
Improved approximation ratios for traveling salesperson tours and

paths in directed graphs

Uriel Feige∗ Mohit Singh†

August 11, 2006

Abstract

In metric asymmetric traveling salesperson problems the input is a complete directed
graph in which edge lengths satisfy the triangle inequality, and one is required to find a
minimum length walk that visits all vertices. In ATSP the walk is required to be cyclic. In
asymmetric traveling salesperson path problem (ATSPP), the walk is required to start at
vertex s and to end at vertex t.

We improve the approximation ratio for ATSP from 4
3 log3 n ' 0.842 log2 n to 2

3 log2 n.
This improvement is based on a modification of the algorithm of Kaplan etal [JACM 05]
that achieved the previous best approximation ratio. We also show a reduction from ATSPP
to ATSP that looses a factor of at most 2 + ε in the approximation ratio, where ε > 0 can
be chosen to be arbitrarily small, and the running time of the reduction is polynomial for
every fixed ε. Combined with our improved approximation ratio for ATSP, this establishes
an approximation ratio of (4

3 + ε) log2 n for ATSPP, improving over the previous best ratio
of 4 loge n ' 2.76 log2 n of Chekuri and Pal [Approx 2006].

∗Microsoft Research and Weizmann Institute. Email: urifeige@microsoft.com
†Tepper School of Business, Carnegie Mellon University. Email: mohits@andrew.cmu.edu

1

1 Introduction

One of the most well studied NP-hard problems in combinatorial optimization is the minimum
Travelling Salesperson (TSP) problem [5]. The input to this problem is a graph with edge
lengths, and the goal is to find a cyclic tour of minimum length that visits every vertex ex-
actly once. In the symmetric version of the problem, the graph is undirected, whereas in the
asymmetric version the graph is directed. In metric version of the problem the input graph is a
complete graph (with anti-parallel edges in the directed case), and edge weights (denoted by w)
satisfy the triangle inequality w(u, v) + w(v, w) ≥ w(u,w). (Most often, not all edge distances
are given explicitly, but rather they can be computed efficiently. For example, they may be
shortest path distances between the given points in some input graph, or the distances between
points in some normed space.) In the nonmetric version a cyclic tour might not exist at all,
and deciding whether such a tour exists in NP-hard (being equivalent to Hamiltonicity). In the
metric version of the problem a cyclic tour always exists, and we shall be interested in polyno-
mial time approximation algorithms that find short cyclic tours. The performance measure of
an algorithm is its approximation ratio, namely, the maximum (taken over all graphs) of the
ratio between the length of the cyclic tour output by the algorithm (or the expected length, for
randomized algorithms) and the length of the shortest cyclic tour in the given graph.

In this paper we shall be dealing only with metric instances of TSP. In this case, every tour
that visits every vertex at least once can be converted into one that visits every vertex exactly
once (by skipping over redundant copies of vertices), without increasing the length of the tour.
A cyclic tour that visits every vertex at least once will simply be called a tour, and the TSP
problem is equivalent to that of finding the shortest tour.

For symmetric TSP, the well known algorithm of Christofides [4] achieves an approximation
ratio of 3/2. Despite much effort, no better approximation ratio is known, except for some special
cases. Considerable efforts have been made to improve over the 3/2 approximation ratio using
approaches based on linear programming relaxations of TSP. Specifically, a linear programming
bound of Held and Karp [6] is conjectured to provide a 4/3 approximation ratio. In terms of
negative results, it is known that there is some (small) ε such that symmetric TSP is NP-hard
to approximate within a ratio of 1 + ε.

The asymmetric TSP (ATSP) problem includes the symmetric version as a special case (when
anti-parallel edges have the same weight), and hence is no easier to approximate. The known
hardness of approximation results are of the form 1 + ε, with a slightly larger ε than for the
symmetric case. There are known examples for which the Held Karp lower bound for ATSP is
a factor of 2 away from the true optimum [2] (whereas for symmetric TSP this lower bound is
at most a factor of 3/2 from the optimum [11, 10]). Frieze, Galbiati and Maffioli [1] designed
an approximation ratio for ATSP with approximation O(log n).

