
Approximating the Bandwidth of Caterpillars

Uriel Feige
Weizmann Institute and Microsoft Research

urifeige@microsoft.com

Kunal Talwar
Microsoft Research
kunal@microsoft.com

June 16, 2005

Abstract
A caterpillar is a tree in which all vertices of degree three or more lie on one path, called

the backbone. We present a polynomial time algorithm that produces a linear arrangement of
the vertices of a caterpillar with bandwidth at most O(log n/ log log n) times the local density
of the caterpillar, where the local density is a well known lower bound on the bandwidth. This
result is best possible in the sense that there are caterpillars whose bandwidth is larger than
their local density by a factor of Ω(log n/ log log n). The previous best approximation ratio
for the bandwidth of caterpillars was O(log n). We show that any further improvement in the
approximation ratio would require using linear arrangements that do not respect the order of
the vertices of the backbone.

We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in
time 2Õ(

√
n/ε). This result generalizes to trees, planar graphs, and any family of graphs with

treewidth Õ(
√

n).

1 Introduction

To set the ground for presenting our results, let us first define the main terms that we use.

Definition 1. A linear arrangement of a graph is a numbering of its vertices from 1 to n. The
bandwidth of a linear arrangement is the largest difference between the two numbers given to end-
points of the same edge. The bandwidth of a graph is the minimum bandwidth over all linear
arrangements of the graph.

Definition 2. A caterpillar is a tree composed of a path, called the backbone, and other paths,
called strands, connected to the backbone. The connection point of a strand to the backbone is called
the root of the strand. Hence all vertices of degree more than two are roots.

Definition 3. The unfolded bandwidth of a caterpillar is the minimum bandwidth in a linear
arrangement that respects the order of the vertices in the backbone.

Definition 4. Let B(v, r) denote the set {u ∈ V : d(u, v) ≤ r} where d(·, ·) denotes the usual
shortest path distance in G. The local density of a graph ρG is defined as

ρG = max
v∈V

max
r

|B(v, r)|
2r

It is easy to check that for any graph G, the local density ρG gives a lower bound on the bandwidth
of G.

1

Given an algorithm A for approximating the bandwidth of caterpillars, for every caterpillar
G we consider the following four quantities: its local density ρG; its bandwidth bG; its unfolded
bandwidth uG; and the bandwidth of the linear arrangement found by algorithm A, denoted by
AG.

Clearly, ρG ≤ bG ≤ uG ≤ AG. Previously, it was known [3] that bG can be as large as
Ω(ρG log n/ log log n). Also, a simple approximation algorithm [9] obtained AG ≤ O(ρG log n). We
present an approximation algorithm for which AG = O(ρG log n/ log log n), which is best possible
(with respect to ρG). We also show that the gap of Ω(log n/ log log n) may be present between
every two adjacent quantities in the above list. The gap of Ω(log n/ log log n) between bG and uG

is especially important, because we show that uG can in fact be approximated within a constant
factor. Without this gap between uG and bG, this would improve the approximation ratio for the
bandwidth of caterpillars beyond log n/ log log n.

In a result of a somewhat different nature, we present an algorithm that achieves a (1 + ε)
approximation ratio for the bandwidth of trees (and hence also caterpillars) in time 2Õ(

√
n/ε).

This result generalizes to families of graphs that have recursive decomposition with separators
of size Õ(

√
n), including for example planar graphs. These results show in particular that in any

reduction from 3SAT showing the hardness of approximating the bandwidth of caterpillars or trees,
the number of vertices in the resulting graph will be at least quadratic in the size of the 3CNF
formula, unless 3SAT has subexponential algorithms.

1.1 Related work

Chinn et al. [2] showed that trees with constant local density can have bandwidth as large as
Ω(log n). Chung and Seymour [3] exhibited a family of caterpillars with constant local density and
bandwidth Ω(log n

log log n).
Monien [11] showed that the bandwidth problem on caterpillars is NP-hard. We note here that

the reduction crucially uses a gadget that forces the bandwidth to be folded. Blache, Karpinski and
Jürgen [1] showed that the bandwidth of trees is hard to approximate within some constant factor.
Unger [14] claimed (without proof) that the bandwidth of caterpillars is hard to approximate within
any constant factor.

