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Abstract

We observe that combining the techniques of Arora, Rao, and Vazirani, with the rounding
algorithm of Rao and Richa yields an O(

√
log n log log n)-approximation for the minimum-linear

arrangement. This improves over the previous O(log n)-approximation due to Rao and Richa.

1 Introduction

Given a graph G = (V, E) and positive edge weights w : E → R+, a linear arrangement is a
permutation π : V → {1, 2, . . . , n}. The cost of the arrangement is

∑
uv∈E w(u, v) · |π(u) − π(v)|.

In the minimum linear arrangement (MLA) problem, one seeks a linear arrangement of minimum
cost. This problem is known to be NP-complete.

Rao and Richa [8] present an algorithm for MLA with an O(log n) approximation ratio, and
another algorithm which achieves a ratio of O(log log n) when G is a planar graph. For an account
of earlier work on MLA, see [8]. Arora, Rao, and Vazirani [2] introduced new techniques for the
rounding of semi-definite programs based on the analysis of finite metric spaces of negative type.
In this note, we observe that the techniques of [8] and [2] can be combined to obtain an approxi-
mation ratio of O(

√
log n log log n) for MLA. A similar upper bound was obtained independently

by Charikar, Hajiaghayi, Karloff, and Rao [3].

2 The algorithm

The authors of [5] introduce the following “spreading metric” relaxation for MLA. The variables
are d(u, v) for u, v ∈ V . We minimize

∑

uv∈E

w(u, v) · d(u, v)

subject to the constraints

1. For every pair u, v ∈ V , d(u, v) ≥ 1.

Additionally, for every subset S ⊆ V with |S| ≥ 2, and every u ∈ S,

∑

v∈S

d(u, v) ≥ |S|2
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This is a valid constraint because if the vertices of S lie on a path, and d(·, ·) is the path
distance, then the worst configuration for the above inequality occurs when |S| is odd, the
|S| vertices occupy consecutive nodes of the path, and u is the middle node. In this case, the
above sum is 2(1 + 2 + · · ·+ |S|−1

2 ) ≥ |S|2/5.

2. (V, d) is a metric space, i.e. for every triple u, v, w ∈ V ,

d(u, v) ≤ d(u,w) + d(w, v).

Observe that the program is optimizing a linear function of the d(u, v) variables subject to linear
constraints. The program contains an exponential number of constraints, but it is not difficult
to find a separation oracle or to see that the LP is indeed a relaxation (see [5]). We will say
that any metric space (V, d) satisfying the first set of constraints (1) is a spreading metric. If we
require that d(u, v) = ||xu − xv||22 with xu ∈ Rn for every u ∈ V , then the program can be written
naturally as an SDP (see, e.g. [2]), and the metric space (V, d) is said to be of negative type.
(The program remains a relaxation: Given an optimal arrangement π : V → {1, 2, . . . , n}, one sets
xu = (1, . . . , 1, 0, . . . , 0) ∈ {0, 1}n where the number of initial 1’s is exactly π(u).)

We will say that a metric space (V, d) is ε-separable if, for every subset S ⊆ V , with |S| = k ≥ 2,
there exist two non-empty subsets A,B ⊆ S with |A|, |B| = Ω(k), and d(A,B) ≥ εk, where
d(A,B) = mina∈A,b∈B d(a, b). Rao and Richa essentially prove the following theorem whose proof
we sketch in the following section.

Theorem 2.1 ([8]). Let G = (V, E) be an instance of MLA with edge costs w(u, v) and |V | = n.
Let d be a metric on V which is ε-separable for some ε ≥ 1/O(log n), and which satisfies d(u, v) ≥ 1
for every u, v ∈ V . Then there exists an efficient algorithm which outputs a linear arrangement
π : V → {1, 2, . . . , n} such that

∑

uv∈E

w(u, v) · |π(u)− π(v)| ≤ O(log log n/ε) ·
∑

uv∈E

w(u, v) · d(u, v).

In [8], the authors also observe that a theorem of Klein, Plotkin, and Rao [6] shows that if
the shortest-path metric on a planar graph is a spreading metric, then it is Ω(1)-separable. They
conclude that there is an O(log log n)-approximation for MLA in planar graphs.

Now suppose that G = (V,E) is an arbitrary graph, and we instead use the SDP solution so
that (V, d) is a metric of negative type. The next theorem follows from the techniques of [2].

Theorem 2.2. Every n-point spreading metric (V, d) which is also of negative type is 1/O(
√

log n)-
separable, and there exists an efficient algorithm for computing the separated sets.

