the vertex is the intersection of exactly n facets. (Each

8



edge is the intersection of n− 1 of these facets.) A cost function is generic if it is linear and
no two vertices have the same cost.

For simplicity, we shall address here only polytopes (rather than polyhedrons) that are
simple (we do not allow degeneracies), and only cost functions that are generic. However,
all results extend to nonsimple polyhedra and arbitrary linear cost functions.

Let H(n,m) be the maximum over all simple polytopes of dimension n and with m
facets, all linear cost functions, and all starting vertices, of the length of shortest monotone
path to a vertex of minimum value. Likewise, let M(n,m) be the maximum over all simple
polytopes of dimension n and with m facets, all linear cost functions, and all starting
vertices, of the length of longest monotone path to a vertex of minimum value. The Klee-
Minty cube shows that M(n, 2n) ≥ 2n − 1.

In graph theory term, a simple polytope induces an n-regular graph and a generic cost
function induces an orientation on its edges. This is not an arbitrary directed graph. For
example, it has a unique sink, and moreover, this sink is reachable from every vertex. This
property of having a unique and moreover reachable sink is inherited to each subgraph that
is induced by a face of the polytope.

We describe here an upper bound on H(n,m) due to Gil Kalai.
Given a polytope P , cost function f and a vertex v, call a facet active if it contains a

vertex whose cost is lower than f(v). If the current vertex v is not optimal, either all facets
adjacent to v are active, or n − 1 of these facets are active (because the edge along which
the cost decreases is at the intersection of n − 1 facets). A monotone path will never visit
a nonactive facet.

A path p from u to v will be referred to as desirable if it is monotone, and there is no
shorter monotone path p′ from u to v that uses only the same facets (not necessarily all of
them) that p uses.

Extend the notation H(n,m) to H ′(n,m), where in H ′(n,m) is the maximum length of
a desirable path that visits at most m facets (whereas the polytope itself may have more
facets). Clearly, H(n,m) ≤ H ′(n,m). Hence it suffices to upper bound H ′(n,m).

Suppose for simplicity that m is a power of 2. Sort all facets in decreasing order of their
lowest f value, breaking ties arbitrarily. (There must be ties, because the optimal vertex
lies on n facets.) Let Fh denote the set of m/2 first facets (of high f values), and let Fℓ

denote the set of m/2 last facets (of low f values). Consider the longest desirable path that
starts at v and never exits Fh. Its length is at most H ′(n,m/2). At its end point, either we
reached the optimal vertex (this cannot happen if m/2 ≥ n, but might possibly happen if
m/2 < n) and then we are done, or else in one more step we reach a facet of Fℓ. Call this
facet F .

Observe that F is a polytope of dimension n − 1, with at most m − 1 facets (the
constraints other than F ). Now take in F a desirable path to the vertex of lowest value in
F . Its length is at most H ′(n − 1,m − 1). If the vertex reached is optimal in P , then we
are done. Else, in one more step one exits F . At this point at most m/2 − 1 active facets
remain. Hence H ′(n, m2 − 1) additional steps suffice.

Altogether, we have the recursive formula H ′(n,m) ≤ H ′(n,m/2) +H ′(n− 1,m− 1) +
H ′(n,m/2 − 1) + 2. This is basically H ′(n,m) ≤ 2H ′(n,m/2) + H ′(n − 1,m). Taking
H ′(n,m) = m

(n+logm
logm

)
satisfies the recursion (because

(n
k

)
=

(n−1
k−1

)
+

(n−1
k

)
, and because the

base cases of n = 1 and m ≤ n are also satisfied).

9



References

[1] Oliver Friedmann, Thomas Dueholm Hansen, Uri Zwick: Subexponential lower bounds
for randomized pivoting rules for the simplex algorithm. STOC 2011: 283–292.

[2] Gil Kalai: Upper Bounds for the Diameter and Height of Graphs of Convex Polyhedra.
Discrete and Computational Geometry 8: 363–372 (1992).

[3] Gil Kalai: A Subexponential Randomized Simplex Algorithm (Extended Abstract).
STOC 1992: 475–482.

[4] Francisco Santos: A counterexample to the Hirsch conjecture. Annals of Mathematics
176 (1): 383-412 (2011).

[5] Daniel A. Spielman, Shang-Hua Teng: Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM 51(3): 385–463 (2004).

10


