
Robust Combinatorial Optimization with Exponential Scenarios

Uriel Feige∗ Kamal Jain∗ Mohammad Mahdian∗ Vahab Mirrokni∗

November 10, 2006

Abstract

Following the well-studied two-stage optimization framework for stochastic optimiza-
tion [14, 17], we study approximation algorithms for robust two-stage optimization problems
with exponential number of scenarios. Prior to this work, Dhamdhere et al. [7] introduced
approximation algorithms for two-stage robust optimization problems with polynomial num-
ber of scenarios. To model exponential number of scenarios, we assume the set of possible
scenarios is given implicitly, for example by an upper bound on the number of active clients.
In two-stage robust optimization, we need to pre-purchase some resources in the first stage
before the adversary’s action. In the second stage, after the adversary chooses the clients
that need to be covered, we need to complement our solution by purchasing additional re-
sources at an inflated price. The goal is to minimize the cost in the worst-case scenario.
We give a general approach for solving such problems using LP rounding. Our approach
uncovers an interesting connection between robust optimization and online competitive
algorithms. We use this approach, together with known online algorithms, to develop ap-
proximation algorithms for several robust covering problems, such as set cover, vertex cover,
and edge cover. We also study a simple buy-at-once algorithm that either covers all items in
the first round or does nothing in the first round and waits to build the complete solution
in the second round. We show that this algorithm gives tight approximation factors for
unweighted variants of these covering problems, but performs poorly for general weighted
problems.

∗Microsoft Research, Redmond, WA, USA. emails: {urifeige,kamalj,mahdian,mirrokni}@microsoft.com

1 Introduction

In many combinatorial optimization problems, the objective is to minimize the cost of building
an installation to serve a number of clients. In classical optimization problems, it is often
assumed that the parameters of the system are known in advance. However, in reality, it is
almost always impossible or costly to obtain accurate data about various parameters of the
optimization problem at the time of planning. For example, the cost of acquiring a resource
or the set of clients that need to be serviced might be unknown. The goal of the fields of
stochastic optimization and robust optimization is to provide algorithms for minimizing the
cost in presence of uncertainty.

In stochastic optimization [5, 6], it is assumed that we have information about the probability
distribution governing the data. Given this information, the goal is to plan ahead to minimize
the expected cost. In particular, in two-stage stochastic optimization, a solution is built in two
stages: in the first stage, we need to decide which resources to purchase given only distributional
information about the instance. In the second stage, the exact information about the data is
revealed and we are allowed to complement the solution built in the first stage by purchasing
extra resources at an inflated cost.

Robust optimization [3, 4, 16] can be considered the worst-case analogue of the stochastic
optimization. In a robust optimization problem, we are given bounds on various parameters of
the system, and the goal is to find a solution that minimizes the cost in a worst-case scenario
(or be feasible in a worst-case scenario). A two-stage robust optimization problem (introduced
in [7]) is similar to a two-stage stochastic problem except instead of a distribution, we have
a set of possible scenarios (given either explicitly, or implicitly by giving bounds on various
parameters), and instead of expectation, we would like to minimize the maximum cost of the
solution, where maximum is taken over the set of all possible scenarios.

During the past few years, stochastic optimization (and in particular, two-stage stochastic
optimization) has received considerable attention from the perspective of approximation algo-
rithms. Efficient approximation algorithms are given for a wide class of optimization problems,
both for cases where the distribution is given explicitly by listing the set of all possible sce-
narios and the corresponding probabilities [17, 12], and in the more general case where the
distribution is given implicitly, as the product of a number of independent trials, or by an
oracle [14, 18, 11, 7].

For robust optimization, only recently Dhamdhere, Goyal, Ravi, and Singh [7] initiated
the study of approximation algorithms for two-stage robust covering problems when the set
of scenarios is given explicitly. In this paper, we take on the task of studying approximation
algorithms for two-stage robust optimization problems, where the set of possible scenarios is
given implicitly. In particular, we focus on the case where the set of possible scenarios is given
by an upper bound on the number of active clients, and give approximation algorithms for the
robust version of several classical covering problems such as set cover, vertex cover, and edge
cover.

1

1.1 Preliminaries

In this section we give a formal definition of the two-stage robust optimization model that will
be studied in this paper. This model is a generalization of the model introduced by Dhamdhere
et al. [7] (in the case of explicitly listed scenarios), and is motivated by similar models for
two-stage stochastic optimization [14, 12].

In a covering problem, we have a set C of potential clients, and a set R of resources. Each
resource r ∈ R can be purchased at a cost cr. In order to serve a set of clients, a set of resources
must be purchased. The collection of all sets of resources which can serve the set S ⊂ C of
clients is denoted by sol(S). In covering problems the collection sol(S) is an upper ideal, i.e.,
if a set of resources can serve S, so can any superset of this set.

Generally, the collection sol(S) is given implicitly by specifying a set of constraints. Three
examples that we will focus on in this paper are set cover, vertex cover, and edge cover. In the
set cover problem, each resource r ∈ R corresponds to a set of clients, and the collection sol(S)
consists of all sets of resources whose union covers S. In the vertex cover problem, the set of
clients and the set of resources are the edge set and the vertex set of a given graph, respectively,
and a set S ⊂ C can be served by any set of vertices that contain at least one of the endpoints
of each edge in S. In the edge cover problem, each resource is an edge and each client is a
vertex of a given graph, and a set S of clients can be covered by any set of edges that has at
least one edge adjacent to any vertex in S.