Proof. For a node u ∈ V , we denote B(u, r) = {v ∈ V : d(u, v) ≤ r}. First, we claim that for any
u ∈ V , and any r ≥ 1

5 , we have |B(u, r)| ≤ 5r. To see this, let T = B(u, r). If |T | = 1, we are
done. Otherwise note that

∑
v∈T d(u, v) ≤ |T | · r on the one hand, and yet this sum must be at

least |T |2/5 by the spreading constraints (1). It follows that |T | ≤ 5r.
Now let S ⊆ V be any subset with |S| = k ≥ 2. We claim that for at least half the pairs x 6= y ∈

S, we have d(x, y) ≥ k/10. But this follows easily since for any x ∈ S, we have |B(x, k/5)| ≤ k/2.
Since an Ω(1) fraction of the pairs x, y ∈ S satisfy d(x, y) ≥ k/10, and (S, d) is a metric of negative
type, we are in position to apply the techniques of [2]. In particular, in order to refer to a result
which appears in the literature, we cite the following stronger theorem [1, Theorem 2.1] which itself
follows from the techniques of [2, 7, 4].
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Theorem 2.3. There exist constants C ≥ 1 and 0 < p < 1
2 such that for every n-point metric space

(S, d) of negative type and every τ > 0, the following holds. There exists an efficiently computable
distribution µ over subsets U ⊆ S such that for every x, y ∈ S with d(x, y) ≥ τ ,

µ

{
U : y ∈ U and d(x,U) ≥ τ

C
√

log n

}
≥ p.

In particular, using τ = k/10, there must exist some subset U ⊆ S such that for an Ω(1) fraction
of the pairs x, y ∈ S which satisfy d(x, y) ≥ k/10, x ∈ U and d(y, U) ≥ εk where ε ≥ 1/O(

√
log n).

In particular, choosing A = U and B = {y ∈ S : d(y, U) ≥ εk} yields the desired separated sets.

Combining the preceding theorem with Theorem 2.1 yields an O(
√

log n log log n)-approximation
for MLA in general n-vertex graphs.

3 Sketch of Theorem 2.1

We proceed using the ideas of [8]. Define

WS(d) =
∑

uv∈E:u,v∈S

w(u, v) d(u, v) and W (d) = WV (d) =
∑

uv∈E

w(u, v) d(u, v).

Recall that we have an ε-separable metric space (V, d), hence there exist subsets A,B ⊆ V for
which |A|, |B| = Ω(n), and d(A,B) ≥ εn. We consider the cuts C0, . . . , Ct for t ≥ Ω(εn), where cut
Ci separates the vertices of V into two sets: Ai = {v ∈ V : d(v,A) ≤ i}, and Bi = V \ Ai. Note
that A ⊂ Ai for all i, and t is chosen to be not too large, so that B ⊂ Bi for all i. For a cut Ck, we
consider the cost of the edges crossing the cut, namely Wk =

∑
uv∈E,u∈Ak,v∈Bk

w(u, v).

Proposition 3.1. There are Ω(εn) values of k for which Wk ≤ O(W (d)/εn).

Proof. Since d(u, v) ≥ 1 for every u, v ∈ V , and d is a metric, we have W (d) ≥ 1
2

∑t
k=0 Wk. As

t = Ω(εn), the average value of Wk is at most O(W (d)/εn). At most half the Wk may have value
more than twice the expectation.

Now we present a charging argument broken into two cases.

1. For some 0 ≤ k ≤ t, Wk ≤ W (d)/n log n. In this case, continue recursively to find a linear
arrangement for Ak and a linear arrangement for Bk, and concatenate the results. The cost
of the concatenated linear order is composed from the cost of edges within Ak (handled by
the recursion), cost of edges with Bk (handled by the recursion), and the concatenation cost:
that of edges connecting Ak and Bk. Each edge of the latter type is of length at most n− 1
in the final solution, whereas it contributes length at least 1 to W (d) (since d(u, v) ≥ 1 for
all u, v). Hence the total cost of these edges is at most W (d)/ log n.

Observe that WAk
(d)+WBk

(d) ≤ W (d), and there may be at most O(log n) levels of recursion,
because both Ak and Bk are of size at most n(1 − Ω(1)), and hence the total concatenation
cost over all levels is at most O(W (d)). This implies that the contribution to

∑
uv∈E w(u, v) ·

|π(u)− π(v)| from this case is at most O(W (d)).
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2. For every 0 ≤ k ≤ t, Wk > W (d)/n log n. Define buckets B0, . . . , Bl with l = O(log log n) (so
that 2l > (log n)3/2), such that bucket Bq contains all cuts Ck for which W q ≤ Wk ≤ 2W q,

where W q = 2q W (d)
n log n . Proposition 3.1 implies that at least one bucket, say Bq, contains at

least r = Ω(εn/ log log n) cuts. Taking all the cuts in Bq partitions the vertices into sets
V1, V2, . . ., with a natural linear order among these sets, respecting the order of the cuts. For
each set Vi the MLA problem is now solved separately by recursion, and the solutions are
concatenated in the natural order.

Again, let us bound the concatenation cost as a function of W (d). The point (as in [8])
is that even though there are r cuts each of cost at most 2W q, their total contribution to∑

uv∈E w(u, v) · |π(u) − π(v)| is at most 4nW q (the value of r is irrelevant to the bound).
This is true because every set of vertices Vi contributes “stretch” |Vi| only to two sets of
edges represented in Bq: Those that belong to the cut immediately preceding Vi and those
that belong to the cut immediately following Vi (such edges must be stretched over the linear
arrangement of Vi).

On the other hand, every cut contributes to W (d) at least its cost, and these costs are additive
because if an edge crosses several cuts (of distance at least 1 apart), then its length is at least
as large as the number of cuts that it crosses. If follows that W (d) ≥ Ω(rWq). The ratio
between the concatenation cost and the contribution of the same edges to W (d) is then at
most 4n/r ≤ O(log log n/ε).
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