
On the Competitive Ratio of the Random

Sampling Auction

Uriel Feige∗, Abraham Flaxman†, Jason D. Hartline‡, and Robert Kleinberg§

September 16, 2005

Abstract

We give a simple analysis of the competitive ratio of the random sam-
pling auction from [10]. The random sampling auction was first shown to
be worst-case competitive in [9] (with a bound of 7600 on its competitive
ratio); our analysis improves the bound to 15. In support of the conjec-
ture that random sampling auction is in fact 4-competitive, we show that
on the equal revenue input, where any sale price gives the same revenue,
random sampling is exactly a factor of four from optimal.

1 Introduction.

Random sampling is the most prevalent technique for designing auctions to max-
imize the auctioneer’s profit when the bidders’ valuations are a priori unknown
[2, 3, 4, 7, 8, 10, 11]. The first and simplest application of random sampling to
auctions is in the context of auctioning a digital good.1 For this problem, the
random sampling optimal price auction (RSOP) from [10] works by selecting
a bipartition of the bidders uniformly at random and offering the optimal sale
price for each part to the other part.

It is well known that, on many classes of interesting inputs, RSOP performs
very close to optimally [2, 12]. Further, it was shown in [9] that RSOP is always
within a constant factor of a natural benchmark for optimality even on worst-
case inputs. Their analysis is not tight; they obtain an upper bound of 7600 on
the competitive ratio of RSOP, well shy of the current conjectured ratio of 4.

There are a number of compelling reasons for trying to prove the conjec-
ture that RSOP is 4-competitive. First, it is one of the most natural profit-
maximizing auctions, and having a tight analysis of its performance is interest-
ing in itself. Second, an auction that is near optimal on many natural inputs
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1Or any good where there are more units for sale than there are bidders.
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and never very bad in the worst case has practical value. Finally, because of its
simplicity, RSOP, is easily adapted to other more general settings which benefit
from improved analysis of RSOP for digital goods (E.g., double auctions [3],
online limited supply auctions [11], and combinatorial auctions [2, 8]).

In this paper we give a new analysis of the random sampling optimal price
auction for digital goods that tightens the upper bound on the competitive ratio
to 15. Specifically, we show that the expected profit of RSOP is at least a factor
of 15 of F (2), the benchmark profit of the optimal single price sale of at least
two items. We also show that on the pathological input where any single sale
price gives the same revenue, i.e., the equal revenue input, the expected profit
of the random sampling auction is at least F (2)/4. We refer the reader to [9]
for motivation and discussion of this analysis framework and the choice of profit
benchmark.

2 Preliminaries.

We are considering auctioning a digital good to n bidders. Since the random
sampling auction is incentive compatible we assume that each bidder bids their
true valuation for the good. Let b = (b1, . . . , bn) be the vector of bids sorted in
decreasing order. Consider the following definitions from the literature [7, 10].

Definition 1 (RSOP) The random sampling optimal price auction uniformly
partitions the bidders into two parts, computes the optimal sale price for each
part, and offers this sale price to the bidders in the opposite part.

Definition 2 (F (2)) The profit from the optimal single price sale of at least
two items is:

F (2)(b) = maxi≥2 ibi.

Definition 3 (Competitive Ratio) The competitive ratio of an auction is
the minimum value β for which the expected profit of the auction on any input
is at least F (2)/β. An auction is β-competitive if its competitive ratio is at
most β.

Definition 4 (Equal-revenue Input) The equal revenue input is the bid vec-
tor b = (b1, . . . , bn) with bi = 1/i.

We will be employing this competitive framework to analyze the performance
of RSOP. Our main result is the proof of the following theorem.

Theorem 1 RSOP is 15-competitive.

In proving Theorem 1 and analyzing RSOP on the equal revenue input, we
will use an analytical tool which gives an exact computation of the probability
of an event, Eα, defined as follows. Consider a discrete random walk on a
line such that in each time step, the walk takes one step forward or stays put,
independently with probability 1/2. If we start at the origin at time i = 1, then
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Eα is the event that at no time i ≥ 1 is the random walk further than αi from
the origin. We prove the following lemma.

Lemma 1

Pr[E 3
4
] = 1− 1

81

((
17 + 3

√
33

)1/3

− 1− 2
(
17 + 3

√
33

)−1/3
)4

= 0.912622± 4× 10−6.

It seems likely that this lemma was known prior to the present work, though
we are not aware of any proof which has previously appeared elsewhere. Our
proof technique provides a closed-form value of Pr[Eα] for a limited range of
α values. For α of the form k−1

k we find the value of Pr[Eα] implicitly as the
unique root of a k-th degree polynomial on the interval (0, 1). For arbitrary
values of α we describe a computer aided proof that Pr[Eα] lies in an interval of
width ε (with proof length proportional to log(1/ε)).