In a two-stage robust covering problem, we have a collection S of scenarios, each given by a
set of active clients (i.e., clients that need to be covered). The objective is to purchase a set of
resources in the first stage to minimize the cost of these resources plus a given inflation factor
λ times the maximum over scenarios S in S, of the cost completing the solution for scenario
S. In other words, after we purchase a set of resources in the first stage, an adversary decides
in which scenario we are. After that, we need to complete the solution by purchasing more
resources at costs inflated by a factor λ (or more generally, by an inflation factors λS

r which
depends on the resource r ∈ R and the scenario S ∈ S).

The robust optimization problem can be studied in several different models, depending on
how the list of scenarios S is given to the algorithm. The first model, studied by Dhamdhere et
al. [7] and Golovin et al [10], is to assume that the list of all possible scenarios is given explicitly.
This model is suitable for situations where the number of possible scenarios is not very large.
An alternative model, motivated by the independent trials model of stochastic optimization,
is to assume that the list of scenarios is given implicitly by an upper bound on the maximum
number of active clients. More formally, in this model an integer k is given and S is defined
as {S ⊆ C : |S| ≤ k}.1 Finally, motivated by the oracle model in stochastic optimization, we
define an oracle model for robust optimization where the list of possible scenarios is given by
an oracle which, given the set of resources purchased in the first stage, outputs the worst-case
scenario for the second stage.

An important distinction between our oracle model and the oracle model for stochastic
1More generally, we can consider a model where the set of clients is partitioned into subsets C1, . . . , Ct, and

the set of scenarios is the collection of all sets that have at most ki clients from the set Ci. Although the results
in Sections 2 and 3 work for this more general model, for clarity of exposition we restrict ourselves to the simpler
model.

2

optimization is that in our model, the problem the oracle needs to solve is often computationally
intractable. For example, if the set of scenarios in a robust set cover problem is given by an
upper bound on the number of active clients, the oracle needs to find a subset of k clients
whose minimum cost of covering is maximized. We call this problem the max-min set cover
problem, and will observe that it is computationally hard. Considering the hardness of the
oracle problem, the algorithms designed for the oracle model need to be able to work with an
approximate oracle as well. Furthermore, in order to solve a robust optimization problem in
the model where the scenarios are given by an upper bound on the number of active clients,
in addition to designing an algorithm for the oracle model, we need to give an approximation
algorithm for the max-min version of the problem.

1.2 Our Contribution

In this paper, we mostly focus on the model where the scenarios are given implicitly by an
upper bound on the number of active scenarios. This is motivated by real-world situations
where a good estimate of the total number of clients who will show up is available, but we do
not exactly know where they appear. We will also give a general LP-based algorithm for the
oracle model, assuming that the oracle gives a good approximation of the worst-case scenario
with respect to the fractional solution.

A naive idea to solve the robust optimization problems is a buy-at-once algorithm: either
cover all items in the first round in which case nothing needs to be done in the second round. Or
do nothing in the first round and construct a solution in the second round, after the adversary
makes its choices. The choice of which of the two options to use is based on a polynomial-
time test that is problem specific. We study this algorithm in Section 4 and prove that when
the inflation factor is the same for all scenarios the approximation ratio of this algorithm
for robust unweighted set cover, vertex cover, and edge cover problems are max(log m, log n),
2, and 2 respectively. However, the following example shows that for the weighted version
of robust vertex cover, any buy-at-once algorithm (even with unbounded computing power)
performs poorly. The input of the robust vertex cover problem are a node-weighted graph G,
a parameter k (for number of edges to be chosen by adversary), and an inflation factor λ > 1.
Consider a clique on n vertices, with k = 1 and λ =

√
n. All vertices have weight 1, except for

one vertex that has weight w =
√

n. The buy-at-once algorithm will either pay at least n in
the first round, or at least λw = n in the second round. However, an optimal algorithm can
choose only the heavy vertex in the first round, and then pay at most w+λk = 2

√
n. Hence the

approximation ratio of the buy-at-once algorithm for weighted robust vertex cover is no better
than Ω(

√
n). This example indicates the need for more sophisticated approximation algorithms

for robust two-stage optimization problems.
In Section 2, we give a general LP-based framework for solving robust covering problems

given access to an oracle that solves the max-min problem (or the adversary’s problem) and
another oracle that rounds the LP solution for the classical (i.e., non-robust) optimization
problem. More precisely, the separation oracle for this exponential LP’s, we need to solve a
max-min variant of the fractional covering problem. For example, in the max-min fractional
set cover problem, given a collection of subsets S1, S2, . . . , Sm of a universe F each with a cost
c(Si) and a parameter k, we need to find a subset T ⊆ F of size at most k for which the cost of

3

fractional set cover is maximized. In Section 3, we show how an online algorithm can be used to
solve the max-min problem when the set of feasible scenarios are given by an upper bound on
the number of active clients. We use this to give O(log m)-approximation algorithms for max-
min fractional set cover. We also show that the max-min fractional set cover problem is not
approximable within a factor better than Ω(log m

log log m) under reasonable complexity assumptions.
As a result of this framework, we get an O(log n log m)-approximation for the robust set cover
problem. Following similar ideas, we design constant-factor approximation algorithms for robust
vertex cover and edge cover problems. This framework can be extended easily to more general
settings in which the scenarios are given implicitly in more general ways. The main step for
these extensions are to design good approximation algorithms for the max-min problems.

As mentioned earlier, in Section 4, we give a simple buy-at-once algorithm for robust un-
weighted set cover, vertex cover and edge cover with approximation ratio are max(log m, log n),
2, and 2 respectively. We show that no buy-at-once algorithm (even without computational
constraint) can perform better than Ω(log n+log m) for unweighted set cover. For vertex cover
and edge cover problems, we provide evidence (under ”reasonable” complexity assumptions)
that no polynomial-time algorithm can produce an approximation ratio better than two.

