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Abstract

We consider random 3CNF formulas with n variables and m clauses. It is well
known that when m > cn (for a sufficiently large constant c), most formulas are not
satisfiable. However, it is not known whether such formulas are likely to have polynomial
size witnesses that certify that they are not satisfiable. A value of m ' n3/2 was the
forefront of our knowledge in this respect. When m > cn3/2, such witnesses are known
to exist, based on spectral techniques. When m < n3/2−ε, it is known that resolution
(which is a common approach for refutation) cannot produce witnesses of size smaller
than 2nε

. Likewise, it is known that certain variants of the spectral techniques do not
work in this range.

In the current paper we show that when m > cn7/5, almost all 3CNF formulas have
polynomial size witnesses for non-satisfiability. We also show that such a witness can be
found in time 2O(n0.2 log n), whenever it exists. Our approach is based on an extension
of the known spectral techniques, and involves analyzing a certain fractional packing
problem for random 3-uniform hypergraphs.
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1 Introduction

The 3SAT problem, namely, deciding whether a 3CNF formula is satisfiable, is one of the
central NP-complete problems. Deciding whether a formula is not satisfiable is complete
for co-NP. The question of whether there is a nondeterministic polynomial time algorithm
that recognizes non-satisfiable 3CNF formulas (or in other words, polynomial size witnesses
for non-satisfiability) is equivalent to the well known “NP=co-NP?” open question. The
question of whether there are deterministic polynomial time algorithms for non-satisfiability
is the even better known “P=co-NP?” question (which is equivalent to the “P=NP?” ques-
tion). In this paper (similar to many other previous papers, some of which will be mentioned
shortly), we study ”average case” versions of these questions.

The average case model involves a density parameter β. We consider 3CNF formulas
with n variables and m = βn clauses, in which the clauses are chosen independently at
random. Our results are not sensitive to minor variations on the model, but for concrete-
ness, assume the following model: one takes a random permutation on all possible 23

(n
3

)

3CNF clauses, and picks the first m clauses in the permutation. It is well known (see for
example [14, 20]) that when β is sufficiently large (say, β > 5), almost all such formulas are
not satisfiable. For random 3CNF formulas of sufficiently high density β, we consider two
tasks:

1. Deterministic refutation. Design a polynomial time algorithm that never accepts a
satisfiable formula, and show that it accepts most formulas of density β.

2. Nondeterministic refutation. Design a nondeterministic polynomial time algorithm
with properties as above. Equivalently, design polynomial size witnesses for non-
satisfiability that can be checked (though not necessarily found) in polynomial time,
never exist for satisfiable formulas, and exist for most formulas of density β.

Clearly, deterministic refutation is at least as hard as nondeterministic refutation. Ob-
serve also that in the context of random formulas, the larger β is, the easier is the refutation
task, because any refutation algorithm that applies to smaller densities may simply be run
on a prefix of the larger density formula.

Random 3CNF formulas often serve to show the limitations of well known refutation
algorithms. Taking resolution as a prominent example, it was shown [7, 3, 6] that resolution
fails to provide nondeterministic polynomial time refutation for most formulas of densities
n1/2−ε (where ε > 0 can be taken to be arbitrarily small), though it is known to provide
nondeterministic polynomial time refutation for most formulas of densities n/ log n.

The strongest refutation algorithms known for random 3SAT are based on a ”spectral”
approach first suggested in [18] for 4SAT. This approach involves computing eigenvalues
of certain matrices derived from the formula. These spectral algorithms were extended to
apply to 3SAT [15, 19, 12], and they are known to deterministically refute most formulas
of density cn1/2, for a sufficiently large constant c. Attempts to extend these techniques
so as to work for densities below

√
n have failed so far. For example, in [13] it is shown

that a natural use of semidefinite programming cannot refute 3CNF formulas at such low
densities.

Further motivation for studying deterministic refutation of random 3CNF formulas is
given in [10]. There it is shown that if there is no deterministic refutation for most 3CNF
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formulas with cn clauses (where c is an arbitrarily large constant) then certain combinatorial
optimization problems (such as minimum graph bisection and dense k-subgraph) do not have
polynomial time approximation schemes. It is an open question whether it is NP-hard to
approximate these problems arbitrarily well, though further evidence that these problems
are indeed hard to approximate is given in [21].