Haralambides et al. [9] showed that for caterpillars, folding strands to one side is an O(log n)-
approximation with respect to the local density. For general graphs, Feige [5] gave a polynomial
time O(log3.5√log log n) algorithm with respect to the local density lower bound (slightly improved
in [10]). A somewhat improved approximation ratio of O(log3 n

√
log log n) with respect to a

semidefinite programming lower bound was given by Dunagan and Vempala [4]. Gupta [8] gave an
O(log2.5 n)-approximation algorithm on trees, that on caterpillars gives an O(log n) approximation.
Filmus [7] extended this O(log n)-approximation to graphs formed by many caterpillars sharing a
backbone vertex.

An exact algorithm for general graphs, running in time approximately nB was given by Saxe [13]
where B is the optimal bandwidth. Feige and Killian [6] gave a 2O(n) time exact algorithm.

2

2 New Results

2.1 More definitions

Definition 5. A bucket arrangement of a graph is a placement of its vertices into consecutive
buckets, such that the endpoints of an edge are either in the same bucket or in adjacent buckets.
The bucketwidth is the number of vertices in the most loaded bucket. The bucketwidth of a graph
is the minimum bucketwidth of all bucket arrangements of the graph.

The following lemma is well known.

Lemma 1. For every graph, its bandwidth and bucketwidth differ by at most a factor of 2.

Proof. Given a linear arrangement of bandwidth b, make every b consecutive vertices into a bucket.
Given a bucket arrangement with bucketwidth b, create a linear arrangement bucket by bucket,
where vertices in the same bucket are numbered in arbitrary order.

As we shall be considering approximation ratios which are much worse than 2, we will consider
bandwidth and bucketwidth interchangeably.

Definition 6. The unfolded bucketwidth of a caterpillar is the minimum bucketwidth in a bucket
arrangement in which every backbone vertex lies in a different bucket. Hence backbone vertices are
placed in order.

Lemma 2. For every caterpillar, its unfolded bandwidth and unfolded bucketwidth differ by at most
a factor of 2.

Proof. Given an unfolded linear arrangement of bandwidth b, let every backbone vertex start a new
bucket, called a backbone bucket. In regions with no backbone vertex (the leftmost and rightmost
regions of the linear arrangement), make every b consecutive vertices into a bucket. It may happen
that strands (say, k of them) jump over a backbone bucket in this bucket arrangement, but then
this backbone bucket has load at most b− k. For each such strand, shift nodes so as to move one
vertex from the outermost bucket of the strand to the separating backbone bucket. We omit the
details from this extended abstract.

Given an unfolded bucket arrangement with bucketwidth b, create a linear arrangement bucket
by bucket, where vertices in the same bucket are numbered in arbitrary order.

2.2 Approximating unfolded Bandwidth

Theorem 3. The unfolded bucketwidth of a caterpillar can be approximated within a constant
factor.

Proof. Up to a factor of two in the resulting bandwidth, we may assume that a strand is folded
either to the right, or to the left (but not partly to the right and partly to the left), i.e. all buckets
containing a node from a strand H lie on one side of the bucket containing its root. We call such an
unfolded bucket arrangement locally consistent. We now formulate the problem of finding a locally
consistent unfolded bucket arrangement of minimum bucketwidth as an integer program.

3

The variables of the integer program are of the form xik, where i specifies a vertex and k specifies
a bucket number. Our intention is that xik = 1 if vertex i is in bucket k, and xik = 0 otherwise.
Hence we shall have the integrality constraints:

xij ∈ {0, 1} (1)

For concreteness, we assume that vertices of the caterpillar are named in the following order.
First, the backbone vertices are named from left to right as 1 up to ` (where ` is the number of
backbone vertices), and then the strands of the caterpillar are named one by one, where within a
strand, vertices are named in order of increasing distance from the root of the strand. (This naming
should not be confused with a linear arrangement. It is just a convention used in formulating the
integer program.) We now place the vertices of the backbone in consecutive buckets. This gives
the backbone constraints:

xii = 1 for all 1 ≤ i ≤ ` (2)

Since vertices of strands might be placed in buckets to the left and to the right of the endpoints
of the backbone, the parameter k in xik specifying the bucket number need not be limited to the
range 1 up to `, but will be allowed to range between −n and n.