2 An LP-rounding approach for robust set cover

In this section, we give an LP-based approach for robust set cover. Our techniques work for
a more general covering problem where each resource r ∈ R can be picked an integer number
of times xr, and a client is covered if a corresponding inequality of the form

∑
r airxr ≥ 1

(where air are given non-negative coefficients) is satisfied. The details of this generalization are
omitted here.

We start by giving an LP formulation of the two-stage robust set cover problem.2

minimize T +
∑

r∈R
cry

0
r (1)

subject to ∀S ∈ S, ∀i ∈ S :
∑

r: i∈r

(y0
r + yS

r) ≥ 1 (2)

∀S ∈ S :
∑

r∈R
λcry

S
r ≤ T. (3)

The variable y0
r in the above LP indicates whether the resource r is purchased in the first

stage. Similarly, the variable yS
r indicates whether this resource is purchased in the second

stage, if the adversary selects the set S as the set of active clients. The variable T indicates
the maximum cost of the second stage, where the maximum is taken over all possible scenarios.
Clearly, if the variables y0

r and yS
r are restricted to be integers, the above integer program

captures the robust set cover problem precisely. Therefore, relaxing the integrality condition
2Although we present this LP in the case that the inflation factor λ does not depend on the resource r or the

scenario S, it is easy to see that all proofs in this section apply to the more general case.

4

gives us a linear program whose solution is a lower bound on the cost of the optimal solution
to the robust set cover problem.

The main difficulty with this LP formulation is that it contains an exponential number of
constraints and an exponential number of variables, and therefore cannot be solved directly
using the ellipsoid method. We can deal with this problem using a technique developed by
Shmoys and Swamy [18] for stochastic optimization: we consider the projection of the above
LP onto the space corresponding to the variables y0

r ’s and T , and then give a separation oracle
for the reduced LP. The projection of the above LP corresponds to the following program.

minimize T +
∑

r∈R
cry

0
r (P)

subject to ∀S ∈ S : T ≥ cost2(S, y0
r)

Here cost2(S, y0
r) denotes the cost of the optimal fractional solution for the second stage

when the set of active clients is S, given that resource r is already purchased to the extent of
y0

r in the first stage.
The separation oracle for this LP corresponds to an algorithm that computes the optimal

strategy for the adversary of the robust fractional set cover problem. We call this the max-min
fractional set cover problem. More precisely, the max-min fractional set cover problem is the
following: given a fractional first-stage solution (i.e., y0

r ’s), select a scenario (in the example we
will focus on in this paper, a set of at most k clients) so that the cost of a fractional solution
for the second stage is maximized. The following lemma, proved using a simple application of
the ellipsoid method, shows that given an approximation algorithm for the max-min fractional
problem, we can compute an approximate solution of the above LP in polynomial time.

Lemma 1 Assume we have a polynomial time γ-approximation algorithm for the max-min
fractional problem. Then, we can compute a γ-approximation to the solution of the linear
program (P) in polynomial time.

Proof Sketch: The proof is based on an idea introduced by Shmoys and Swamy [18] in the
context of stochastic optimization. The idea is to use binary search to find the smallest value
of R such that the ellipsoid algorithm (using a separation oracle described below) decides that
the following set of inequalities has a solution.

∀S ∈ S : cost2(S, y0
r) +

∑

r∈R
cry

0
r ≤ R (P ′)

For the separation oracle, we run the approximation algorithm for the max-min fractional
problem with the input (y0

r). This algorithm finds a scenario S∗ such that cost2(S∗, y0
r) ≥

1
γ cost2(S, y0

r) for every scenario S. (Observe that given a scenario S∗, the value of cost2(S∗, y0
r)

can be computed in polynomial time, because computing this cost involves solving a frac-
tional set cover problem. Hence the approximation algorithm for the max-min fractional
problem returns a scenario together with its exact cost, rather than its approximate cost.)
If cost2(S∗, y0

r) +
∑

r∈R cry
0
r ≤ R, the separation oracle accepts (y0

r) as a feasible solution.

5

Otherwise, it rejects and outputs a separating hyperplane of the polynomial-sized program
cost2(S∗, y0

r) +
∑

r∈R cry
0
r ≤ R. Consider the smallest value R∗ (found by binary search) for

which the ellipsoid algorithm decides that (P ′) has a solution. Notice that during the search
for R∗, every time the ellipsoid algorithm is run for an R < R∗, all calls to the separation oracle
resulted in a reject and a hyperplane in (P ′) that separates the given point. Therefore, for any
such R, if we run the ellipsoid algorithm with an exact separation oracle on (P ′), we should get
the same answer. This means that the program (P ′) is infeasible for every R < R∗, and hence,
the optimal solution of the program (P) is at least R∗.

For R = R∗, our ellipsoid algorithm terminates with a point (y0
r) that is accepted by the

separation oracle. The approximation guarantee of the separation oracle implies that (y0
r) is a

feasible solution for the program (P ′) with R = γR∗. This means that (y0
r) gives a solution of

the program (P) with the objective function value at most γ.R∗, which is at most γ times the
optimal solution of this program.

The above lemma requires us to be able to solve the max-min fractional set cover problem
given a fractional first-stage solution. In other words, for each client i we are given a fractional
value θi, so that if the adversary chooses i in the set of active clients, we will have to cover i
to the extent of θi. In the following lemma, we show that it is enough to be able to solve the
max-min problem given that θi’s are zero or one. In other words, given a subset C ′ of the clients
(corresponding to those with θi = 1), we need to be able to find a set of at most k clients in C ′

whose minimum fractional cost of covering is maximized. We call this problem the max-min
fractional set cover problem with integer requirements.

Lemma 2 Assume we have a polynomial time γ-approximation algorithm for the max-min set
cover problem with integer requirements. Then, we can compute a 2γ-approximation to the
solution of the linear program (P) in polynomial time.