The main result of this paper is nondeterministic refutation of random 3CNF formulas
of densities below

√
n. Our method (which is based on the spectral approach) works already

for densities β = cn2/5 (for sufficiently large c > 0), a range where resolution is known not
to be polynomial. We do not know whether the witnesses implied by our nondeterministic
refutation can be found in polynomial time, but we show that they can be found in time
roughly exponential in n/β2. The authors are not aware of any previous refutation algorithm
(whether deterministic or nondeterministic) that was proved to run in time better than
exponential in n/β (for random 3CNF formulas of density β < n1/2).

In an intuitive sense (which we do not wish to make exact), our state of knowledge follow-
ing the current work is that with respect to the ”average” complexity of 3SAT, co-NP ⊂ NP
for densities above n2/5, and co-NP ⊂ P for densities above n1/2. Pushing either of these
densities down is an interesting question.

1.1 The main idea

Given previous work on refutation, the main new idea that we introduce is fairly simple,
though apparently is was not previously observed. Proving that this idea actually works
requires some nontrivial probabilistic analysis.

The starting point is a principle that was explicitly introduced in [10], and later used in
refutation algorithms, such as in [12]. The principle relates between satisfying assignments
of random formulas, and assignments that satisfy most clauses as if they were 3XOR clauses,
namely, set an odd number of literals (either one or three) to true.

Proposition 1.1 There is a polynomial time algorithm that for almost every 3CNF formula
of density β proves that every satisfying assignment must satisfy all but at most c

√
βn

clauses as 3XOR, where c is some universal constant.

Proposition 1.1 is given for the sake of intuition, but the detailed presentation of our
approach will not refer to it explicitly. For this reason we shall not present the proof of
Proposition 1.1, but only note that it follows by combining the first part of the proof of
Theorem 2.6 with the proofs of Lemmas 3.2 and 3.3.

The new aspect of our work is in the use of inconsistent tuples of clauses.

Definition 1.2 A collection of k clauses is an even k-tuple if every variable appears in it
an even number of times. (Observe that the fact that we are dealing with 3CNF clauses
implies that k must be even.) An even k-tuple is an inconsistent k-tuple if the total number
of appearances of negated literals in its clauses is odd (and hence this also holds for positive
literals).

The significance of inconsistent tuples of clauses comes from the following proposition.

Proposition 1.3 For any assignment to the variables, at least one of the clauses of an
inconsistent k-tuple is not satisfied as 3-XOR.
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Proof: View every clause (`1, `2, `3) as an equation `1 + `2 + `3 = 1 modulo 2. As-
signing a literal `i to true (false, respectively) will be interpreted as setting `i = 1 (`i = 0,
respectively). An assignment satisfies the clause as 3XOR iff it satisfies the correspond-
ing equation. Pick an arbitrary assignment and substitute the corresponding values in the
equations of the k-tuple. Summing up all equations, the right hand side gives 0 (modulo 2),
because k is even. The left hand side gives 1 (modulo 2). This can be seen as follows. If all
literals were positive, than for any assignment, the left hand side sums up to 0 (modulo 2),
because there is an even number of occurrences of each literal. Flipping a single literal flips
the sum modulo 2. As there is an odd number of negative literals in an inconsistent k-tuple,
the sum must be 1 (modulo 2). Having established that the left hand side of the sum differs
from the right hand side, we can deduce that at least one equation is not satisfied, and
hence at least one clause is not satisfied as 3XOR. 2

A random 3CNF formula is expected to contain many inconsistent k-tuples, if k is
sufficiently large. For example, it is not hard to prove the following lemma.

Lemma 1.4 If kβ2 À n, then the expected number of inconsistent k-tuples in a random
3CNF formula (expectation taken over choice of formula) is ”large” (say, more than m).

Lemma 1.4 by itself does not suffice for our refutation algorithm, and is given merely
for intuition. Its proof is omitted.

In its simplest form, our witness of non-satisfiability will be composed of t > c
√

βn dis-
joint inconsistent k-tuples. On the one hand, Proposition 1.3 implies that in any assignment,
at least t different clauses are not satisfied as 3XOR. On the other hand, Proposition 1.1
implies that in any satisfying assignment, there are at most c

√
βn of clauses not satisfied

as 3XOR. The condition t > c
√

βn implies that no satisfying assignment can exist.
If k-tuples are to be disjoint, then necessarily t ≤ m/k, and thus m/k ≥ n

√
β, implying

k <
√

β. Together with the condition kβ2 > n of Lemma 1.4, this implies that our approach
can potentially work when β > n2/5.