Now we are ready to present the most important set of constraints. They are more complicated
than may appear necessary for the integer program, but this will become useful once we relax the
integer program to a polynomial time solvable linear program.

Consider two vertices i, i + 1 on the same strand, rooted at the backbone vertex r. Then we
have the root constraints:

x(i+1)r ≤ xir (3)

Moreover, let k be a bucket to the right of bucket r, namely, k > r. (Later we will present analogous
constraints for k < r.) For every t ≥ k we have the right consistency constraints:

t∑

l=k

x(i+1)l ≤
t∑

l=k−1

xil and
t∑

l=k

xil ≤
t+1∑

l=k

x(i+1)l (4)

The consistency constraints indicate that (i + 1) appears in a bucket to the right of r only if i
preceded it, and that i appears only if (i + 1) follows it.

Similar constraints are written for buckets to the left of the root. Namely, for k < r and t ≤ k
we have the left consistency constraints:

k∑

l=t

x(i+1)l ≤
k+1∑

l=t

xil and
k∑

l=t

xil ≤
k∑

l=t−1

x(i+1)l (5)

Finally, we introduce a constraint specifying that the locally consistent unfolded bucketwidth
is at most b. Namely, for every bucket k there is the bucketwidth constraint:

∑
xik ≤ b (6)

The above integer program is feasible if and only if there is a locally consistent bucket arrange-
ment of bucketwidth at most b. We now relax the integer program to a linear program by replacing

4

the integrality constraints by nonnegativity constraints xik ≥ 0 and choice constraints, namely, for
every vertex i on a strand of length t rooted at r we have:

r+t∑

k=r−t

xik = 1 (7)

As the linear program is a relaxation of the integer program, it is feasible whenever the integer
program is. As linear programs can be solved in polynomial time, we can obtain a feasible solution
to the linear program of bucketwidth at most b∗, where b∗ is the minimum locally consistent
unfolded bucketwidth. The solution to the linear program is fractional, in the sense the a vertex
may fractionally belong to several buckets. We now show how to round the fractional solution to
an integer solution, loosing only a constant factor in the bucketwidth.

Consider an arbitrary solution xik to the linear program. Consider a strand S rooted at r.
Consider the smallest k > r such that

∑
i∈S xik ≤ 1/4. We claim that

∑
i∈S,k′≥k xik′ ≤ |S|/4. This

claim follows from the following inequality:
∑

k′>k

xik′ ≤
∑

j∈S;j<i

xjk

This inequality can be proved by induction on i. For the first vertex on the strand, this inequality
is true because then

∑
k′>k xik = 0. Assume now that the inequality was proved for vertex i and

then the right consistency constraints and the inductive hypothesis imply for vertex i + 1 that:
∑

k′>k

x(i+1)k′ ≤
∑

k′≥k

xik′ ≤ xik +
∑

j∈S;j<i

xjk =
∑

j∈S;j<i+1

xjk

Similar to the above, consider the largest k < r with
∑

i∈S xik ≤ 1/4. It can be shown that∑
i∈S,k′≤k xik′ ≤ |S|/4.
It follows that there is some k (w.l.o.g. we will assume here that k > r) such that

∑
i∈S;r≤k′<k xik′

is at least |S|/4, and
∑

i∈S xik′ ≥ 1/4 for all r ≤ k′ < k. Now place the vertices of S one by one
in the buckets starting at r and continuing to the right, putting d4∑

i∈S xik′e vertices in bucket
k′. The whole strand can be put in these buckets before reaching bucket k. Each bucket suffered
a multiplicative factor of at most 8 (rounding up to the nearest integer contributes a factor of at
most 2, because 4

∑
i∈S xik′ ≥ 1).

Finally, there is the following issue that we ignored in the proof above, and this is the fact
that for the root bucket r, it might not be the case that

∑
i∈S xir ≥ 1/4. In that case, the integer

solution might put a vertex of S in bucket r that we cannot charge against the fractional values
of S that were in bucket r. However, this cannot harm the approximation ratio by more than a
constant factor, because the number of vertices added by this effect to bucket r cannot be more
than twice the local density at r.