Since, there has been the following series of work for the ATSP problem. The algorithm
of [1] provides an approximation ratio of log2 n (or as Blaser stresses, 1 · log2 n), and Blaser
designs an algorithm for which he shows an approximation ratio of 0.999 log2 n. Subsequently,
Kaplan etal [7] designed an algorithm with approximation ratio 4/3 log3 n < 0.842 log2 n (using
a technique that they applied to other related problems as well). In this paper, we provide
a modest improvement in the leading constant of the approximation ratio. We show that the
anaysis of the algorithm of Kaplan etal [7] is not tight and it achieves a better ratio of 0.79 log2 n.
We then give a improved algorithm which returns a solution with approximation ratio of 2

3 log2 n.
Another interesting variant of the ATSP problem is the asymmetric travelling salesman

path problem in which we are not required to find a Hamiltonian cycle of minimum weight but
a Hamiltonian path between two specified vertices s and t. This problem has been recently
studied by Lam and Newman [9] who gave a O(

√
n)-approximation algorithm to the problem

2

which was improved to 4Hn-approximation algorithm by Chekuri and Pal [3]. Indeed, Chekuri
and Pal [3] adapted the 2Hn-approximation algorithm of Kleinberg and Williamson [8] to obtain
their algorithm. We show that ATSPP problem is nearly as well approximable as the ATSP
problem by showing a general reduction which converts a α-approximation algorithm for the
ATSP problem in to a (2 + ε)α-approximation algorithm for the ATSPP problem. Then using
our algorithm for the ATSP problem, we obtain a improved algorithm for the ATSPP problem
as well.

2 Our Results

For the asymmetric travelling salesperson problem(ATSP), we give the following theorem.

Theorem 2.1 Given a complete directed graph G = (V, E) with a weight function w satisfying
triangle inequality, we give a polynomial time algorithm which returns a Hamiltonian cycle of
weight at most 2

3 log2 n ·OPT where OPT is the weight of the optimal Hamiltonian cycle. Here
n = |V |.

The previous best algorithm was given by Kaplan et al [7], who showed a 0.842 log2 n approx-
imation. We first show that their analysis is not tight and their algorithm returns a solution
which costs no more than 0.79 log2 n · OPT . Then we modify their algorithm to obtain the
improved guarantee claimed in Theorem 2.1. This we show in Section 4.

For the asymmteric travelling salesperson path problem(ATSPP), we show the following
result.

Theorem 2.2 Given a complete directed graph G = (V, E) with a weight function w satisfying
triangle inequality and vertices s and t and an α-approximation to the ATSP problem we give
an algorithm which returns a Hamiltonian path from s to t of weight at most (2 + ε)α · OPT
where OPT is the weight of the optimal Hamiltonian path from s to t. The running time of the
algorithm is polynomial in the size of the graph for any fixed ε > 0.

Observe that it is trivial to obtain an α-approximation for the ATSP from an α-approximation
to ATSPP problem. The above theorem shows that both these problems can be approximated
to nearly the same factor. We prove Theorem 2.2 in Section 3. Along with the Theorem 2.1 and
Theorem 2.2, we have the following corollary.

Corollary 2.1 Given a complete directed graph G = (V, E) with a weight function w satisfying
triangle inequality, vertices s and t and a fixed ε > 0, there is a polynomial time algorithm which
returns a Hamiltonian path from s to t of weight at most (4

3 + ε) log2 n ·OPT where OPT is the
weight of the optimal Hamiltonian path from s to t. Here n = |V |.

3 From ATSP to ATSPP

Here we show how to use an α-approximation algorithm AlgTSP for the ATSP problem with
metric weight to obtain a (2+ε)α-approximation algorithm for the ATSPP problem with metric
weight.

First a few definitions. Given a graph G = (V,E) we call a (s, t)-walk in G spanning if it
visits every vertex of G at least once. Remember, we allow for edges and vertices to be visited
more than once in a walk. A tour is an (s, s)-walk which is spanning. Observe that a tour is
independent of vertex s. Given a directed path P and vertices u and v on P , we denote P (u, v)
to be the sub-path of P starting at u and ending at v.

3

In an instance of ATSPP problem I = (G,w, s, t) we are given a directed graph G with a
weight function w on edges which satisfy triangle inequality and the task is to find the cheapest
Hamiltonian path from s to t. While in an instance of ATSP , we are given I = (G,w) and we
are required to find a cheapest Hamiltonian cycle.

Observe that as the costs satisfy triangle inequality any spanning (s, t)-walk can be ”short-
cutted” to obtain a Hamiltonian path from s to t of no greater cost and every tour can be
”shortcutted” in to Hamiltonian Cycle of no greater cost. Hence, it is enough to find a spanning
(s, t)-walk for the ATSPP problem and a tour for the ATSP problem.

3.1 Overview

Here we present an overview of our reduction from ATSPP to ATSP. For every fixed ε > 0, this
reduction works in polynomial time, and allows one to transform a factor α approximation for
ATSP into a factor (2 + ε)α approximation for ATSPP.