Proof Sketch: We use the ellipsoid algorithm as in the proof of Lemma 1, except instead
of running the algorithm for the max-min fractional problem with the input (y0

r), we do the
following: for each client i, if this client is covered by the fractional first-stage solution (y0

r)
to the extent of at least 1/2, we do not require the client to be covered in the second stage;
otherwise, we require the client to be fully covered, and then run the algorithm for the max-min
problem with integer requirement on the resulting instance, and divide the value of the output
of this algorithm by two. The result of the algorithm is as described in the proof of Lemma
1. It is easy to see that if this separation oracle rejects an input, an exact separation oracle
would also reject the input. However, if the separation oracle accepts (y0

r), then doubling the
fractional solution would be a feasible fractional solution for the program (P ′) with R = γR∗.
Hence there is a feasible solution to the program (P) with cost at most 2γ times the cost of
(y0

r).

Finally, we notice that the solution obtained by solving the linear program (P) can be
rounded into an integral solution using an LP-based algorithm that solves the (non-robust)
optimization problem. Combining this with the previous lemmas, we obtain the following.

Theorem 1 Assume, we have an α-approximation algorithm A1 for the max-min set cover
problem with integer requirements, and an algorithm A2 that given a subset S of clients, finds

6

an integral solution that covers the clients in S and whose cost is at most β times the minimum
cost of fractionally covering S. Then there is a 2αβ-approximation algorithm for the robust
optimization problem.

Proof Sketch: As in the proof of the previous lemmas, we use the ellipsoid algorithm (with a
separation oracle as described in the proof of Lemma 2) and binary search to find the smallest
R = R∗ for which the ellipsoid algorithm decides that the program (P ′) has a feasible solution.
Using the same argument, one can see that the value R∗ is a lower bound on the solution of
the linear program (P). On the other hand, for R = R∗, the algorithm finds a solution (y0

r)
which is accepted by the oracle. Let T be the set of clients covered to the extent of 1/2 by (y0

r),
and use the algorithm A2 to construct a solution of value at most 2β times

∑
r cry

0
r to cover

the elements in T . Finally, for any second stage scenario, the fractional cost of covering the
uncovered elements of this scenario in the second stage is at most 2α by the property of the
separation oracle, and hence these elements can be covered with cost at most 2αβ integrally.
Hence, the total cost of the solution is at most 2αβ times the solution of (P). Hence, this
algorithm is a 2αβ approximation algorithm for the robust set cover problem.

By the above theorem, the main ingredient in solving a robust optimization problem with
implicitly given scenarios is the algorithm for the max-min problem. In the next section, we
show how this problem can be approximated in several special cases.

3 The max-min problems

The results of the previous section show that in order to solve the LP relaxation of the robust
set cover problem, we need to consider the max-min problem. In Appendix A we give a general
reformulation of the max-min problem using LP duality, and then use this formulation to give
a simple

√
n-approximation algorithm for this problem. In this section, we design O(log m)-

approximation for max-min fractional set cover problem. Here, we present a general framework
to design approximation algorithms for the max-min problems using online competitive algo-
rithms. Note that the max-min problems that we need to solve for approximating the robust
covering problems are the fractional variant of covering problems.

Given a universe F of clients and a subset T ⊆ F , let opt(T) be the cost of an optimal
(fractional) solution to cover all clients in T . Let A be an α-competitive online algorithm for
a covering problem. Namely, upon the arrival of any client ak to an existing set of clients
a1, a2, . . . , ak−1, A augments the current solution to a feasible solution for a1, . . . , ak−1, ak. The
algorithm is α-competitive if for every sequence of clients a1, . . . , ak the cost of the online solu-
tion produced by A is at most α times the cost of the optimal (offline) solution for a1, a2, . . . , ak.
Let A(b|a1, a2, . . . , ak) denote the marginal increase in the cost of the solution constructed by
algorithm A when we add a new element b to an existing sequence of clients (a1, . . . , ak).

Consider two solutions w and w′ for a fractional covering problem. Solution w′ dominates
solution w if for each set S the fractional value given to its respective variable in w′ is at least as
large as that given in w. We say that the covering problem satisfies the monotonicity property,
if any given two solutions w and w′ such that w′ dominates w and any element a, the optimal
marginal increase in expanding w′ to cover a is not more than the optimal marginal increase

7

in expanding w to cover a. It is not hard to prove that the set cover problem and its special
cases satisfy this property.

The following theorem presents a relation between competitive online algorithms and ap-
proximation algorithms for the max-min problem.

Theorem 2 Let A be an α-competitive online algorithm for a covering problem. If the covering
problem satisfies the monotonicity property then the corresponding max-min problem admits a
(e

e−1)α-approximation algorithm.

Proof : Given the online algorithm A for the covering problem, we prove that the following
algorithm B is a (1− 1

e)α-approximation algorithm for the max-min problem:

1. T = ∅.
2. for i = 1, . . . , k do

(a) Find a client ai that maximizes A(ai|a1, a2, . . . , ai−1) and add it to T .