2.3 Upper Bound

In this section, we present an algorithm for the bandwidth problem on caterpillars and show that
it is an O(log n

log log n) approximation.
We shall give a bucket arrangement of caterpillar T . More precisely, we shall define maps

x : V → [n] and y : V → [n] such that

5

• The function f : V → [n]× [n] defined as f(v) = (x(v), y(v)) is one-one.

• For every edge (u, v) ∈ E, |x(u)− x(v)| ≤ 1.

In other words, we shall place the vertices of the graph on the integer grid so that adjacent
vertices land either in the same column or in adjacent columns. The goal would be to minimize
the maximum height of any column.

Let T be a caterpillar with backbone B = {1, . . . , p} and strands H = {H1, . . . , Hq}, where
each Hi can be specified by its root ri ∈ B and length li. Let k = 2 log n

log log n so that kk > n. For an
assignment f and for a strand Hi let the height αi of Hi be maxv∈Hi y(v) and let the range βi of
Hi be maxv∈Hi |x(v)− x(ri)|.

The algorithm proceeds as follows. Let Hs = {Hi ∈ H : ks−1 ≤ li < ks} (note that Hk is
empty). We start out by setting f(j) = (j, 1) for j ∈ B. The algorithm has k phases. In phase
s, we consider the strand Hi ∈ Hs in increasing order of ri (breaking ties arbitrarily). We fold
each strand to its right so as to minimize the maximum height of any column, and subject to that,
minimize its range. Amongst the arrangements minimizing the height and the range, we break ties
to the left, i.e. fill up columns from left to right.

We now show that the mapping f satisfies bwf ≤ O(log n
log log nρG). We denote by f−1(X, Y) =

{v : f(v) = (x, y), x ∈ X, y ∈ Y } the set of nodes assigned to columns X and rows Y .
Let It denote the interval [4(k + t− 1)ρG + 1, 4(k + t)ρG]. For a column j, let Hj

t = {Hi ∈ Ht :
Hi ∩ f−1({j}, It) 6= φ} be the set of hair in Ht that contribute to f−1({j}, It).

The tie breaking rule ensures the following.

Observation 1. Just after Hi is assigned, if Hi contributes to columns j and j′, j < j′, then the
height of j′ is no larger than that of j.

Next we show a few simple lemmas

Lemma 4. Every strand Hi ∈ Hj
t has range βi at most kt−1.

Proof. For every Hi ∈ Hj
t , it must be the case that for all j′ : ri ≤ j′ ≤ j, the column j′ has height

at least 4kρG after Hi was considered. Consider the set of vertices f−1([ri, j], [1, 4kρG]) assigned to
rows ri through j and columns 1 through 4kρG in this partial assignment. Because of the order in
which we consider strands, each of these vertices comes from a strand of length less than kt and the
hence the root of every such strand must lie in [ri− kt, j]. Thus every such vertex lies in B(ri, 2kt)
and there are at least 2kρG|j − ri| = 2kρGβi such vertices. Since |B(ri, 2kt)| ≤ 4ktρG, it follows
that βi ≤ kt−1 for every Hi ∈ Hj

t .

Corollary 5. For every j, t, |Hj
t | < 4ρG.

Proof. Every strand Hi ∈ Hj
t has its root in [j − kt−1, j]. Since each has length at least kt−1,

B(j, 2kt−1) has size at least (1 + |Hj
t |kt−1). Hence, |Hj

t | < 4ρG.

Lemma 6. At the end of phase s of the algorithm, the height of (partial) assignment is at most
4(k + s)ρG.

Proof. We show the claim by induction on s. In the base case s = 0, each column has one node
and since ρG is at least 1, the claim holds.

6

Suppose the claim is true at end of phase (t − 1). We wish to show that it is also true at the
end of phase t.

Consider column j and let Hj
t be as above. We first argue that each strand in Hj

t contributes
at most one vertex to column j. Assume the contrary and let Hi be the first strand in Hj

t that
contributes at least 2 vertices to column j. Further, let j be the first such column. Then there is a
column j′ > j such that just before Hi was assigned, j′ had height at least one more than that of
j. Since we look at strand in each class from left to right, every strand contributing to f−1(j′, It)
at this point has its root to the left of j. Thus by observation 1, j′ has height no larger than j,
contradicting the assumption. Hence the claim.

By corollary 5, Hj
t has fewer than 4ρG strands and hence the induction holds. The claim

follows.