Let s denote the starting vertex and t denote the ending vertex for ATSPP, and let OPT
denote the length of the minimum length spanning path from s to t. Assume for simplicity that
the value of OPT is known. Without loss of generality, we assume that for every pair of vertices
(u, v) the graph contains an edge (u, v) whose length is the shortest distance from u to v.

Let d(t, s) denote the distance from t to s in the input graph (this distance might be infinite).
The difficult case is when OPT < d(t, s), and this is the case that we will address in this overview.
In the first phase of the reduction, we modify the input graph as follows. We remove all edges
entering s and all edges exiting t, and put in an edge (t, s) of length min[d(t, s), OPT]. We
update the shortest path distance between all pairs of vertices not involving s and t to reflect
the existence of this new edge.

Observe that the new graph has a ATSP tour of length at most 2OPT . In the second stage
we use the approximation ratio for ATSP to find a simple tour (with no repeated vertices) of
length at most 2αOPT . Observe that in this tour s follows immediately after t, because the
only edge leading out of t leads into s. Remove the edge (t, s) from the tour, which now becomes
a spanning (s, t) path of length at most (2α− 1)OPT .

Unfortunately, we are not done at this point. The problem is that the length of an edge
(u, v) of the path might be shorter than its corresponding length in the original graph, due
to the fact that the shortest path distance between (u, v) decreased when we added the edge
(t, s). We replace every such problematic edge (u, v) with the path u− t− s− v. Now the edge
(t, s) reappears in our spanning path. Since (t, s) is not an edge of the original graph (or might
have length more than OPT in the original graph), the spanning path that we have does not
correspond to a spanning path of the same length in the original graph.

In the next phase of our reduction, we remove all copies or (t, s) from the spanning path.
This results in breaking the path into a collection of paths from s to t, such that every vertex
(other than s and t) appears on exactly one of these paths. If the number of paths is r, then
the sum of lengths of all their edges is at most (2α− r)OPT , because altogether we removed r
copies of (t, s).

The last stage of our reduction uses the following structural lemma.

Lemma 3.1 For every collection of k paths P1, . . . , Pk between s and t such that no vertex
appears in more than one path (we do not care here is some vertices do not appear at all), there
is a single path between s and t that includes these vertices, respects the order of each of the
original paths, and weighs no more than the weight of the original paths plus k times the weight
of minimum ATSPP.

The proof of this lemma appears in section 3.2.

4

Having established the lemma, we can limit ourselves to finding an ATSPP that respects the
order of the vertices on the paths, and then get a (2α − r + r)OPT = 2αOPT approximation
ratio. Such a path can be found by dynamic programming in time roughly nr. If r is constant,
this results in a polynomial time 2α approximation for ATSPP.

To make the algorithm polynomial also when r is not constant, we loose (1 + ε) in the
approximation ratio (the running time will be exponential in 1/ε). Rather than merging all
paths simultaneously, merge only k paths at a time, where k = 1/ε. Doing so using dynamic
programming takes time roughly nk, costs k times OPT, and decreases the number of paths by
k − 1.

3.2 Algorithm for ATSPP

In this section, we describe in detail the overview given above.

Algorithm Alg-Path:
Input: A α-approximation algorithm AlgTour to the ATSP and an instance of ATSPP
I = (G,w, s, t) and parameter ε.

1. Guess the value of the optimal (s, t)-path within a small factor, i.e., guess g such
that (1− ε

4) ·OPT ≤ g ≤ OPT .

2. Remove all edges incident in to s and also edges incident out of t. Include the edge
(t, s) with the weight as g. Let this modified graph be Ĝ and the modified weight
function ŵ. Let KG = (V, E(KG)) be the complete directed graph on V . Compute
m̂w : E(KG) → R+, the metric completion of the ŵ, i.e., m̂w(u, v) is the shortest
distance from u to v under the weight function ŵ.

3. Find the α-approximate solution C given by AlgTour on the complete graph KG
under the weight function m̂w. Let T be the tour obtained in Ĝ after replacing each
edge (u, v) by its corresponding shortest path in Ĝ.

4. Let r be the number of times edge (t, s) is chosen in T . Remove all copies of (t, s)
decomposes the T into a collection of r (s, t)-paths P = {P1, . . . , Pr} which together
span V . Shortcut these paths to ensure that each vertex except s and t is in exactly
one of them.

5. Return Q = Weave(G,P, ε).

Output: A (2 + ε)α-approximate solution to I.

