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Abstract

Max-Satisfy is the problem of finding an assignment that satisfies the
maximum number of equations in a system of linear equations over Q.
We prove that unless NP⊂BPP Max-Satisfy cannot be efficiently approx-
imated within an approximation ratio of 1/n1−ε, if we consider systems
of n linear equations with at most n variables and ε > 0 is an arbitrarily
small constant. Previously, it was known that the problem is NP-hard
to approximate within a ratio of 1/nα, but 0 < α < 1 was some specific
constant that could not be taken to be arbitrarily close to 1.

Keywords. Approximation algorithms, computational complexity.

1 Introduction

MAX-SATISFY is the problem finding an assignment that satisfies as many
equations as possible in a system of linear equations over the field of rational
numbers. This problem appears in various contexts such as pattern recognition,
operations research and artificial neural networks (see the references in [2], for
example). MAX-SATISFY is NP-hard. We say that an algorithm approximates
MAX-SATISFY within a ratio of ρ (where 0 < ρ < 1) if on every instance I
of MAX-SATISFY the algorithm returns an assignment that satisfies at least
ρ · opt(I) equations, where opt(I) is the maximum number of equations of I
that can be satisfied simultaneously.

If the system is satisfiable then one can find an assignment satisfying all
equations in polynomial time, using Gaussian elimination. However, if the sys-
tem is not satisfiable, then even approximating MAX-SATISFY within a ratio
of 1/nα (where n is the number of equations and an upper bound on the num-
ber of variables, α is some specific constant less than 1) is NP-hard [2, 3]. The
best approximation algorithm for the problem (due to Halldorsson [9]) achieves
approximation ratio O(log n/n).

One may hope that the constant α in the 1/nα hardness of approximation
result can be taken to be arbitrarily close to 1. In particular, the construction of
arbitrarily low amortized free bits PCPs ([10, 12]) together with the appropriate
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reductions ([7, 6]) has resulted in such an inapproximability result for MAX-
CLIQUE (unless NP=ZPP). In this work we show that this methodology works
for MAX-SATISFY as well. However, there are some difficulties in applying this
methodology compared to the case of MAX-CLIQUE. One of them is that the
relation between amortized free bits and the approximation of MAX-SATISFY
is not as direct as their relation with MAX-CLIQUE, and in fact was not present
in the works of [2, 3]. This we handle in Lemma 8, which arithmetizes the low
amortized free bits PCP of [12] (using principles taken from [8]). A somewhat
more challenging difficulty is that the number of possible assignments to the
variables of a system over Q is infinite (whereas the number of possible cliques in
an n-vertex graph is at most 2n). This complicates the analysis of a randomized
reduction (originally due to [7]) that we use. In order to overcome this difficulty
(in Lemma 7) we make use of a theorem of [5] regarding the number of so called
zero patterns of a system of polynomials. We remark that also [2, 3] needed
to overcome such a difficulty, but their method of doing so would not give
hardness of approximation results beyond 1/n1/2−ε, not even if coupled with
our Lemma 8, and not even if the deterministic amplification technique that
they use (based on [1]) is replaced by its more efficient randomized counterpart.

Our main theorem is the following.

Theorem 1 Unless NP⊂BPP, MAX-SATISFY cannot be approximated within
a ratio of 1

n1−ε , where n is the number of equations in the system and ε > 0 is
an arbitrarily small constant.

2 Preliminaries

We denote by [n] the set of integers between 1 and n. Q is the field of rational
numbers. N is the set of natural numbers.

We now define the concept of a probabilistically checkable proof (PCP):

Definition 1 Let r and q be two functions from N to N. A randomized polynomial-
time Turing machine V with access to an oracle (string) π, is called an (r, q)
restricted verifier if, for every oracle π and for every input x, V uses O(r(|x|))
random bits and queries O(q(|x|)) bits of π.

We deal exclusively with non-adaptive verifiers. A nonadaptive verifier decides
which queries to make based only on the input and on its random bits (but not
on answers it gets for previous queries).

Definition 2 Let 0 ≤ s < c ≤ 1. A language L is said to belong to the class
PCPc,s[r, q] if there is an (r, q) restricted verifier V s.t.

1. If x ∈ L, then there exists an oracle π such that V (with oracle π) accepts
x with probability at least c, where the probability is taken over the random
bits used by V .
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2. If x /∈ L then, for any oracle π, the probability V accepts with oracle access
to π is at most s.