Let the optimal solution to the max-min problem be the set {b1, . . . , bk} of clients. Let
OPT∗ be the optimal cost of covering {b1, . . . , bk}. Let Wi be the cost of the solution of the
online algorithm after i elements have arrived and Li = max[0, OPT∗ − Wi]. We prove that
Li ≤ (1− 1

k)Li−1. Consider expanding the solution of the online algorithm for {a1, . . . , ai−1} in
the optimal way so that it covers {b1, b2, . . . , bk}. The cost of this new solution is at least OPT∗.
Hence there is some item bj (with 1 ≤ j ≤ k) such that there is difference of OPT∗−Wi−1

k in
cost between the case in which the clients b1, . . . , bj−1 are added (or no clients at all, if j = 1)
and the case in which the clients b1, . . . , bj are added. Since the covering problem satisfies the
monotonicity property, adding bj alone to {a1, . . . , ai−1} requires an increase in cost of at least
OPT∗−Wi−1

k compared to the cost of A covering {a1, . . . , ai−1}. Hence Wi−1 + (OPT∗−Wi−1

k)
is a lower bound on the cost of A for covering {a1, . . . , ai−1, bj}. Since algorithm B chooses
in the ith step the ai that maximizes the marginal increase in the cost of A, we will indeed
have that Wi ≥ Wi−1 + OPT∗−Wi−1

k , and thus, Li ≤ Li−1(1 − 1
k). Thus Li ≤ (1 − 1

k)iL0.
Therefore, Lk ≤ (1− 1

k)kOPT∗ ≤ 1
eOPT∗. This shows that Wk ≥ (1− 1

e)OPT∗. Since A is an
α-competitive algorithm, the true cost of covering {a1, . . . , ak} is at least Wk/α, and algorithm
B is a (e

e−1)α-approximation algorithm for the max-min problem.

Using Theorem 2 and the known competitive online algorithms, we design approximation
algorithms for the max-min problems. For the sake of completeness, we describe an O(log m)-
competitive algorithm for the online fractional set cover problem by Alon et. al [1]. In the
online algorithm, every set gets a weight, where the weight of set S at each time will be
denoted by w(S). Every client will have a covering factor, where the covering factor of client
i is f(i) =

∑
S∈S|i∈S w(S). Similar to [1], we assume that the cost of each set is between 1

and 2m2, i.e, for each Si ∈ S, 1 ≤ c(Si) ≤ 2m2. We initialize the weight of every set S as
w(S) = 1

2m3 . After the arrival of a new client a, the online algorithm performs the following:

8

1. if f(a) ≥ 1, then do nothing (the new client a is already fractionally covered), else

(a) Let ε = 1−f(a)P
S∈S:a∈S

w(S)
c(S)

.

(b) for each S ∈ S that contains a, w(S) = w(S)(1 + ε
c(S)).

(c) for each b, f(b) =
∑

S∈S:b∈S w(S).

Alon et. al [1] proved that the above algorithm is O(log m)-competitive for the online frac-
tional set cover problem. This algorithm along with Theorem 2 gives an O(log m)-approximation
algorithm for the max-min fractional set cover problem. In Appendix B, we show that this result
is nearly best possible (assuming certain complexity theoretic assumptions).

The above result also implies an O(log m log k)-approximation algorithm for the max-min
(integral) set cover problem. Moreover, using the randomized rounding method for the set
cover problem and the above results, we have the following:

Theorem 3 There exists an O(log m log n)-approximation algorithm for the robust two-stage
set cover problem.

Using the ideas of the 2-approximation algorithm for vertex cover by Bar-Yehuda and
Even [2], we can design a 2-competitive online algorithm for vertex cover problem as follows. In
the online algorithm, we keep track of a value r(u) for each vertex u of the graph. We initialize
these values to r(u) = w(u). At any moment, the fractional vertex cover solution is to pick
1− r(u)

w(u) fraction of each vertex u. Upon the arrival of a new edge e = uv, the online algorithm
sets ru = ru − min(ru, rv) and rv = rv − min (ru, rv). Observe that after this update either
r(u) = 0 or r(v) = 0. Note that the fractional solution is to pick 1− r(u)

w(u) of each vertex u. This
means that we fully pick u or v for edge e = uv and this solution is a feasible fractional vertex
cover. Similar to the proof of Bar-Yehuda and Even [2], we can prove that this algorithm is a
2-competitive online algorithm. Using Theorem 2, this 2-competitive online algorithm implies a
(2e

e−1)-approximation algorithm for the max-min fractional vertex cover problem. Applying the
above results and the 2-approximate rounding procedure for the vertex cover problem, we get
a (4e

e−1)-approximation algorithm for the robust (weighted) vertex cover problem. The details
are omitted. Also, for the edge cover problem, it is straightforward to design a constant-factor
approximation algorithm for the max-min problem and hence a constant-factor approximation
for the robust edge cover problem. We do not optimize the constants of the approximation ratio
for the weighted problems. However, in Section 4 we show a tight buy-at-once 2-approximation
for unweighted vertex cover and edge cover.

4 Improved Algorithms for Unweighted Problems

In this section, we give buy-at-once approximation algorithms for unweighted variants of robust
set cover, vertex cover, and edge cover.

9

4.1 Robust Unweighted Set Cover

In the robust unweighted set cover problem, all sets have unit cost. The input of the problem
include n items, a collection of m sets, a parameter k (for number of items to be chosen by
adversary), and an inflation factor λ > 1. To simplify notation, we assume here that parameters
such as k, m and n are sufficiently large, and hence we shall ignore effects such as rounding
lnm to the nearest integer. They affect the approximation ratio only by low order terms. The
buy-at-once approximation algorithm for robust set cover is as follows:

1. Compute a minimum fractional set cover and let t be its size.

2. If t < λk
ln n , use the greedy algorithm to find a set cover. It will be of size at most t ln n.

Nothing needs to be done in the second round.

3. If t ≥ λk
ln n , do nothing in first round. In the second round, use a greedy algorithm to cover

the items chosen by the adversary.

Lemma 3 The above buy-at-once algorithm achieves an approximation ratio no worse than
max[lnn, ln m] (up to low order terms) for unweighted robust set cover.