Now, we describe the algorithm Weave which given a collection of (s, t) paths P returns a
single (s, t) path Q which respects the order of each path Pi ∈ P and is of small weight.

5

Algorithm Weave:
Input: A collection of r (s, t)-paths P = {P1, . . . , Pr} and a parameter ε > 0.

1. If r = 1 return P1 otherwise let k = min{5
ε , r}.

2. Make a table indexed by (Q1, . . . , Qk, v) for each prefix Qi of Pi for each i and for
each v ∈ V such that v is the last vertex of some Qi. Store the path of the cheapest
(s, v)-path spanning ∪k

i=1Qi respecting the order of vertices in each Qi. Fill each
entry of the table inductively.

3. Let P ′ be the cheapest path which spans the vertices of (P1, . . . , Pk) respecting
the order of the vertices in each of these paths, i.e., it corresponds to the entry
(P1, . . . , Pk, t). Let P ′ = P ∪ P ′ \ {P1, . . . , Pk}.

4. Return Weave(G,P ′, ε).
Output: (s, t)-path Q spanning vertices in P, which respects the order of each path
Pi ∈ P and of weight at most

∑r
i=1 w(Pi) + (1 + ε/4)r · OPT , where OPT is the weight

of the optimal (s, t)-spanning path.

The following theorem proves the guarantees for Algorithm AlgPath.

Theorem 3.2 Given an instance I = (G,w, s, t) of ATSPP, a constant ε > 0 and an α-
approximation AlgTour to the ATSP problem, the algorithm AlgPath returns a (s, t)-spanning
path of weight at most (2 + ε)αOPT where OPT is the weight of the optimal (s, t)-spanning
path.

Before we prove Theorem 3.2, we give a proof of Lemma 3.1.
Proof: Let P denote the optimal ATSPP from s to t. We maintain a path Q starting from s
and prefix paths Qi of paths Pi with the property that Q visits the vertices of ∪iQi respecting
the order of each Qi. In each iteration we will extend Q and at least one of Qi maintaining the
above property. For each path Pi, we also maintain a vertex fronti which is the next vertex to
be put in order, that is, the successor of Qi in Pi. We initialize Q = (s) and each Qi = (s) and
fronti to be the second vertex in each Pi.

Now, we describe an iteration. Let v be the last vertex of Q and Pj be the path containing
v. Let u = fronti be the first vertex on path P (v, t)(sub-path of P starting at v and ending at
t) among all front vertices. First we assume that i 6= j and describe the updates. Let w be the
last vertex on Pj which occurs on P (v, u), i.e., each vertex after w on Pj either occurs before v
on P or after u on P . Now, extend Q ← Q-Pj(v, w)-P (w,fronti). We update Qj = Qj-Pj(v, w),
Qi = Qi-(fronti). We also update frontj to be vertex succeeding w in Pj and fronti to be the
vertex succeeding old fronti in Pi. In this case we say that we jumped out of path Pj to Pi using
a sub-path of the optimal path P (w,fronti).

Now, if i = j we do not use any sub-path of P and do not jump out of Pi. We extend Q
by using a sub-path of Pi as follows: Q ← Q-Pi(v, w). We update Qi = Qi-Pi(v, w). We also
update fronti to be vertex succeeding w in Pi.

Hence, in every step, one path surely advances its front vertex (denoted i in the above
explanation) and the path containing the last vertex of Q also advances if it can. We iterate till
Q ends at t. Clearly, the property that Q visits the vertices of ∪iQi in the order of each Qi is
maintained in each update. See Figure 1 for an example.

We now claim that the total weight of the path Q found is no more than the sum of weights
of individual paths, plus k times the weight of the ATSPP. To show this we first argue that the

6

s t

a1

a4 a5 a7

b4 b5

c4 c5

s
t

a4 b5
a5 c5a7

s a4

a6
a8

s t

a1

a4 a5 a7

b4 b5

c4 c5

s
t

a4 b5
a5 c5a7

s a4

a6
a8

b6b6

a5 a6
a7 b5

P1

P2

P3

P

Q Q

Q1

Q2

Q3

P

Q1

Q2

Q3

(a) (b)

Figure 1: In (a), we have paths P1 = (s, a1, . . . , t), P2 = (s, b1, . . . , t), P3 = (s, c1, . . . , t), Hamiltonian
path P . Q is the current path which respects the ordering of each Qi where Q1 = (s, a1, . . . , a4), Q2 =
(s, b1, . . . , b4), Q3 = (s, c1, . . . , c4). Also front1 = a5, front2 = b5, front3 = c5. Observe that b5 is the first
front vertex in P (a4, t). Also, a7 is the last vertex on P1 which is on P (a4, b5). Hence, we extend Q by
adding the sub-path P1(a4, a7) and P (a7, b5). Q1 is extended till a7 and Q2 till b5.

sub-paths of Pi in Q are edge-disjoint for each i. We then show that for any path Pi all jumps
out of Pi use disjoint sub-paths of the ATSPP P . Hence, any edge of P can be used at most k
times.