We refer to c as the completeness of the PCP and to s as the soundness of the
PCP. If c = 1, we say that the verifier has perfect completeness.

Arora et al. [4] proved the following important result which is widely known
as the PCP Theorem:

Theorem 2 NP = PCP1,1/2(log n, 1).

The discovery of the PCP Theorem was followed by attempts to optimize
various parameters in proof systems. One such parameter of importance is the
amortized free bit complexity [6].

Definition 3 We say that a PCP with query complexity q has free bit complexity
f ≤ q if for every set of q queries (that the verifier may make) there are at most
2f assignments to the queried locations that cause the verifier to accept. The
amortized free bit complexity of a PCP with free bit complexity f and soundness
s is f/ log s−1.

The amortized free bit complexity is related to the hardness of approximating
Max-Clique. In particular, PCP with arbitrarily small amortized free bit com-
plexity implies that Max-Clique cannot be approximated within a ratio 1/n1−ε

for any positive ε, unless NP=ZPP (n is the number of vertices in the graph)
[6]. A PCP with arbitrarily low amortized free bit complexity was first given by
Hástad [10]. His construction was quite involved. A simpler construction was
given by Samorodnitsky and Trevisan [12]:

Theorem 3 For every positive ε and integer f there is a PCP characterization
of NP with free bit complexity f and query complexity q = f2/4 + f , such that
a correct proof is accepted with probability at least 1 − ε and a wrong proof is
accepted with probability at most 2−f2/4.

We shall need the notion of zero patterns:

Definition 4 Let e1 . . . eN be linear equations over a field F . We say ζ ∈
{0, 1}N is a zero pattern of these equations if there is an assignment σ(ζ) to the
variables of the equations e1, . . . , eN such that σ(ζ) zeros ei iff the ith coordinate
of ζ is zero.

It is clear that the number of zero patterns of N equations is bounded by
2N . It turns out that if d is small, we can get a better bound, as shown in
Lemma 4. (We remark that Lemma 4 is a special case of a more general result
that is proved in [5], where it is shown that the number of zero patterns of a
system of polynomials of maximum degree D is at most

(
DN+d

d

)
. In our case,

D = 1.)
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Lemma 4 For every system of n linear equations over d variables, the number
of zero patterns is at most

∑d
i=0

(
n
i

)
.

Proof: Let e1, ..., en be linear equations. With every equation ei we as-
sociate the d dimensional vector c(ei) corresponding to the coefficients of the
variables of the equation. For example, when d = 3 the 3-dimensional vector
associated with the equation 2x1 − x3 + 5 = 0 is (2, 0,−1). Say that a set of
equations is independent if their associated vectors are linearly independent.
Now we show that the number of zero patterns is at most as large as the num-
ber of sets of independent equations. With every zero pattern we associate a
maximal independent set of equations among those equations that are zeroed by
the pattern. (If there is more than one maximal independent set, we choose one
of them arbitrarily.) An independent set S of equations cannot be maximal for
two different zero patterns, because the fact that all equations in S are zeroed
uniquely determines the value of every equation that depends on S, Hence no
independent set is associated with two different zero patterns, and indeed the
number of zero patterns is at most the number of independent sets. Since the
vectors associated with the equations are d dimensional, the size of an indepen-
dent set is at most d, and the number of independent sets is at most

∑d
i=0

(
n
i

)
,

proving the lemma. ¤
Note: In our context d will be much smaller than n. Hence we can bound∑d

i=1

(
n
i

)
by d

(
n
d

)
.

Finally we shall need the following tail estimate widely known as the Chernoff
bound:

Corollary 5 Assume X1 . . . Xn are mutually independent {0, 1}-valued random
variables. Let X =

∑n
i=1 Xi. For any δ ∈ (0, 1) we have:

Pr(X > (1 + δ)E(X)) < e−δ2E(X)/3

Pr(X < (1− δ)E(X)) < e−δ2E(X)/2

where E(X) is the expectation of the random variable X.

For a proof see [11].

3 The Main Result

We begin by describing a way to increase the gap in MAX-SATISFY beyond
any constant. This approach was suggested in [3] as well as in [2].