We remark that we have actually shown an O(log h/ log log h)-approximation, where h is the
longest strand length. Note that our algorithm outputs an unfolded arrangement. We show in
the next section that it is not possible to beat the O(log n

log log n) barrier when outputting an unfolded
arrangement.

Finally, we note while this algorithm never folds the backbone, it could be far from optimal for
the unfolded bandwidth problem.

Proposition 7. The algorithm of the above theorem may output a linear arrangement with band-
width Ω(log n/ log log n) times the unfolded bandwidth.

Proof. The instance has a backbone of length 2k+1 − 1 and a strand of length i2i at vertex 2i and
vertex 2k+1 − 2i. Folding (one vertex per bucket) the first half of the strands to the right and the
the second half of the strands to the left gives an arrangement with unfolded bucketwidth O(log k).
On the other hand, our algorithm (in fact any algorithm folding all strands to the right) gives a
bucketwidth of k. Since k is O(log n), the claim follows.

2.4 Gap between bandwidth and unfolded bandwidth

We construct a sequence of caterpillars C1, C2, . . . such that Ck has bucketwidth O(k) and unfolded
bucketwidth Ω(k2).

C1 is a caterpillar with a backbone of length three and p strands of length 1 attached to the
middle node. The first and last nodes on the backbone are designated s1 and t1 respectively (see
figure 1).

Ck is constructed by joining in series, a path P1 of length (lk + wk), a copy T1 of Ck−1, a path
P2 of length 2wk, another copy T2 of Ck−1 and finally a path P3 of length (lk + wk). Moreover, p
strands each of length lk are attached at the first and last vertices of P2 (see figure 1). The first
vertex of P1 and the last vertex of P3 are named sk and tk respectively. We refer to the backbone
vertices in T1, P2 and T2 as the core of Ck. The strands attached to P2 are referred to as central
strands.

Here wk and lk are parameters that we define as follows: l1 = 1,w1 = 0, wk = 2lk−1 + 2wk−1,
lk = 6klk−1. Note that the length of the backbone satisfies the relation Bk = 4wk + 2lk + 2Bk−1.
It follows that

Observation 2. The length of the backbone of Ck is at most Bk ≤ 4lk.

We first show that there is an arrangement with small bucketwidth.

7

Lemma 8. There is a valid bucket arrangement of Ck with bucketwidth p+2k into at most wk+1 =
2lk + 2wk buckets with sk and tk in the first and last buckets respectively.

Proof. The proof uses induction. The base case is immediate.
Suppose that there is such a bucket arrangement for Ck−1. We use it to construct a bucket

arrangement for Ck (see figure 2). We place the first path P1 into buckets 1 through (lk + wk).
The recursive arrangement of T1 is placed in buckets (lk + wk + 1) through (lk + 2wk). We place
the path P2 in buckets (lk + 2wk) to (lk + 1). T2 is placed similarly in buckets (lk + 1) to (lk + wk)
and we place P3 starting at (lk + wk + 1) and ending at bucket 2(lk + wk). Each central strand
rooted at the endpoint of P2 in bucket (lk + 2wk) spans buckets (lk + 2wk + 1) through 2(lk + wk)
and each central strand rooted at the endpoint in bucket lk + 1 goes into buckets lk through 1. It
is easy to verify that this is a legal bucket arrangement. Moreover, the maximum height of any
bucket increases by at most 2, and hence the induction holds.

We now show that the unfolded bucketwidth of Ck is large. Consider an unfolded bucket
arrangement f . Without loss of generality, sk falls to the left of tk. A bucket is called a core bucket
if it contains a vertex from the core. Other buckets are referred to as peripheral. Note that the
core buckets fall between the left set and the right set of peripheral buckets.

Lemma 9. In any unfolded bucket arrangement of Ck, some core bucket has load more than pk
3 .

Proof. We prove this by induction on k
In the base case k = 1, we simply use a local density argument. There are p+3 nodes and since

the diameter is 2, they all fall in at most 3 buckets. The claim follows.
Suppose the claim holds for Ck−1 and let f be an unfolded bucket arrangement for Ck. Suppose

that f has bucketwidth less than pk
3 . Consider the 2p central strands of Gk.

Proposition 10. In any arrangement with bucketwidth less than (pk
3) at least (2p

3) central strands
extend to peripheral buckets.