The first claim is obvious as any subpath of Pi used in Q starts at one vertex before the
current fronti and ends at one vertex before the new fronti.

Now, we prove the second claim. Observe that if we jump out of u and v on Pi and u
occurs before v in Pi then the jump at u occurs before the jump at v. Clearly, v cannot lie on
the sub-path of P which is traversed after jumping from Pi at u as otherwise we would jump
out at v and not at u. Now, we claim that u lies before v in P and hence u cannot lie on
the sub-path of P traversed after jumping from v (which contains nodes occurring after v in
P). Indeed, let w be the front vertex of Pj where the jump sub-path starting from u ends. By
definition u is the furthest vertex of Pi before w on P . Hence, v lies after w on P and there-
fore after u. As no two jumps out of Pi have a common vertex, they are clearly edge-disjoint. 2

Lemma 3.3 Given a collection of r (s, t)-paths P = {P1, . . . , Pr} and a parameter ε > 0,
algorithm Weave(P, s, t, ε) returns a single (s, t)-path spanning all vertices in P and respecting
the order of vertices of weight no more than

∑r
i=1 w(Pi) + (1 + ε/4)r ·OPT , where OPT is the

weight of the optimal (s, t)-spanning path. The running time of the algorithm is O(nO(1
ε
)).

Proof: In any iteration, if we replace paths P1, . . . , Pk by Q, then Lemma 3.1 guarantees that
such a path exist of weight no more than w(Q) ≤ ∑k

i=1 w(Pi) + k · OPT which the dynamic
program will find. Hence, in each iteration, the number of paths reduce by k− 1 and the weight
of the new collection of paths increases by k ·OPT . Hence, the total increase in weight is at most
(l + r − 1)OPT where l is the number of iterations. But l ≤ d r

5/ε−1e ≤ εr
4 + 1 for ε < 1. Hence,

7

the weight of Q is at most
∑r

i=1 w(Pi) + (1 + ε/4)r · OPT . Also, the time taken is determined
by the size of the table for dynamic program which is O(nO(1

ε
)). 2

Now, we prove Theorem 3.2.
Proof: First, we show that one out of a polynomial number of guesses satisfies the conditions
of Step 1. Indeed, the algorithm can first find a lower bound L and upper bound U such that
U ≤ nL(a trivial n-approximation would suffice). We start by setting g = U and running
the algorithm. We then decrease g by factor of (1 − ε

4) and run it again. We iterate in such
a manner till the value of g reaches L. Observe that each guess of g will yield in a feasible
solution and we can return the best solution obtained. Also, the total number of guesses needed
is log1− ε

4

L
U = O(log n

ε). Hence, we assume that we have the guess which satisfies the conditions
of Step 1 of the algorithm.

Now, observe that KG = (V, E(KG)) with the weight function m̂w satisfies the triangle
inequality. Also, the optimal Hamiltonian cycle in KG weighs exactly OPT + g where OPT is
the weight of optimal (s, t)-spanning path in G under w. Hence, we must have that weight of
Hamiltonian cycle C found by AlgTour is m̂w(C) ≤ α(OPT +g) ≤ 2αOPT as g ≤ OPT . If the
edge (t, s) is chosen in T r times then removing all copies of (t, s) decomposes T into a collection
of r (s, t)-paths P1, . . . , Pr which together span V and such that

∑r
i=1 w(Pi) ≤ 2α · OPT − rg.

Now in Step 5, algorithm Weave returns a single (s, t)-spanning path Q of weight at most∑r
i=1 w(Pi) + (1 + ε/4)r ·OPT from Lemma 3.3. Hence, weight of Q,

w(Q) ≤
r∑

i=1

w(Pi) + (1 + ε/4)r ·OPT ≤ 2α ·OPT − rg + (1 + ε/4)r ·OPT

≤ 2α ·OPT +
ε

2
r ·OPT ≤ (2 + ε)α ·OPT

where the last two inequalities follow from the fact that g ≤ (1− ε/4) ·OPT and r ≤ 2α.
2

In the appendix, we show an example showing that Lemma 3.1 is nearly the best possible.