Our starting point is the existence of universal constants δ, η ∈ (0, 1) such
that it is NP-hard to distinguish between instances of MAX-SATISFY with n
equations in which OPT ≥ η · n and instances in which OPT ≤ η · δ · n (see
lemma 8). Take k and T to be integers that will be determined later. Let
E be an instance of MAX-SATISFY with n equations, p1 = 0, ..., pn = 0 (Of
course the equations need not be homogenous. The free coefficient is on the left
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hand side). For every k-tuple (i1, ...ik) ∈ [n]k, construct a block of T equations∑k
j=1 pij · yj = 0, where y ranges over all integers in [T ]. If all equations pij are

satisfied in a given assignment, then all the equations in the corresponding block
will be satisfied. If even one of the equations pij is not satisfied, then at most
k out of the T equations in the block will be satisfied, as p(x) =

∑k
j=1 pij · xj

is a polynomial of degree at most k which is not identically 0, and such a
polynomial can have at most k distinct roots. The total number of equations
in this instance is T · nk. We name the new system of equations obtained in
this way Ek. If we can satisfy in the original instance η · n equations, the same
assignment will satisfy at least T (η · n)k equations. If, on the other hand, we
can satisfy at most η · δ · n equations in the original system we can satisfy at
most T (η ·δ ·n)k +k ·nk equations. Taking T large enough (larger than k/(δη)k,
say) we get a gap of approximately (1/δ)k. Taking k to be an arbitrarily large
constant, the gap can be made arbitrarily large, ruling out the exitance of a
constant ratio approximation algorithm for MAX-SATISFY.

By taking k to be a function of n such as log n (ignoring for the moment the
fact that in this case the reduction is no longer polynomial) one may increase the
gap in the approximation ratio to some function that depends on n. However,
at the same time the number of equations increases, and this approach does
not prove that MAX-SATISFY is hard to approximate within 1/nα for some
positive α. We can overcome this obstacle by using random sampling, as pointed
out by Berman and Schnitger [7] in a related context. We remark that in [2, 3]
a similar idea was also used, but the sampling there was taken from a different
distribution that is easier to analyse, but does not give as good results as we
get here.

Throughout n will denote the number of equations in the original system. We
construct a new linear system from the original one as follows. Let k = Θ(log n).
In order to simplify the notation we denote η · δ by b and η by a. As we will
see later, we have such a and b where b ≤ ap for arbitrarily large p. Choose
k such that a−k = Θ(n2). We now create a system REk containing a−(p+1)k

equations chosen at random from the system Ek described above. We cannot
afford to first construct Ek explicitly (because Ek contains superpolynomially
many equations when k = Θ(log n)) but we can still construct REk in random
polynomial time. Pick uniformly at random i1 ∈ [n], i2 ∈ [n], . . . , ik ∈ [n], and
y ∈ [T ]. Add the equation

∑k
j=1 pij · yj = 0 to the system. Repeat this process

independently a−(p+1)k times. We thus get a total of a−(p+1)k equations.
What is the idea in this construction? Assume we have an assignment τ that

satisfies a · n equations in the original instance. We fall into a block in which
all equations are satisfied with probability ak. Hence, the expected number of
equations in REk satisfied by τ is at least a−pk. Suppose we have an assignment
σ which satisfies at most ap · n equations in the original system. Then the
expected number of equations satisfied by σ in the new instance is at most
a−(p+1)k · (apk + k/T ). If we take T to be larger than k( 1

a )pk then the gap
between the two instances is Ω(a−k(p−1)). As we have a−(p+1)k equations we get
that MAX-SATISFY is hard to approximate within roughly n−(1− 2

p+1 ) (recall
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that n is the number of equations in the instance). Since p can be taken to be
arbitrarily large we get that the problem is hard to approximate within 1

n1−ε for
arbitrarily small positive ε.

We first prove:

Lemma 6 If the original instance E is a-satisfiable, then, with probability at
least (1− e−Ω(n2)) REk is 1

2 · a−pk satisfiable.

Proof: Let σ be an assignment satisfying a · n equations in the original
system E. Give to the variables of REk the same values given to them by
σ. The expected number of equations satisfied in REk is at least a−pk (where
expectation is taken over the random choice of REk). Applying the Chernoff
bound, we get that with probability at least 1 − e−Ω(n2) (remember (a−pk is
Ω(n2)), the number of satisfied equations in REk with this assignment is at
least 1

2 · a−pk. ¤
We now want to use the Chernoff bound along with the union bound in

order to show that if our original system E was at most ap satisfiable, then
every assignment to the variables of REk will satisfy “few” equations. There is
a problem, however, in applying the union bound as the number of assignments
to the variables of REk is infinite. The crucial observation in overcoming this
problem is that if two assignments have identical zero patterns over Ek (namely,
they satisfy the same subset of equations from Ek, but may differ on the nonzero
values that they give to other equations), then their zero patterns with respect
to REk are also identical.