The description above is an oversimplification of our refutation approach. It turns out
to be advantageous to allow some limited overlap between inconsistent k-tuples, and com-
pensate for this by taking a larger number of inconsistent k-tuples. On a conceptual level,
having more flexibility allows our approach to be applied to a wider range of formulas. But
more important for the current context, there are concrete technical reasons why allowing
overlap is desirable. One reason is that it is not clear to us whether known techniques suffice
in order to prove that there are Ω(n1.2) disjoint inconsistent k-tuples (for k ' n0.2) in a
random 3CNF formula with m ' n1.4 clauses. Intuitively, the source of the difficulty is as
follows. Once one packs Ω(n) k-tuples, this uses up Ω(n1.2) clauses, and a new ”random”
k-tuple is likely to hit one of these clauses, and hence not to be disjoint from the existing
k-tuples. By allowing overlap between k-tuples, this source of difficulty is avoided. There-
after, the probabilistic analysis needed in order to prove that our approach works becomes
manageable (though it still remains complicated and requires expertise in the probabilistic
method). Another reason for allowing overlap concerns the design of algorithms for finding
the witness for non-satisfiability. Having a witness that depends on a disjoint collection of
k-tuples spells bad news, because (disjoint) set packing problems are notoriously difficult to
solve (and are also NP-hard to approximate within a factor of O(k1−ε)). In contrast, once
we allow overlap between sets, the underlying computational problem resembles a fractional
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packing problem, and these problems can be handled more efficiently. This will be used in
the proof of Theorem 4.1.

2 The witness for non-satisfiability

In this section we present the components of the witness for non-satifiability, and prove that
no satisfiable 3CNF formula can possibly contain such a witness (and hence the witness
proves non-satifiability). The input formula will be denoted by φ.

The first two components of our witness were used also in previous work on refuting
random 3CNF formulas [10, 12].

Definition 2.1 Let φ be a 3CNF formula with n variables and m clauses. The imbalance
of a variable i (denoted by Ii) is the difference in absolute value between the number of times
it appears with positive polarity and the number of times it appears with negative polarity.
The total imbalance of φ is Iφ =

∑n
i=1 Ii.

The first component of our witness is Iφ, the imbalance of φ. The smaller Iφ is, the
better.

Definition 2.2 Let φ be a 3-CNF formula with n variables (denoted by x1, . . . , xn) and m
clauses. The matrix induced by φ is a symmetric matrix of order n that will be denoted by
Mφ. Its entries are derived from φ as follows. Initially, all entries are 0. Thereafter, every
clause of φ changes six of the entries, two entries for each pair of variables in the clause.
The change is +1/2 if the polarities of the variables do not match, and −1/2 if they do
match. For example, the clause (xi, xj , x̄k) changes Mjk (and Mkj, to preserve symmetry)
and Mik (and Mki) by +1/2, and Mij (and Mji) by −1/2.

The second component of our witness is the largest eigenvalue of Mφ, which we shall
denote by λ. The smaller the absolute value of λ is, the better. The use of eigenvalues as
part of refutation algorithms for CNF formulas was introduced in [18] and used in several
works thereafter.

Remark. We assume for simplicity of the presentation that λ (which might not be
rational) can be represented efficiently with infinite precision. A more formal treatment
may replace λ everywhere in this manuscript either by λ+1 rounded to the nearest integer
(when λ is very close to being an integer), or by dλe otherwise. Details are omitted.

Recall the notion of an inconsistent tuple from Definition 1.2.

Definition 2.3 A (k, t, d)-collection is a collection of t inconsistent k-tuples, in which every
inconsistent k-tuple contains only clauses from φ, and every clause from φ is contained in
at most d of the inconsistent k-tuples.

The third component of our witness is a (k, t, d)-collection. This component will be most
effective when the ratio t/d is large. Note that necessarily tk ≤ md, and hence to have t/d
large, we need k to be small.

We now present a complete description of our witness for non-satisfiability.
The witness. Given a 3CNF formula φ with n variables and m clauses, the witness is

composed of the following three components:
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1. The value Iφ of the imbalance, as defined in Definition 2.1.

2. The largest eigenvalue λ of the matrix Mφ that was defined in Definition 2.2.

3. A (k, t, d)-collection as defined in Definition 2.3, with t < n2.

The components need to satisfy the following refutation inequality:

t >
d(Iφ + λn)

2
. (1)

This completes the description of the witness.
The condition t < n2 is imposed only so as to ensure that the witness is of polynomial

size, and serves no other purpose. Likewise, the exact value of k is not important, though
clearly k ≤ m. Moreover, it does not matter whether all inconsistent tuples in the collection
have the same cardinality k, but we assume they do, so as to simplify the presentation in
this paper.