4 Improved approximation algorithm for the ATSP problem

Kaplan et al [7] show an 4 log2 n
3 log2 3 ' .842 log2 n-approximation for the ATSP problem. It is the

current best known algorithm as well. In this section, we first show that their analysis is not tight
and can be improved to log2 n

log2(
√

2+1)
' .787 log2 n-approximation. Then, we show an improved

algorithm which gives a better approximation guarantee of 2
3 log2n.

We call a subgraph Eulerian if indegree of each vertex is equal to its outdegree. As the
weights satisfy the triangle inequality, we have that given any Eulerian connected subgraph
there is a tour of weight no more than the weight of the Eulerian subgraph which can obtained
by standard ”shortcutting” procedure. In what follows, we will just ensure that we return a
connected Eulerian subgraph which has low weight.

4.1 Improving the KLSS algorithm

The following is the key lemma used in the KLSS [7] algorithm.

Lemma 4.1 [7] Given an edge-weighted directed graph G, there exists a polynomial time algo-
rithm which finds two cycle covers C1 and C2 such that

8

1. C1 and C2 do not share any 2-cycle.

2. w(C1) + w(C2) ≤ 2 ·OPT where OPT is the weight of the optimal tour.

Their algorithm proceeds as follows

1. Find two cycle covers given by Lemma 4.1. Choose one of C1, C2 and C3 = C1 ∪C2 which
minimizes w(F)

log2(ni/c(F)) where ni is the number of nodes in the current iteration and c(F)
is the number of components in F .

2. For each connected component pick one representative vertex. Delete the rest of the
vertices and iterate till at most one component is left.

Let the number of steps taken by the algorithm be p and let F1, . . . , Fp be edges selected in
each iteration. Return the solution ∪p

i=1Fp. The following claim is implicit in Kaplan et al.

Claim 1 [7] If w(Fi)
log2(ni/c(Fi))

≤ αOPT , then the above algorithm is α log2 n-approximation.

Proof: Using the fact that np = 1, n1 = n and ni+1 = c(Fi), we obtain that weight of the edges
included is

p∑

i=1

w(Fi) ≤
p∑

i=1

log2
ni

c(Fi)
· α ·OPT ≤

≤ α ·OPT

p∑

i=1

log2

ni

ni+1
= α · OPT · log2n

In their paper, Kaplan et show that α = 4
3 log2 3 suffices. We show that 1

log2

√
2+1

suffices. We
need another claim proven in Kaplan et al.

Claim 2 [7] In any iteration, if C1 and C2 are the cycle covers found then c(C1) + c(C2) +
c(C3) ≤ ni where ni is the number of nodes in graph at this iteration.

Claim 3 In any iteration i, if Fi is chosen then w(Fi)
log2(ni/c(Fi))

≤ αOPT for α = 1
log2(

√
2+1)

.

Observe that α is at most the value of the following optimization problem. Here, wi corresponds
to w(Ci)/OPT and ci corresponds to c(Ci)/ni. These scalings do not affect the value of α.

max z

z ≤ wj

log2
1
cj

∀ 1 ≤ j ≤ 3

w1 + w2 ≤ 2
w3 = w1 + w2

c1 + c2 + c3 ≤ 1
c3 ≤ cj ∀ j = 1, 2
cj ≤ 1/2 ∀ j = 1, 2
wj ≥ 0 ∀ j = 1, 2, 3
cj ≥ 0 ∀ j = 1, 2, 3

9

First observe that w3 = 2 at the optimum solution. Also, we claim that w1 = w2 = 1 and
c1 = c2. Indeed if that is not the case , then change w′1 = w′2 = w1+w2

2 and c′1 = c′2 = c1+c2
2 .

This does not violate the feasibility. Also, the solution gets no worse as w′2
log2

1
c′2

= w′1
log2

1
c′1
≥

min{ w1

log2
1
c1

, w2

log2
1
c2

}. Under these condition observe that all three inequalities z ≤ wj

log2
1
cj

must

hold at equality at the optimum solution. Now, solving we obtain that c1 = c2 =
√

2 − 1,
c3 = 3− 2

√
2 and z = 1

log2(
√

2+1)
.

2

4.2 A Improved algorithm for the ATSP

Here we explain how we can change the algorithm of KLSS to obtain an improved guarantee of
2
3 log2 n. The algorithm is very similar. Each time we find the cycle covers C1 and C2 as given
by Lemma 4.1. Instead of selecting the best of C1, C2 or C3 = C1 ∪ C2, we decompose C3 into
two Eulerian subgraphs.