Proof. Suppose not. Then at least 4p
3 central strands are wholly contained in the core buckets. The

number of core bucket is at most 2(wk + Bk−1) and each has at most pk
3 nodes in the arrangement

f . However, since each strand has length lk and (4p
3)lk > 2(wk +Bk−1)(

kp
3), we get a contradiction.

Thus 2p
3 strands extend to peripheral buckets. Without loss of generality, at least (p

3) of these
strands extend to the left set of peripheral buckets. Each of these strands contributes at least 1 to
the buckets containing the backbone of T1. Since f also induces an unfolded bucket arrangement
of T1, the induction hypothesis implies that one of the core buckets of T1 must have load at least
p(k−1)

3 from vertices in T1. Adding the load due to the p
3 crossing strands, we get an overall load of

at least pk
3 . The claim follows.

Taking p to be k, we get a gap of Ω(k). Since lk ≤ 6kk!, the number of vertices in Ck is 2O(k log k).
Hence we get a gap of Ω(log n

log log n). Since (unfolded) bucketwidth and (unfolded) bandwidth are
within a constant factor of each other, the gap between unfolded bandwidth and bandwidth is also
Ω(log n

log log n).

8

Figure 1: Construction of caterpillar Ck

Figure 2: Low bucketwidth arrangement of caterpillar Ck

3 An approximation scheme

In this section, we give an approximation scheme for the bandwidth problem on trees that gives
a (1 + ε)-approximation in time 2Õ(

√
n
ε
). We note that the algorithm described here is more

complicated than needed; the extra work here enables us to extend the algorithm to a larger class
of graphs without any modifications.

We first guess the bandwidth B. If B ≤ √
n
ε , the dynamic programming algorithm of Saxe [13]

finds the optimal bandwidth arrangement in time nO(B)) which is 2Õ(
√

n
ε
) for B as above.

In case B ≥ √
n
ε , we run a different algorithm. We shall construct an assignment f of V into

K buckets 1, . . . , K such that

• For any bucket i, the number of nodes assigned to it |f−1(i)| is at most εB.

• For any u, v ∈ V such that (u, v) ∈ E, f(u) and f(v) differ by at most 1
ε .

It is easy to see that if G has bandwidth B, such an assignment always exists for K = (n
εB).

Moreover, given such as assignment, we can find a bandwidth (1+ε)B arrangement of G by picking
any ordering that respects the ordering defined by f .

Note that any tree T has a vertex vT such that deleting v from T breaks it up in components
of size at most 2n

3 ; we call such a v a balanced separator of T . We recurse on each component until
each component is a leaf. This sequence of decompositions can be represented in the form of a
rooted decomposition tree τ with the following properties:

• Each node x of the decomposition tree τ corresponds to a subtree Tx and a balanced separator
vx of Tx.

9

• The children of an internal node x correspond exactly to the components resulting from
deleting vx from the tree Tx.

• The root node r corresponds to T and the leaves correspond to singletons.

• The depth of the tree is O(log n).

A partial assignment is a partial function f that maps a subset Df ⊆ V into K buckets 1, . . . , K.
We say f is feasible if for every u, v ∈ Df , (u, v) ∈ E, f(u) and f(v) differ by at most 1

ε . We say
g extends f to D′ if Dg = Df ∪ D′ and f agrees with g on Df . Given a partial assignment f ,
its profile pf is defined by the K-tuple (|f−1(1)|, |f−1(2)|, . . . , |f−1(K)|). For the purposes of our
algorithm two partial assignments are considered equivalent if they have the same profile.

Our algorithm does dynamic programming on the decomposition tree τ of T . Let x be an
internal node of τ with children y1, . . . , yk. Let f1

x , . . . , fnx
x be the set of all feasible partial assign-

ments with domain consisting of all the separator nodes on the r-x path in τ , i.e. fa
x has domain

Px = {vz : z is on r-x path in τ}. Given x, a ≤ nx and j ≤ k, we compute the list La
x,j of all

possible profiles of a feasible extension g of fa
x to ∪i≤jTyi . We use the notation La

x for La
x,k if x has

k children in τ .
We populate the dynamic programming table from the leaves moving up the tree as follows.