Proof : Observe that by duality, t is the size of the maximum fractional packing. Let αt be
the number of sets chosen by opt in the first round. Removing all items covered by these sets,
the remaining set cover instance still has a fractional packing of value at least (1 − α)t. (We
may assume that α ≤ 1, as otherwise the analysis becomes even simpler.) Pick a set T of
items, where each item is selected into T independently, with probability equal to its fractional
value in the maximum fractional packing. The expected size of T is exactly (1− α)t. In fact,
known bounds imply that |T | ≥ b(1−α)tc with probability at least 1/2. Moreover, every set is
expected to contain at most one item from T , and known bounds imply that with probability
at least 1/2, no set will contain more than ln 2m items. For simplicity of notation, we shall
assume that T contains exactly (1− α)t items, and no set contains more than lnm items from
T . (This assumption affects only low order terms in the approximation ratio.) Hence in the
second round opt will pay at least min[(1 − α)t, k] λ

ln m , and in the two rounds combined opt
pays at least αt+min[(1−α)t, k] λ

ln m . This is a piecewise linear function in α, and its minimum
is achieved when α is either 0 or 1, or when (1 − α)t = k. It follows that opt pays at least
min[t, kλ

ln m].

Now we can analyze the approximation ratio of our algorithm. When t < λk
ln n , the algorithm

pays at most t lnn ≤ λk, which is a factor of lnn larger than t, and at most a factor of lnm
larger than kλ

ln m . Hence the approximation ratio in this case is at most max[lnm, ln n].

When t ≥ λk
ln n , the algorithm pays nothing in the first round, and at most λk ≤ t ln n in the

second round. Again, the approximation ratio can be seen to be at most max[lnm, lnn].

10

4.2 Robust Unweighted Vertex Cover and Edge Cover

A 2-approximation algorithm for robust unweighted vertex cover is as follows: Compute a
maximum matching M in G, and let |M | denote its size. If |M | < λk, then we pick a vertex
cover of size no larger than 2|M | in the first round (for example, by picking both endpoints
of every edge in M) and nothing needs to be done in the second round. If |M | ≥ λk, we do
nothing in first round and in the second round, we use a factor 2 approximation algorithm for
vertex cover to cover the edges chosen by the adversary. The proof is left to Appendix.

Lemma 4 The buy-at-once algorithm achieves an approximation ratio of 2 for unweighted
robust vertex cover.

Proof : For case 1, we show that opt ≥ |M |, giving an approximation ratio no worse than 2. If
k ≥ |M |, then any solution would need to cover at least |M | disjoint edges (in first and second
round combined), and hence must cost at least |M |. If k < |M |, let M1 denote the number of
vertices picked by the optimal solution in the first round. If |M | − M1 ≥ k, opt pays in the
second round λk > |M |. If |M | −M1 < k then opt ≥ M1 + λ(|M | −M1) ≥ |M |, where the last
inequality used the fact that λ > 1.

For case 2, our algorithm is in fact optimal. The inequalities |M | ≥ λk and λ ≥ 1 imply that
the graph has a matching of size at least k. The algorithm will then pay λk in the second round.
Everything that opt pays in the first round is sunk cost unless less than k matching edges remain
for the second round, in which case we can use the inequality M1 + λ(|M | −M1) ≥ |M | ≥ λk.
It follows that also opt does nothing in the first round and pays λk in the second round.

Any algorithm that approximated robust vertex cover within a ratio better than 2 will need
to approximate minimum vertex cover within a ratio better than 2 (e.g., by setting λ = ∞),
and achieving this would resolve a long standing open problem.

The input of the unweighted edge cover problem is a graph with n vertices, m edges, a
parameter k (for number of vertices to be chosen by adversary), and an inflation factor λ > 1.
All edges have unit cost. Observe that the number of edges needed to cover ` vertices is
always between `/2 and `. This fact serves as a basis for a tight 2-approximation for the robust
unweighted edge cover problem. The algorithm and the proof is left to the appendix. Moreover,
we prove that if P6=NP, then the max-min variant and the robust two-stage variant of the edge
cover problem cannot be approximated better than a factor 2. More interestingly, even the
max-min fractional edge cover problem cannot be approximated better than a factor 2.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. A general approach to online
network optimization problems. In SODA, pages 577–586, 2004.

[2] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

[3] D. Bertsimas and M. Sim. The price of robustness. Operation Research, 52:35–53.

11

[4] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming Series B, 98:49–71.

[5] J. Birge and F. Louveaux. Introduction to stochastic programming. Springer, Berlin, 1997.

[6] G. B. Dantzig. Linear programming under uncertainty. Management Science, 1:197–206,
1955.

[7] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh. How to pay, come what may: Approxi-
mation algorithms for demand-robust covering problems. FOCS, 2005.

[8] I. Dinur, V. Guruswami, S. Khot, and O. Regev. New multilayered pcp and the hardness
of hypergraph vertex cover. SIAM Journal of Computing, 34(5):1129–1146, 2005.

[9] U. Feige. A threshold of lnn for approximating set cover. JACM, 45(4):634–652, 1998.

[10] D. Golovin, V. Goyal, and R. Ravi. Pay today for a rainy day: Improved approximation
algorithms for demand-robust min-cut and shortest path problems. STACS, 2006.

[11] A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling: Approximation algorithms
for stochastic optimization. In STOC, pages 170–178, 2004.

[12] A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: Lp rounding approximation
algorithms for stochastic network design. FOCS, 45, 2004.

[13] J. Hastad. Clique is hard to approximate. In FOCS, pages 627–636, 1996.

[14] N. Immorlica, D. Karger, M. Minkoff, and V. S. Mirrokni. On the costs and benefits
of procrastination: Approximation algorithms for stochastic combinatorial optimization
problems. In SODA, 2004.

[15] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
JACM, 41(5):960–981, 1994.

[16] Y. Nikulin. Robustness in combinatorial optimization and scheduling theory: An an-
notated bibliography. Technical Report SOR-91-13, Statistics and Operation Research,
http://www.optimization-online.org/DB FILE/2004/11/995.pdf, 2004.