Proposition 2.4 The witness can be checked in polynomial time.

Proof: The imbalance δ can be computed in polynomial time, and hence can be checked
in polynomial time. The same applies to the eigenvalue λ (see also the remark following
Definition 2.2). In fact, neither δ nor λ need to be given explicitly as part of the witness,
as both can be computed efficiently from φ.

For every even k-tuple in the (k, t, d) collection, one needs to check that every variable
appears in the respective clauses an even number of times, that every clause indeed belongs
to φ, and that the number of negative literals is indeed odd. Moreover, one needs to check
that every clause appears in at most d of the even k-tuples, and that the total number
of even k-tuples is t. Clearly, all these checks can be made in polynomial time (in n,m),
because t < n2.

The refutation inequality can also be checked in polynomial time. (Again, see also
remark following Definition 2.2.) 2

We now show that a satisfiable formula cannot have a witness as described above. We
first present a known connection between the eigenvalue λ of Mφ and assignments that
satisfy clauses of φ in a ”not all equal” (NAE) fashion, namely, satisfy either one or two
literals in a clause.

Lemma 2.5 If there is an assignment that satisfies m1 clauses in φ as NAE, then the
largest eigenvalue λ of Mφ is at least (4m1 − 3m)/n.

Proof: Let A be an assignment that satisfies m1 clauses of φ as NAE. Consider the n-
dimensional vector vA that has value 1 on coordinates corresponding to variables that A sets
to true, and value −1 on coordinates corresponding to variables that A sets to false. The fact
that vA has norm

√
n implies that nλ ≥ vt

AMφvA. Using the definition of Mφ, it is not hard
to see that every clause that is satisfied either once or twice by A contributes +1 to vt

AMφvA,
whereas every other clause contributes −3. Hence nλ ≥ m1− 3(m−m1) = 4m1− 3m. 2

Observe that a random assignment satisfies 3m/4 clauses as NAE in expectation, and
hence the lower bound on λ implied by Lemma 2.5 is nonnegative.
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Theorem 2.6 Let φ be a 3CNF formula with n variables and m clauses. If φ has a witness
as described above that satisfies the refutation inequality (1), then there is no assignment
satisfying φ.

Proof: Assume for the sake of contradiction that φ is satisfiable, and let A be a satisfying
assignment. By definition of the notion of imbalance, A can satisfy at most (3m + Iφ)/2
literals. Every clause contains at least one of these satisfied literals. Lemma 2.5 implies
that A satisfies at most m1 = (3m + λn)/4 clauses as NAE. The rest of the m−m1 clause
must be satisfied three times by A. Hence each of them contains two more satisfied literals
(beyond the one already counted). It follows that the number of clauses containing two
literals satisfied by A is at most:

3m + Iφ

2
−m− 2(m−m1) = −3m

2
+

Iφ

2
+ 2m1 =

Iφ + λn

2

Hence A satisfies at least m− (Iφ + λn)/2 as 3XOR (this relates to the 3XOR principle of
Proposition 1.1).

We now turn to the (k, t, d) collection. By Proposition 1.3, each of the t inconsistent
k-tuples must contain at least one clause not satisfied as 3XOR by A. As there are at most
(Iφ + λn)/2 such clauses, and each of them participates in at most d inconsistent k-tuples,
there can be a satisfying assignment A only if t ≤ d(Iφ + λn)/2. 2

3 Dense random 3CNF formulas have witnesses

In section 2 we presented a witness certifying that a 3CNF formula is not satisfiable. In
this section, we show that most 3CNF formulas with m À n1.4 clauses have such a witness.

Theorem 3.1 Let φ be a random 3CNF formula with n variables and m = βn clauses,
where β = cn0.4 for a sufficiently large constant c. Then almost surely:

1. The imbalance satisfies Iφ = O(n
√

β) = O(n1.2).

2. The largest eigenvalue satisfies λ = O(
√

β) = O(n0.2).

3. There are (k, t, d) collections with parameters k = O(n/β2) = O(n0.2), t = Ω(nβ) =
Ω(n1.4) and d = O(k) = O(n0.2).

Items 1 and 2 above are known (being part of the 3XOR principle), and their proofs
are presented in Lemmas 3.2 and 3.3. The more challenging part of our analysis is to prove
item 3, and the proof is given in Section 3.4. Section 3.1 explains how different ingredients
of the proofs fit together.