The following is the key Lemma used for the decomposition.
For every connected component of C3, we can apply the following lemma.

Lemma 4.2 Let C be a connected directed graph with at least three vertices in which every
vertex has in-degree 2 and out-degree 2. C is allowed to have parallel edges but no self loops.
Then there are either two cycles of length 2 or one cycle of length at least 3 such that removing
the edges of these cycles from C leaves C connected.

Proof: The edges in C can be partitioned into C1 and C2 such that each of them induces on
C a directed graph with in-degree 1 and out-degree 1. (This was used in Kaplan etal, and the
proof of this fact follows easily from the fact that every d-regular bipartite graph is a union of d
perfect matchings.) Each of C1 and C2 is a collection of cycles that spans all vertices of C. Let
ci be the number of cycles in Ci, for i ∈ {1, 2}. We now proceed with a case analysis.

1. c1 6= c2. Assume in this case without loss of generality that c2 > c1. One by one, add the
cycles of C2 to C1. When the process begins, the number of connected components is c1.
When it ends, the number of connected components is 1 (because then we have C). Every
cycle of C2 added in the process either reduces the number of connected components, or
leaves it unchanged. The inequality c2 ≥ (c1 − 1) + 2 shows that the addition of at least
two of the cycles of C2 left the number of connected components unchanged. These two
cycles can be removed from C while still keeping C connected.

2. c1 = c2. Let H denote a bipartite graph in which every cycle of C1 is a left hand side
vertex, every cycle of C2 is a right hand side vertex, and two vertices are connected by an
edge if the corresponding cycles share a vertex. Note that H is connected (because C is.)
We consider three subcases.

(a) H has a vertex of degree at least 3. Hence some cycle (say, cycle C∗ of C2) connects
at least three cycles (of C1). The argument of the case c2 > c1 can be extended to
this case, by making C∗ the first cycle of C2 that is added to C1. The number of
connected components drops by at least 2, ensuring that two other cycles from C2 do
not cause a drop in number of connected components.

(b) H has a vertex of degree 1 and no vertex of degree more than 2. Then H is a path
(because H is connected). If the path is of length 1, it follows that both C1 and C2

10

are single cycles (of length at least 3) that span the whole of C, and hence either one
of them may be removed while keeping C connected. If the path is of length more
than 1, then removing the two cycles that correspond to the endpoints of the path
keeps C connected (observe that all vertices of the two removed cycles are contained
in the set of vertices of their respective neighboring cycles in H).

(c) All vertices in H are of degree 2. Then H is a cycle. If either C1 or C2 contain a
cycle of length 3 or more, then this cycle can be removed while keeping H (and hence
also C) connected. If all cycles in C1 and C2 are of length 2, then it must be the case
that C can be decomposed into two anti-parallel cycles (each of length |C| ≥ 3), and
removing any one of them keeps C connected.

2

Now, we modify the algorithm in the following manner. Let C5 be the set of cycles cho-
sen from each component of C3 without disconnecting each of the components as given by
Lemma 4.2. Observe that C5 need not be a cycle cover. Let C4 = C3 \ C5.

Instead of picking the best of C1, C2 or C3 as in Kaplan et al, in each iteration we pick the
best of C4 or C5 according to the same potential function w(F)/(log2 ni/c(F)) where ni is the
number of vertices in this iteration. The rest of the algorithm remains the same. We pick a
single representative vertex from each of the connected components of F , delete all vertices and
recurse.

Observe that c(C4) = c(C3) as the number of components in C3 and C4 are equal. Also,
c(C5) = ni− 2c(C3) as we pick at least 2-cycles of size 2 or a cycle of a size at least 3 from each
of the component of C3.

Claim 4 In any iteration i, if Fi is chosen then w(Fi)
log2(ni/c(Fi))

≤ αOPT for α = 2/3.