[17] R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. IPCO, pages 101–115, 2004.

[18] D. Shmoys and S. Swamy. Stochastic optimization is (almost) as easy as deterministic
optimization. In FOCS, 2004.

A Reformulating the problem using LP duality

As described in the previous section, the max-min problem can be formalized as follows: Given
a first-stage solution ~y0 (which, with the help of Lemma 2, can be assumed to be integral), we
need to find a subset F of size at most k for which the cost of the fractional covering problem

12

is maximized. This can be written as the following maximization problem. In this program, U
denotes the set of clients not covered by the first-stage integral solution.

maximize
F : |F |=k

min
y

∑

r∈R
cryr (4)

subject to ∀i ∈ F ∩ U :
∑

r: i∈r

yr ≥ 1

∀r ∈ R : yr ≥ 0

Using LP duality, we replace the minimization part of the above max-min mathematical
program by its dual as follows:

maximize
F : |F |=k

max
α

∑

i∈F∩U

αi (5)

subject to ∀r :
∑

i∈r∩U

αi ≤ cr

∀i ∈ F ∩ U : αi ≥ 0

This is a single maximization program, maximizing over the choice of F and α. We can
write the general form of the above mathematical program for a general polytope P as follows:
Given a polytope P with variables (x, y) where x is a vector of variables xi for all i ∈ F and y
is the vector of additional variables, we want to find a point in P so that the value of the sum
of the k largest variables in x is maximized. Formally,

maxF⊆F :|F |=k,x,y

∑
i∈F xi (6)

s.t. (x, y) ∈ P

Let n be the number of x variables in above program. Here, we give a general
√

n-
approximation algorithm for the general problem defined above for any polytope P. In par-
ticular, this gives a

√
n-approximation algorithm for the max-min problem for all our covering

problems. The approximation algorithm is as follows:

• If k ≥ √
n, then output the solution of the following linear program:

maxx,y
∑

i xi (7)
s.t. (x, y) ∈ P

• If k <
√

n, then for each i, solve the following linear program,

maxx,y xi (8)
s.t. (x, y) ∈ P

13

and output the maximum solution.

Theorem 4 The above algorithm is a
√

n-approximation algorithm for the mathematical pro-
gram (6).

Proof : Let (x∗, y∗) and (x0, y0) be the optimal solution of program (6) and (7). If k ≥√
n, then maxF

∑
i∈F x0

i ≥ 1√
n

∑
i∈F x0

i ≥ 1√
n

∑
i∈F x∗i ≥ 1√

n
maxF

∑
i∈F x∗i . Therefore, the

algorithm is a
√

n-approximation algorithm in this case. Now, let (xi, yi) for i ∈ F be the
optimal solution of program (8) when the objective function is xi. If k <

√
n, maxi∈F xi

i ≥
maxi∈F x∗i ≥ 1√

n
maxF⊂F

∑
i∈F x∗i . Therefore, the output of the algorithm is a

√
n-approximate

solution.

B Hardness of Max-min Fractional Set Cover

In this section, we give a strong inapproximability result for the max-min (fractional) set cover
problem. The proof of Proposition 6 can be adopted easily for max-min fractional edge cover
problem. This implies that for any ε > 0, it is NP-hard to approximate the max-min fractional
set cover problem (or even max-min fractional edge cover problem) within a factor better than
2−ε. This hardness ratio can be strengthened to nearly logarithmic factors for the fractional set
cover problem, but proving this using current techniques seems to require assumptions stronger
than P 6= NP . Picking p(n) =

√
n in Theorem 5 shows that the max-min (fractional) set cover

problem cannot be approximated within a ratio better than Ω(log N
log log N) (on instances of size

N) unless 3SAT can be solved in time 2O(
√

n) (on instances of size n).

Theorem 5 For every 0 < δ < 1 and p(n) = nδ, the max-min fractional set cover problem
cannot be approximated within a ratio better than Ω(p(n)

log p(n)) on instances of size N = 2O(p(n))

(in time polynomial in N), unless NP problems (say 3SAT) can be solved in time 2O(p(n)).

Proof : The proof is presented for the integral set cover problem, but the approximation
hardness applies also to the max-min fractional set cover problem, because in the yes instance
the cover is disjoint.

The proof is based on the structure of instances of set cover that are generated by the
reduction described in [9], and specifically, on the parameters given in Section 6 in [9]. Here
we only sketch the proof.

Recall that in [9], the hardness of approximation result is based on a certain multiple-prover
proof system. We shall need the number of provers (denoted in [9] by k) to be p(n). (Hence
one cannot use here the earlier [15] instead of [9].) In [9] it suffices that the number of parallel
repetitions ` is logarithmic in the number of provers, hence we can have ` = O(log(p(n))).
(Remark: later work [8] used a version of a multilayered PCP which is somewhat simpler than
the multiple prover system of [9]. This simpler version requires ` to grow at a faster rate than
p(n), and would result in weaker conclusions if used in the proof of Theorem 5.) This results
in a set cover instance with 2O(p(n)) clients and sets.

14

Each subset in [9] would be an item in the max-min set cover problem. Each item in [9]
would be a set in the max-min set cover problem. Note that in [9] all sets are of the same size,
and there is a disjoint set cover for yes instances, say, by t sets. We shall set k for the max-min
set cover problem to be equal to this t. Hence yes instances of [9] correspond to yes instances
of set cover adversary’s for which k clients can be selected that require k sets in order to be
covered.

The property of no instances of [9] that we shall use is the following: for every q < p(n),
for every collection of tq/p(n) sets, there is some item that belongs to O(p(n)/q) of the sets.
Extensions of the analysis in [9] can be used in order to prove this property, but this is omitted
from the current paper.