Substituting these parameters in the refutation inequality 1, we see that the left hand
side is Ω(nβ), whereas the right hand side is O(n2/β3/2). Hence the inequality is satisfied
when β > cn2/5, for some sufficiently large constant c.
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3.1 General observations

The most complicated part of our proof is to prove the existence of (k, t, d) collections. To
simplify the presentation of this part of the proof, we shall fix β = n0.4 (which is the smallest
value that interests us), and prove that d = O(n0.2) and t = Ω(n1.4), without insisting that
the value of the leading constants is such that the refutation inequality is satisfied. However,
this suffices for our purpose for the following reason. Increasing β by some constant factor
c, increases Iφ and λ by O(

√
c), d can be kept fixed, and then t is increased by a factor

of c (by treating the random formula as a concatenation of c random formulas). Hence
regardless of the leading constants in the O and Ω notation, we can choose c sufficiently
large so as to make the refutation inequality hold.

As φ is chosen at random, the three parameters Iφ, λ and t (for a given fixed d) are ran-
dom variables. All three random variables enjoy the bounded difference property. Namely,
adding one clause to φ can change Iφ by at most 3, change λ by at most 1 (because the ma-
trix associated with a single clause has no eigenvalue whose absolute value is larger than 1),
and change t by at most d (once we have fixed d). As a consequence of this, it can be shown
that all these variables are highly concentrated around their median (see for example [1]).
Hence it suffices to show that with constant probability (over the choice of φ) Iφ, λ and
t have values in the desired range, and this will imply that the fraction of φ that have a
witness is overwhelming (at least 1−O(2−nδ

) for some δ > 0).
The strong concentration results also imply that we may use interchangeably whichever

is more convenient of the common models for generating random formulas. For example, we
may use a model in which exactly m clauses are chosen at random, and consider either the
version with or without replacement. Alternatively, we may consider a model in which each
of the possible M = 23

(n
3

)
clauses is chosen to be in φ independently with probability m/M .

Another variation is a model in which we choose each 3-tuple of variables to be a clause
independently with probability m/

(n
3

)
, and thereafter choose the polarities of the variables

independently at random. All these models are sufficiently similar to each other (say, when
m < n3/2) so that the events that we consider happen with overwhelming probability in
one of the models iff they happen with overwhelming probability in all models. (See for
example [23] for a similar setting.)

We omit the formal proofs of the observations made above in this section.

3.2 The imbalance

The following lemma is known and its proof is given in Section A in the appendix for
completeness.

Lemma 3.2 The expected imbalance (over the choice of 3CNF formula φ with n variables
and m = βn > n clauses) satisfies E(Iφ) = O(n

√
β).

3.3 The largest eigenvalue

The following lemma is known and its proof is sketched in Section A in the appendix for
completeness.
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Lemma 3.3 The value λ of the largest eigenvalue of Mφ satisfies λ = O(
√

β) with high
probability (over the choice of 3CNF formula φ with n variables and m = βn clauses, and
using for simplicity the choice β ≥ n2/5).

Remark. Lemma 3.3 is incorrect when β ¿ log n/ log log n. However, variations of it
can be extended all the way down to constant values of β. See [11] for details.

3.4 Collections of inconsistent tuples

In this section we show that a random 3CNF formula with n1.4 clauses is likely to have a
(k, t, d) collection with k = O(n0.2), t = Ω(n1.4) and d = O(n0.2).

It is more convenient to first find a collection of even k-tuples with the above parame-
ters, and only later extract from it those even k-tuples that are also inconsistent. When
considering even k-tuples, the polarity of variables does not matter. Hence a clause can
be viewed as a 3-tuple of variables. In this case, a 3CNF formula can be viewed as a
3-uniform hypergraph over n vertices, where every clause corresponds to a hyperedge. A
natural model for random 3-uniform hypergraphs is one in which each of the hyperedges
is inserted independently with probability p. This hypergraph can model a 3CNF formula
in which each 3-tuples of variables forms a clause with probability p, and thereafter the
polarities of variables are set independently at random. In our context, the appropriate
value for the parameter p is n−1.6, as this corresponds to a formula with Θ(n1.4) clauses (in
expectation). A 2-regular subhypergraph induced by k hyperedges (namely, a collection of k
hyperedges in which every vertex appears either twice or not at all) corresponds to an even
k-tuple of clauses. (Even k-tuples are somewhat more general in the sense that variables
can appear any even number of times, but we shall not need this generality here.) The most
complicated technical part of this manuscript is the proof of the following theorem.