Proof: Observe that α is the at most the value of the following optimization problem. Here,
wi corresponds to w(Ci)/OPT and ci corresponds to c(Ci)/ni. These scalings do not affect the
value of α.

max z

z ≤ wj

log2
1
cj

∀ j ∈ {4, 5}

w4 + w5 ≤ 2
c4 = c3

c5 = 1− 2c3

wj ≥ 0 ∀ j = 4, 5
cj ≥ 0 ∀ j = 4, 5

At the optimum solution we must have z = w4

log2
1
c4

= w5

log2
1
c5

otherwise we can change w4

and w5 so as to make them equal without violating the feasibility and not decreasing the
objective function. Also, we must have w4 + w5 = 2. Using these equalities, we have that
w4 = 2 log2 c4

log2(c4(1−2c4))
which gives that the objective function to maximize is w4

− log2 c4
= −2

log2(c4(1−2c4))

which gets maximized when c4(1− 2c4) gets maximized. But c4(1− 2c4) has a maximum value
of 1/8 at c4 = 1/4. This implies that at the optimum solution we have w4 = 4

3 , w5 = 2
3 , c4 =

11

1
4 , c5 = 1

2 and z = 2
3 . 2

Now, proof of Theorem 2.1 follows from Claim 1 and Claim 4.

References

[1] Frieze A., G. Galbiati, and F Maffioli. On the worst-case performance of some algorithms
for the asymmetric traveling salesman problem. Networks, 12:23–39, 1982.

[2] M. Charikar, M. Goemans, and H. Karloff. On the integrality gap for the asymmetric tsp.
In Proceedings of IEEE FOCS, 2004.

[3] Chandra Chekuri and Martin Pal. An O(log n) Approximation Ratio for the Asymmetric
Travelling Salesman Path Problem. In To Appear In Proceedings of APPROX, 2006.

[4] Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. In
Report 388, Graduate School of Industrial Administration, CMU., 1976.

[5] Gutin and Punnen. Traveling salesman problem and its variations.

[6] Held and Karp. Travelling salesman problem and minimum spanning trees. In Operation
Research, 1970.

[7] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation
algorithms for asymmetric tsp by decomposing directed regular multigraphs. J. ACM,
52(4):602–626, 2005.

[8] Kleinberg and Williamson. Unpublished note. 1998.

[9] F. Lam and A. Newman. Travelling salesman path problem. In Manuscript, 2005.

[10] D. B. Shmoys and D. P. Williamson. Analyzing the held-karp tsp bound: a monotonicity
property with application. In Info. Proc. Lett., 1990.

[11] Wolsey. Heuristic analysis, linear programming and branch and bound. In Mathematical
Programming Studies, 1980.

A Tight Example for Lemma 3.1

Let G be the graph defined on the vertex set V = {s, t} ∪ {aij , 1 ≤ i ≤ k, 1 ≤ j ≤ 2n} where
2n >> k. P = {Pi : 1 ≤ i ≤ k} where Pi = (s, ai,1, . . . , ai,2n, t) for each 1 ≤ i ≤ k. Each edge
in any of the paths has weight 1 except for the edges incident at s and t which weigh 0. Also,
there is a Hamiltonian path from s to t which visits the vertices in the following order.

s, a1,2, . . . , ak,2, a1,4, . . . , ak,4, . . . , a1,2n, . . . , ak,2n, a1,1, . . . , ak,1, a1,3, . . . , ak,3 . . . , a1,2n−1, . . . , ak,2n−1, t

Each edge of this path weighs 0 except for the edge (ak,2n, a1,1) which has a weight of 2n.
The weight function w is the metric completion of the weights defined above.

Claim 5 Any Hamiltonian path Q from s to t which respects the order of vertices of each Pi

must weigh ' 4kn.

12

a1,1
a2,1 ak,1

a1,2
ak,2

a1,2n−1

a1,2n

ak,2n

s

t

Figure 2: Tight Example

Observe that
∑k

i=1 w(Pi) + k · OPT = 4kn and hence the bound given by Lemma 3.1 is
nearly optimal.
Proof: Observe that in the Figure 2 we must traverse each column from top to bottom. Also
horizontal edges weigh 0 and all vertical edges weigh 1. Also, the curved edges weigh 0, except
for edge (ak,2n, a1,1) which weighs 2n.

We first claim that the path Q must use at least 2nk/(2n+ k) > k− 1(for n >> k) copies of
edge (ak,2n, a1,1). Also, without using the edge (ak,2n, a1,1), we can put at most (2n+k) vertices
in order in Q as the vertices cannot be more than the rows and columns. Hence, to put 2nk
vertices in the order required, we must use the edge (ak,2n, a1,1) at least k times each time paying
a weight of 2n. Moreover, without using the edge (ak,2n, a1,1), if we put k + s vertices in order
then we must use s vertical edges of weight 1 each. Hence, if we use the edge (ak,2n, a1,1) r times
then the total weight of the spanning walk is at least r · 2n + (2nk− rk) · 1 = 2nk + (2n− k) · r
which is minimum for as small r as possible. But, r ≥ k. Hence, the total weight of the path is
at least 4nk + O(k2). 2

13