3 Proof of Lemma 1.

Let Si be the variable for the position of a random walk on a line that starts
at the origin at time i = 1 and proceeds in each round to stay put or move
forward each with probability 1/2. The lemma calls for the calculation of the
probability, Pr[Eα], that for all i, Si/i ≤ α, in particular for α = 3

4 .
For any α that takes the form α = k−1

k where k is an integer, we can
rewrite Eα as the event that for all i, (k − 1) (i− Si) − Si ≥ 0. By setting
Zi = (k−1) (i− Si)−Si, we have that (Z1, Z2, Z3, . . . ) is a random walk which
increases by k − 1 with probability 1/2 and otherwise decreases by 1 (where,
because S1 = 0, the walk starts with Z1 = k − 1). We also note that Pr[Ēα]
is equal to the probability of ruin for this asymmetric random walk, which we
denote by pk (for a general study of the probability of ruin, see for example [6,
Chapter XIV]). In general, let

pj = Pr [exists i, Zi = Z1 − j] .

Because the random walk is memoryless and never decreases by more than 1,
pj = (p1)j for j > 0. By expanding the probability conditionally on the value
of S2, we have

p1 = 1
2 + 1

2pk

= 1
2

(
1 + pk

1

)
.

The polynomial f(x) = xk − 2x + 1 has f(0) = 1 and f(1) = 0. Since f ′(x) =
kxk−1−2 has one root on the interval (0, 1) and f ′′(x) = k(k−1)xk−2 is positive
on this interval, there is a unique root of f on the interval (0, 1); call this root
r. Since 0 ≤ p1 ≤ 1 and f(p1) = 0, we must have either p1 = 1 or p1 = r. We
will prove that p1 < 1, thus establishing that p1 = r. Let (Y1, Y2, . . .) be the
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absorbing random walk given by Yi = Zi− k + 2 until it drops to Yi = 0, where
it stays. More formally,

Yi =
{

0, if Yj = 0 for some j < i;
Zi − Z1 + 1, otherwise.

Let Wi be the random variable given by Wi = rYi . We claim (W1,W2, . . .)
satisfies the martingale property that E

[
Wi+1

∣∣ Wi

]
= Wi. This holds trivially

when Yi = 0. For Yi > 0, the equation E
[
Wi+1

∣∣ Wi

]
= Wi follows from the

calculation

E
[
rZi+1

∣∣ Zi

]
= 1

2rZi−1 + 1
2rZi+k−1 = 1

2

(
r−1 + rk−1

)
rZi = rZi .

(The final equality follows from f(r) = rk − 2r + 1 = 0.) Since (W1,W2, . . .) is
a martingale we have E[Wt] = W1 = r for all t ≥ 1.

Now let

p1,t = Pr[exists i ≤ t, Zi = Z1 − 1] = Pr[Wt = 1].

Defining At to be the event that Zt = Z1 − 1 and Zs > Zt for all s < t, we see
that the eventsAt are disjoint and measurable, and that p1,t =

∑t
i=1 Pr(Ai) and

p1 =
∑∞

i=1 Pr(Ai). This establishes that p1 = limt→∞ p1,t while also confirming
that Eα is a measurable event since it is the union of the events Ai (1 ≤ i < ∞).

Since Wt is a non-negative random variable, we have p1,t = Pr[Wt = 1] ≤
E[Wt] = r. Recalling that p1 = limt→∞ p1,t, we conclude that p1 ≤ r < 1, as
claimed. This completes the proof that p1 = r and that pj = rj for all j ≥ 1.

When k = 4 the polynomial f is a quartic equation, and the root r is given
exactly by Ferrari’s formula [5]. So

p1 = 1
3

[(
17 + 3

√
33

)1/3

− 1− 2
(
17 + 3

√
33

)−1/3
]

,

and to complete the proof we have

Pr
[E 3

4

]
= 1− p4 = 1− p4

1

= 1− 1
81

[(
17 + 3

√
33

)1/3

− 1− 2
(
17 + 3

√
33

)−1/3
]4

.

4 Proof of Theorem 1.

In our random partition, we call the side of the bipartition with b1 on it the
bad side, and we call the other side the good side. We may assume that b1

is larger than F (2), since this can only increase the gap between the expected
profit of RSOP and F (2). (Increasing b1 can not change F (2), nor can it change
the revenue obtained by RSOP from bidders on the bad side of the bipartition;
moreover, if b1 is sufficiently large then RSOP will obtain zero revenue from
bidders on the good side of the bipartition.) Let Xi ∈ {0, 1} be an indicator
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random variable for the event that bidder i is on the good side. By definition
X1 = 0. Let Si =

∑i
j=1 Xj be the number of bidders with bid at least bi on the

good side. Note that Si is a random variable that behaves like the random walk
under consideration in Lemma 1. Let i? denote the index of the bidder whose
value bi? maximizes revenue on the good side (meaning Si?bi? ≥ Sjbj for all j,
with ties broken arbitrarily).