The property above implies that for no instances in [9], for every collection of t sets there
are O(t log(p(n))

p(n)) clients that hit all the sets. This implies that in no instances of the max-min

set cover problem, the optimum solution has value O(t log(p(n))
p(n)).

C Tight Example for Lemma 3

In this section, we prove that the analysis of Lemma 3 is tight. In fact, we show that no buy-
at-once algorithm can perform better than Ω(lnm) in the case that m is much larger than n.
Consider an instance of the two-stage robust set cover where the ground set consists of n+n1/4

elements and k = n1/4 and λ = n1/4. The family of subsets in the set cover instance is the family
of all subsets of size n1/4 of set {1, 2, . . . , n} and all singleton sets {n+1}, {n+2}, ..., {n+n1/4}.
The optimal solution is to buy all singleton sets in advance and wait for the scenario. Since the
adversary should choose a set of size n1/4 of {1..n} and this set is in the family of sets in the
set cover instance, we can cover any scenario by buying one set at cost λ = n1/4 later. Thus,
the cost of the optimal solution is 2n1/4. If we do not buy any set in advance, the adversary
selects {n + 1, n + 2, ..., n + n1/4} and we should pay λ ∗ k = n1/2 later. On the other hand,
in order to cover all the elements in the first round, we need to buy at least n3/4 sets to cover
all elements of 1..n, so the cost of covering all the elements in advance is at least n3/4 + n1/4.
Both of these cases are more than a factor of n1/4 = Ω(log m) larger than the optimal solution
(which is n1/4).

In addition, observe that the term lnn in the approximation ratio in Lemma 3 cannot
be improved by any polynomial-time algorithm (e.g., when λ = ∞), due to the hardness of
approximating minimum set cover [9]. It is not clear whether the term lnm can be improved.

D Tight algorithm for robust unweighted edge cover problem

The factor 2 approximation for unweighted fractional edge cover problem is obtained by the
following algorithm.

1. Compute a minimum edge cover (by computing a maximum matching) and let t be its
size.

15

2. If t < λk, pick this edge cover in the first round. Nothing needs to be done in the second
round.

3. If t ≥ λk, do nothing in first round. In the second round, find a minimum edge cover that
covers those vertices chosen by the adversary.

Lemma 5 The buy-at-once algorithm achieves an approximation ratio of 2 for unweighted
robust edge cover.

Proof : Observe that the algorithm pays at most min[t, λk]. As for the optimal solution,
assume that opt picks t′ < t edges in the first round.

• If k vertices remain uncovered, then in the second round opt pays at least kλ/2.

• If less than k vertices remain uncovered after the first round, the adversary can pick all
these vertices in the second round. Their number is at least t− t′, and opt then pays at
least (t− t′)λ/2 in the second round. Altogether, opt pays

t′ +
λ

2
(t− t′) =

1
2
t + t(

λ

2
− 1

2
) + t′(1− λ

2
) ≥ t

2

where the last inequality follows because the sum is increasing in λ, and λ ≥ 1.

Hence opt pays at least min[t/2, λk/2], showing that the approximation ratio is no worse
than 2.

The approximation ratio of the buy-at-once algorithm is no better than 2, as can be seen
by a graph that has k isolated edges and a clique on the remaining n− 2k vertices. Taking an
edge cover in the first round costs n/2. Doing nothing in the first round costs λk in the second
round. A hybrid solution can take the isolated edges in the first round and k/2 edges in the
second round, paying k+λk/2. The approximation ratio thus approaches 2 when 1 ¿ λ ¿ n/k.

In fact, it is hard to get an approximation ratio better than 2 for the robust edge cover
problem. This is based on the hardness of the max-min problem, namely, the problem of picking
k vertices so as to maximize the minimum number of edges required in order to cover them.
The parameters in the proof of the following proposition are chosen in such a way that the
proof will later extend to showing hardness of approximation for robust edge cover.

Proposition 6 For every ε > 0, it is NP-hard to approximate the unweighted edge cover max-
min problem within a ratio better than 2− ε.

Proof : The proof is by reduction from the maximum independent set problem. As shown
in [13], for every sufficiently small ε > 0, it is NP-hard to distinguish between the following
classes of graphs:

Yes instances. Graphs on n vertices that contain an independent set of size εn.
No instances. Graphs on n vertices that contain no independent set of size ε5n.

16

A graph G serves as an instance of the edge cover adversary’s problem, with k = εn.
On yes instances, one can select k vertices that form an independent set in G, and then k

edges are needed in order to cover them.
On no instances, whenever there are more than ε5k vertices, two of them share an edge in

G. It follows that any selection of k vertices can be covered by ε5k + (1 − ε5)k/2 < k/(2 − ε)
edges.

To show that the robust edge cover is hard, take ` graphs, one of which is a yes instance
of Proposition 6 and the rest are no instances. We make the following indistinguishability
assumption: picking `/10 of the graphs in such a way that includes the yes instance is hard. The
indistinguishability assumption can be shown to hold under various complexity assumptions,
such as the computational indistinguishability of encryptions of 0 and 1 in computationally
secure encryption schemes (details omitted). Set the parameters such that ε (from the proof of
Proposition 6) is very small, λ = 1/ε2, ` = 1/ε3, and k = εn. Then a good solution covers the
yes graph in the first round, and then in the second round the graph induced on the k vertices
selected by the adversary cannot contain an independent set larger than `ε5n = ε2n ¿ k.
Hence opt pays a total of at most roughly n + λk/2 ' n/2ε. But under the indistinguishability
assumption, any polynomial time algorithm will need to either spend εn `

10 = n/10ε2 À n/2ε
in the first round, or spend roughly λk in the second round. In any case, the approximation
ratio is not better than 2 (up to low order terms that depend on ε).

17