Theorem 3.4 A 3-uniform hypergraph with n vertices in which every possible hyperedge
is included independently with probability p = n−1.6 is likely to contain a collection of t =
Ω(n1.4) 2-regular subhypergraphs such that every vertex participates in at most d = O(n0.2)
of these subhypergraphs.

Due to space limitation, the full proof of this theorem is deferred to Section B in the
appendix. (A note concerning notation: in the context of the proof of Theorem 3.4, k will
denote the number of vertices in the 2-regular subhypergraph, rather than the number of
hyperedges.) In this section we only sketch the overall structure of the proof.

It is relatively easy to prove that k can be chosen to have some value close to n0.2, in
a way that causes the expected number of 2-regular edge induced subhypergraphs with k
vertices to be roughly n1.4. However, large expectation does not automatically mean a high
probability event. For example, in the context of random 3CNF formulas, it is known that
at density β = 5, the expected number of satisfying assignments of a random 3CNF formula
is exponentially large, but still almost all such formulas are not satisfiable [20]. To turn
expectation results into high probability results, one may try to bound the variance.

To allow us to bound the variance, we exclude some of the 2-regular subhypergraphs
from consideration. The excluded 2-regular subypergraphs are those that include subcol-
lections of hyperedges that are ”dense”, namely involve relatively few vertices compared
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to the number of hyperedges. As a simple example, we do not wish to allow a 2-regular
subhypergraph to contain two hyperedges that share two vertices (and hence contain only
four vertices in total). More generally, for every value of `, we require a certain lower
bound on the number of vertices that every subcollection of ` hyperedges needs to contain.
2-regular subhypergraphs that meet these requirements for all values of ` will be called ex-
panding. The reason to concentrate on 2-regular expanding subhypergraphs with no dense
subcollections is that dense subcollections are correlated with the existence of 2-regular
subhypergraphs (which themselves are dense – they have a ratio of 3:2 between variables
and clauses), and hence dense subcollections have large effect on the variance.

We show that a random 2-regular subhypergraph has constant (though a small con-
stant) probability of being expanding. Hence the expected number of expanding 2-regular
subhypergraphs is still Θ(n1.4). Now detailed calculations show that the variance is small,
and so with high probability the actual number is also Ω(n1.4).

It remains to show that d, the number of 2-regular hypergraphs in which a hyperedge
may participate, is small, O(n0.2). Again, it is not hard to show that in expectation this is
the case, but as explained before, expectation by itself does not suffice. To avoid tedious
variance calculations, we now restrict the structure of the collection of 2-regular subhyper-
graphs: we allow every two subhypergraphs to share at most one hyperedge. A relatively
easy computation based on expectations shows that this does not decrease the size of the
collection by much. But now, for every hyperedge, all 2-regular subhypergraphs in the col-
lection that contain it share no other hyperedge with each other. This eliminates positive
correlations that they might have had, and allows us to prove that with high probability
their number is as expected.

The full proof of theorem 3.4 appears in Section B in the appendix.

Corollary 3.5 Let φ be a random 3CNF formula with n variables and n1.4/8 clauses.
Then with high probability φ contains a (k, t, d) collection with parameters t = Ω(n1.4) and
d = O(n0.2).

Proof:(sketch) Theorem 3.4 implies that with high probability φ contains an even col-
lection with the above parameters. As the polarities are random, a symmetry argument
implies that with probability 1/2, at least half of the even k-tuples are inconsistent. This
shows that the corollary holds with constant probability. As explained in section 3.1, Tala-
grand’s inequality can be used to boost this probability up (essentially to 1− e−n0.8

, details
omitted). 2

4 Algorithms for finding witnesses

Our witnesses for non-satisfiability are of polynomial size, and they can be checked in
polynomial time. In this section we address the question of how such a witness can be
found. Observe that our results for sufficiently dense random 3CNF formulas imply not
only that witnesses exist, but moreover, that the refutation inequality (1) is satisfied with
some slackness. For concreteness, let us call the inequality t > d(Iφ + λn) the robust
refutation inequality, and call witnesses for which this inequality hold robust witnesses.
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Theorem 4.1 If a 3CNF formula φ has a robust witness with d À log m, then a witness of
non-satisfiability for φ can be found in time polynomial in

(m
k

)
. (Recall that m is the number

of clauses, and k and d are the respective parameters of the (k, t, d)-collection associated with
the robust witness.)