Then the profit of the random sampling auction is

RS = (i? − Si?) bi? .

We now show that E[RS] ≥ F (2)/15.
Let i′ denote the index of the bidder whose value bi′ is the optimal sale

price for the full set of bids (meaning i′bi′ ≥ jbj for all j ≥ 2, with ties broken
arbitrarily). We shall first provide a bound for the case when i′ is even, and later
explain how the same bound (or in fact, a slightly better one) can be obtained
when i′ is odd.

Consider the event B = {Si′ ≥ i′/2}. Using the fact that i′ is even, it follows
that Pr[B] = 1/2 (because the event holds when the majority of i′ highest
bidders other than the largest bid are on the good side). In this case, the
optimal single price profit from the good side is

Si?bi? ≥ Si′bi′ ≥ F (2)/2.

To avoid unnecessary subscripts, we set E = E 3
4
.2 If event E occurs, then,

for all i, we have
(i− Si)bi ≥ 1

4 ibi ≥ 1
3Sibi.

If both E and B occur then

RS = (i? − Si?)bi? ≥ 1
3
Si?bi? ≥ F (2)/6.

Thus, the expected profit of RSOP is at least

E[RS] = E [(i? − Si?)bi? ] ≥ Pr[E ∩ B]F (2)/6.

By Lemma 1, Pr[E ] ≥ 0.9, so

Pr[E ∩ B] = 1− Pr[Ē ∪ B̄] ≥ 1− Pr[Ē ]− Pr[B̄] = Pr[E ]− 1
2 ≥ 0.4.

Therefore E[RS] ≥ F (2)/15.
We now address the case when i′ is odd. In this case we consider the event

C = {Si′ ≥ (i′ − 1)/2}. It is not hard to see that Pr[C] = 1/2+2−i′
(

i′−1
(i′−1)/2

)
. It

can be verified that for every odd i′ ≥ 3, a straightforward modification of the
proof that was given for the case that i′ is even gives a bound that is at least
1/15. This completes the proof of the theorem.

2It is possible to perform this calculation with the event Eα for α 6= 3
4
. This produces

an upper bound on the competitive ratio of RSOP of
��

Pr[Eα]− 1
2

� �
1−α

α

��−1
. Computer

calculations following the same flavor as those made in Section 5 suggest this is minimized
when α = 3

4
.
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5 Random Sampling and the Equal Revenue In-
put.

We now discuss the performance of RSOP on the equal revenue input (See De-
finition 4). This input is of particular interest because the intuition motivating
random sampling does not apply to it. A price that looks good for one part,
because disproportionately many bids are above it, is a bad price for the other
part because disproportionately few bids are above it. In this section we discuss
a computer-aided calculation that shows that the RSOP on the equal revenue
input has expected profit at least F (2)/4 (and this is tight when there are only
n = 2 bidders). Note that on the equal revenue input, n bidders with bi = 1/i,
the optimal single price sale obtains profit F (2)(b) = 1.

Define the event En
α =

{
for all i ≤ n, Si

i ≤ α
}
. Fix a positive integer N and

let αi = i/N . Then let An
i = En

αi
∩ Ēn

αi−1
be the event that some Si/i exceeds

αi−1 but none exceed αi. Thus, Pr[An
i ] = Pr[En

αi
] − Pr[En

αi−1
]. The events An

i

are disjoint and if An
i holds then (1 − αi) ≤ RS ≤ (1 − αi−1). Therefore, the

profit of RSOP on the n bid equal revenue input satisfies

N−1∑

i=1

Pr[An
i ](1− αi) ≤ E[RS] ≤

N−1∑

i=1

Pr[An
i ](1− αi−1). (1)

What remains is to show how we can calculate Pr[En
α ] and extend the above

discussion to get a bound E[RS] for the equal revenue input with any n.

Calculating Pr[En
α ] and Pr[Eα] for general α.