The number of equations in Ek is T · nk. Recall k was chosen s.t. a−k =
Θ(n2). Choose T to be k · a−pk. Thus, T is O(nl) for some constant l where l
depends only on the constants a and p. The number of variables in Ek is the
same as in E which is O(n) (see Lemma 8; Recall n is the number of equations
in the original system). Using lemma 4 we get that the number of zero patterns
of the set Ek of linear equations is at most

O(n) ·
(

nΘ(log n)

O(n)

)
= 2O(n·log2 n)

Now we can prove:

Lemma 7 If the original instance E was at most ap-satisfiable, then with prob-
ability at least 1− e−Ω(n2) REk is at most 3 · a−k satisfiable.

Proof: Consider an arbitrary zero pattern of Ek, σ. Once we choose the
equations in REk, σ induces a zero pattern on REk. Denote this zero pattern
by σ′. The expected number of satisfied equations in σ′ is at most

a−k + a−k(p+1) k

T

¿From the way we choose T the expression above is at most 2a−k. Applying
the Chernoff bound we infer that the probability that the number of satisfied
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equations will be more than 3a−k is at least e−Ω(n2) (Since we choose k so
that a−k is Ω(n2)). We have seen that the number of zero patterns of Ek is
bounded by 2Θ(n·log2 n). Taking the union bound over all zero patterns, we get
the required result. ¤

We now justify our assumption that for arbitrarily large p there exists some
a ∈ (0, 1) such that it is NP-hard to distinguish between linear systems that
are a satisfiable and linear systems that are at most ap satisfiable. This follows
from the following lemma:

Lemma 8 For arbitrarily small positive δ there are 0 < b < a < 1 with log a
log b < δ

such that it is NP-hard to tell whether a linear system over the rationals is at
most b-satisfiable or at least a-satisfiable.

Proof: We take the PCP from Theorem 3. Recall this PCP has f free bits,
the completeness is at least 1− ε and the soundness is at most 2−f2/4. Create
a set of linear equations over rational as follows: We introduce a variable for
every position in the proof that has positive probability of being queried. Thus,
the number of variables is at most 2O(r) · q. For the sake of simplicity we
write 2r rather than 2hr for some suitable constant h. For every possible choice
of random bits we have at most 2f possibilities for the queried positions that
make the verifier accept. Fix l to equal 2f2/4. If the values b1, ..., bq cause the
verifier to accept, we add l equations

∑q
i=1 (xi − bi) = 0,

∑q
i=1 (xi − bi)2i =

0 . . .
∑q

i=1 (xi − bi)li = 0. (Note – the indices of the variables should correspond
to the queried positions and not to 1, 2, ..., q. We write it like we did to avoid
notational difficulties). Clearly, if for every i, xi = bi then all l equations are
satisfied. If xi 6= bi for some i, then at most q out of the l equations are satisfied.

We get a total of l(2r+f ) = 2r+f+f2/4 equations. (Note that the number of
equations is larger than the number of variables.) If we have success probability
at least 1 − ε in the above proof system then we can satisfy at least (1 −
ε)l2r = 2r+f2/4+o(1) equations. If, on the other hand, our success probability
is at most 2−f2/4 then we can satisfy at most 2rl2−f2/4 + q2r+f = 2r+O(f)

equations. (Note that q = 2O(log f).) In the first case, we can satisfy at least
2((r)+(f2)/4+o(1))−(r+f+f2/4)=2−O(f)

fraction of the equations. In the second case,
we can satisfy at most 2r+O(f)−(r+f+f2/4) = 2−Ω(f2) fraction of the equations.
Hence, we get 0 < b < a < 1 such that log b = −Ω(f2), log a = −O(f) and it
is NP-hard to distinguish between equations over the rationals that are at least
a-satisfiable to equations that are at most b-satisfiable. As f can be taken to
be arbitrarily large, we are done. ¤

The proof of Theorem 1 follows by combining the three lemmas above.
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