Proof: (sketch) As noted in Proposition 2.4, computing the imbalance Iφ and λ does
not pose a problem (especially as it suffices to compute λ only approximately, due to the
slackness in the robust witness). The remaining task is to find a (k, t, d)-collection as implied
by the robust witness. We may assume that the values of k and d are known (as there are
only polynomially many possible values, and all of them can be tried out). Fixing k and d,
we propose the following algorithm for finding a (k, d, t)-collection with large t.

First, enumerate all inconsistent k-tuples. Using exhaustive search, this takes time
proportional to

(m
k

)
. (We do not know whether there are substantially faster algorithms for

finding even a single inconsistent k-tuple.) Let T1, T2, . . . , T` be the list of all inconsistent
k-tuples.

Next, set up the following linear program. With every Ti we associate a variable xi

and the constraint 0 ≤ xi ≤ 1. In addition, for every clause C we have the constraint∑
i|C∈Ti

xi ≤ d. The objective function is to maximize
∑

i xi. The optimal value of the LP
is at least t, because the (k, d, t)-collection associated with the robust witness is a solution
to the LP. The LP, which has ` ≤ (m

k

)
variables, can be solved in time polynomial in its size.

(It is conceptually simplest to use a generic linear programming algorithm for this purpose,
though other options also exist.) For every i, let x∗i be the (fractional) value given to xi by
the LP.

Now use randomized rounding. Every Ti is chosen into the collection with probability x∗i .
The expected size of the collection is then at least t. Standard concentration results imply
that with high probability the size of the collection is at least t(1 − o(1)), and moreover,
that no clause is used more than d(1 + o(1)) times in the collection. This last fact uses the
assumption that d À log m. This provides a witness of non-satisfiability, because of the
slackness involved in the original robust witness.

Finally, observe that there is no need to actually perform the randomized rounding.
The fractional solution to the LP by itself certifies the existence of a (k, t(1 − o(1)), d(1 +
o(1)))-collection (as proved by the randomized rounding argument). Hence the refutation
algorithm is deterministic rather than randomized. 2

Corollary 4.2 For sufficiently large c, most random 3CNF formulas with n variables and
cn1.4 clauses can be refuted in time 2O(n0.2 log n).

Proof: The probabilistic analysis of Section 3 implies that most 3CNF formulas of
density as in the corollary have robust witnesses with k = O(n0.2). The corollary now
follows from Theorem 4.1. 2

An interesting question is what is the smallest density for which most random 3CNF
formulas can be refuted in polynomial time. The best previous bound is cn1.5 clauses for
some specific constant c > 1 [12]. Combining the approach of the current paper with that
of [12], we can extend this to arbitrarily small constant c > 0. This requires some additional
work, but details are omitted from the current version of this manuscript.
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A Proofs relating to the 3XOR principle

Proof of Lemma 3.2 concerning imbalance of random 3CNF formulas.
Proof: All expectations and probabilities in this proof are taken over the choice of φ.
For any variable xi we denote by di the number of appearances of x in φ1. It holds that∑n

i=1 E[di] = 3m. By symmetry, for every i it holds that E[di] = 3m
n , which we denote by

d (for the purpose of this proof, not to be confused with the parameter d used elsewhere).
Given that di = j the polarities of the appearances of xi are random and independent.
Hence E[I2

i | di = j] = j. It then follows that

E[I2
i ] =

∑

k

Pr[di = j] E[I2
i | di = j] =

∑

j

j Pr[di = j] = E[di] = d.

Using the convexity of the square function

E[Ii] ≤
√

E[I2
i ] ≤

√
d.
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By linearity of expectation, E[
∑n

i=1 Ii] ≤ n
√

d. In particular, with probability at least 1/2,
Iφ ≤ 4n

√
β. 2

Sketch of proof of Lemma 3.3 concerning largest eigenvalue for random 3CNF formulas.
Proof: (sketch) Consider the model in which each of the 23

(n
3

)
possible clauses is chosen

to be in φ independently at random with probability m/8
(n
3

)
. Each clause contains three

pairs of variables. View the matrix Mφ as the sum of three matrices, M1 +M2 +M3, where
each of these matrices involves the contributions of just one type of pair (e.g., M1 contains
the contributions of the pairs composed of the first and second variables in every clause
of φ). For every matrix separately, its entries are identically distributed and statistically
independent (except for the constraints imposed by symmetry). Each entry is distributed
symmetrically around 0, and has variance O(β/n). The results of [17] then imply that with
high probability, the largest eigenvalue of each of the three matrices is at most O(