The proof in Section 3 can be easily adapted to give an implicit value of Pr[Eα]
whenever α = k−1

k for some integer k. When k ≤ 5, it is possible to turn
this into a closed-form solution. We now describe an alternative method for
calculating Pr[En

α ] which leads to bounds on Pr[Eα] that do not require α to be
of any special form,

Fix a value of α. To bound the value of Pr[En
α ], we define

p(i, j) = Pr [Si = j ∩ Si′ ≤ αi′ for all i′ ≤ i]

and note that Pr[En
α ] =

∑n
j=0 p(n, j). We now can use a standard computer

algebra package, like Mathematica, to evaluate Pr[En
α ] using the following re-

currence. The initial conditions are derived from the fact our random walk
starts at time i = 1 (i.e., S1 = 0).

p(i, j) =

{
1
2p(i− 1, j − 1) + 1

2p(i− 1, j), if 0 ≤ j ≤ αi;
0, otherwise.

p(1, j) =

{
1, j = 0;
0, otherwise.
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For reasonable values of n, it is possible to evaluate Pr[En
α ]. For example, for

α = 3
4 , Pr[E200

3
4

] equals

22914483922452727752710576603653551719219315819721902777499
25108406941546723055343157692830665664409421777856138051584

.
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Figure 1: Upper and lower bounds on F (2)/ E[RS] when N = 200 for equal
revenue input with n = 2, . . . , 100.

Bounding E[RS] for all n.

Using the recurrence relationship for Pr[En
α ] with different values of α and equa-

tion (1), we can calculate Pr[An
i ] and E[RS] for any given n. This calculation

shows that as n increases, the ratio F (2)/ E[RS] is not monotonic. A plot of
the upper and lower bounds on F (2)/ E[RS] obtained by taking N = 200 ap-
pears in Figure 1. For N = 200 and n = 100 this calculation shows that
2.59 ≤ F (2)/ E[RS] ≤ 2.63 and growing. To extend this bound to all values of
n, we must still prove that for large n the ratio does not eventually grow bigger
than four.

To do so, we get bounds on Pr[Eα] in terms of Pr[En
α ]. Pr[En

α ] is an upper
bound of Pr[Eα]. We can get a lower bound by applying the union bound as
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follows:

1− Pr[En
α ] ≤ Pr[Ēα] ≤ 1− Pr[En

α ] +
∑

i≥n

Pr [Si ≥ αi]

≤ 1− Pr[En
α ] +

∑

i≥n

e−(α−1/2)2i/3

= 1− Pr[En
α ] +

e−(α−1/2)2n/3

1− e−(α−1/2)2/3
.

As an aside, an alternate proof of Lemma 1 can be obtained from the above
bound with n = 800 to show that

Pr[E 3
4
] = 0.912622± 4× 10−6.

We now use these upper and lower bounds on Pr[Eα] to get a lower bound
on Pr[Aα]. For any n ≥ n0,

Pr[An
i ] ≥ Pr[Eαi ]− Pr[En0

αi−1
] ≥ Pr[En0

αi
]− e−(αi−1/2)2n0/3

1− e−(αi−1/2)2/3
− Pr[En0

ai−1
].

This bound is only useful when αi > 1/2 and n0 is sufficiently large. Fortunately,
to get a good lower bound on E[RS] for large n it suffices to consider only
the contribution to the sum in equation (1) from the terms with high α. For
sufficiently large i0 and n0 we are left with the bound:

E[RS] ≥ (1− αi0) Pr[Eαi0
] +

N−1∑

i=i0+1

Pr[An0
i ](1− αi).

Taking n0 = 500, N = 100, and i0 = 70 (so αi0 = 0.7) and using the
computer to prove bounds on the terms in this sum shows that for all n ≥ 500,
E[RS] ≥ F (2)/3.6. This, combined with the computer proof outlined previously
for n ≤ n0, completes the proof showing that RSOP is 4-competitive on the
equal revenue input.

6 Conclusions

As we mentioned in the introduction, the random sampling technique is widely
applicable to the design of profit maximizing mechanisms. The basic RSOP
auction has been generalized and applied to the problem of designing double
auctions [3], online limited supply auctions [11], multi-unit auctions for bidders
with budget constraints [4], combinatorial auctions [2, 8], and knapsack auc-
tions [1]. With exception of the work of Hajiaghayi et al. [11] on online limited
supply auctions, all of these generalized applications of RSOP are given with
analyses that obtain promise style bounds. A typical promise style bound would
state that if n, the number of bidders, is large enough then the random sam-
pling auction’s profit is near optimal. No bound is given if the promise is not
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met. There are several reasons for using such a promise bound. First, it allows
for (1 − ε)-approximations, with ε a parameter that improves with the restric-
tiveness of the promise. Such bounds are of interest as (1 − ε)-approximations
are not possible in the worst case competitive framework of this and preceding
papers [7]. Second, the random sampling analysis in [9] for digital goods was
complicated and gave such a loose bound that generalizing it to other contexts
seemed to be of marginal worth. In contrast, our improved analysis opens up
the possibility of doing a worst case analysis of the random sampling auction
for some of these more general applications.
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