We start with the obvious setting of La
x for each leaf x of τ , for each a ∈ [nx]. For an internal

node x, clearly La
x,0 is just the profile of fa

x . Given La
x,(j−1) and Lb

yj
for every feasible extension f b

yj

of fa
x to vyj , we show how to compute La

x,j . The crucial fact here, ensured by our construction of
the decomposition tree, is that all the edges leaving Tyj are incident on Px. Thus given a feasible
extension g1 of fa

x to ∪i<jTyi and another feasible extension g2 of fa
x to Tyj , they can be combined

to give a feasible extension g3 of fa
x to ∪i≤jTyi . Thus for every profile p1 in La

x,(j−1) and for every
profile p2 in any of the lists Lb

yj
where f b

yj
is a feasible extension of fa

x , we get a profile p3 to be
placed in La

x,j .
Finally, if T has bandwidth B, at least one of the lists La

r contains a profile pf with |f−1(i)| ≤ εB
for each i.

It remains to bound the running time of our algorithm. Since the depth of the tree is O(log n),
for every node x in τ , the number of partial assignments nx is at most KO(log n). The number of
nodes in τ is clearly at most n and hence the algorithm only need compute nKO(log n) table entries.
The size of each list La

x,j is bounded by the total number of possible profiles, which is no more than
nK . Each entry of the table can thus be computed in time O(n2K). Thus the overall running time
of the algorithm is 2O(K log n). Since K = n

εB and B ≥ √
n
ε , the running time of our algorithm is

2Õ(
√

n
ε
). Thus we have shown that

Theorem 11. The algorithm described above computes a (1 + ε) approximation to the bandwidth
of a tree in time 2Õ(

√
n
ε
).

We note that it is easy to modify the algorithm to also give an assignment having such a profile.
Moreover, note that the only property of the tree we have used is the existence of small separa-

tors. The algorithm can be naturally modified to work with any family of graphs with (recursive)
small separators—the number of partial assignments to be considered for a table entry now goes
up KO(t log n) where t is an upper bound on the size of the separator. This gives a 2Õ(t+

√
n
ε
) time

(1 + ε)-approximation algorithm for graphs with tree-width t. Recall that planar graphs and other

10

excluded minor families of graphs have separators of size O(
√

n). Thus the running time of our
algorithm for such graphs is 2Õ(

√
n
ε
).

Acknowledgements

We thank Moses Charikar, Marek Karpinski and Ryan Williams.

References

[1] G. Blache, M. Karpinski, and J. Wirtgen. On approximation intractability of the bandwidth
problem. Technical report, University of Bonn, 1997.

[2] P. Chinn, J. Chvatálová, A. Dewdney, and N. Gibbs. The bandwidth problem for graphs and
matrices - survey. Journal of Graph Theory, 6(3):223–254, 1982.

[3] F. R. Chung and P. D. Seymour. Graphs with small bandwidth and cutwidth. Discrete
Mathematics, 75:113–119, 1989.

[4] J. Dunagan and S. Vempala. On euclidean embeddings and bandwidth minimization. In
APPROX ’01/RANDOM ’01, pages 229–240, 2001.

[5] U. Feige. Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst.
Sci., 60(3):510–539, 2000.

[6] U. Feige. Coping with the NP-hardness of the graph bandwidth problem. In SWAT, pages
10–19, 2000.

[7] Y. Filmus. Master’s thesis, Weizmann Institute, 2003.

[8] A. Gupta. Improved bandwidth approximation for trees. In Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pages 788–793, 2000.

[9] J. Haralambides, F. Makedon, and B. Monien. Bandwidth minimization: An approximation
algorithm for caterpillars. Mathematical Systems Theory, pages 169–177, 1991.

[10] R. Krauthgamer, J. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding
method for finite metrics. In FOCS, pages 434–443, 2004.

[11] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-
complete. SIAM J. Algebraic Discrete Methods, 7(4):505–512, 1986.

[12] C. Papadimitriou. The NP-completeness of the bandwidth minimization problem. Computing,
16:263–270, 1976.

[13] J. Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs in poly-
nomial time. SIAM J. Algebraic Discrete Methods, 1:363–369, 1980.

[14] W. Unger. The complexity of the approximation of the bandwidth problem. In FOCS ’98:
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pages 82–91,
1998.

11