√
β). λ

cannot be larger than the sum of these three eigenvalues. 2

B Random 3-uniform hypergraphs

A hypergraph is 3-uniform if every hyperedge contains exactly three vertices, and 2-regular
if every vertex is contained in exactly two hyperedges. Let H(n, p) be a random 3-uniform
hypergraph on the set V of n vertices in which each 3-tuple {x, y, z} of distinct vertices be-
comes an (hyper)edge with probability p = n−1.6, independently of all others. In this section
we show that (with high probability) H(n, p) contains Θ(n1.4) 2-regular subhypergraphs on
k = Θ(n0.2) vertices such that each edge in H(n, p) is in O(n0.2) of those subhypergraphs.

B.1 Properties of the random 2-regular 3-uniform hypergraph

For k divisible by 3, a perfect 3-matching of 2k elements is a decomposition of the 2k
elements into 2k/3 sets of size 3. To generate the 2-regular 3-uniform hypergraph H2(k ;3)
uniformly at random among all simple 2-regular 3-uniform hypergraphs on k = Θ(n0.2)
vertices, one may use the configuration model (see [4, 5, 8, 22, 23], for example). For each
vertex v, take two copies of v, say v′, v′′. The copies v′, v′′ are called clones of v. The clones
are used to generate H2(k ;3). Provided k (and hence 2k) is divisible by 3, generate a uniform
random perfect 3-matching of all clones. The edges of the hypergraph induced by the perfect
3-matching can be obtained by contracting both of v′ and v′′ into v. That is, {u, v, w} is an
edge if and only if the perfect 3-matching contains a 3-tuple consisting of clones of u, v, w.
In general, the induced hypergraph may have loops and/or multiple edges, where a loop
is an edge containing a vertex twice or more like {u, u, w}. Calling a hypergraph without
loops and multiple edges simple, it is known [8] that the random hypergraph is simple with
probability (1 + o(1))e−1. It is also easy to check that each simple 2-regular 3-uniform
hypergraph on k vertices arises from exactly 2k perfect 3-matchings of clones. Therefore,
the induced random hypergraph conditioned on being simple yields the uniform random
2-regular 3-uniform hypergraph.

Moreover, the uniform random perfect 3-matching may be generated by selecting a
uniform random permutation of 2k clones so that each perfect 3-matching may be realized
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by precisely (3!)2k/3(2k/3)! permutations. In particular, there are

α(2k) :=
(2k)!

62k/3(2k
3 )!

=
(1 + o(1))31/2

(4πk)1/3
2−2k/3((2k)!)2/3 (2)

perfect 3-matchings.
The hypergraph H∗

2 (k ;3) induced by the configuration model enjoys nice expansion
properties. We characterize some of these properties in terms of the maximum number β(`)
of vertices of degree 2 in a subhypergraph with ` edges of H2(k, 3). As k will be large (some
increasing function of n) in our intended applications, the following lemma addresses only
the case that k is sufficiently large (the lemma is trivially incorrect when k ≤ 40).

Lemma B.1 For some fixed constant δ > 0, for every sufficiently large k, the induced
random hypergraph H∗

2 (k ;3) satisfies the following with a probability at least δ:

β(`) ≤





`− 1 for 1 ≤ ` ≤ 20
1.1` for 21 ≤ ` ≤ k

log k

1.41` for k
log k ≤ ` ≤ k

3 .

Proof: We will first show that there is no cycle of length 20 or less with probability
Ω(1). Here a cycle of length ` ≥ 2 is a pair of sequences of distinct vertices v1 , ..., v`

and
distinct edges e1 , ..., e`

such that vi , vi+1 ∈ ei for i = 1, ..., ` and v
`+1

= v1 . A loop is
regarded as a cycle of length 1. Once there is no cycle of length 20 or less, it is easy to
check β(`) ≤ ` − 1 for ` ≤ 20, as adding one new edge may yield at most one more vertex
of degree 2.

To estimate the probability, generate a random permutation as follows. Starting with
a uniform random permutation of v′1, ..., v′k, v′′1 may be ranked in one of k + 1 ways to be
placed in the permutation. In general, v′′i may be ranked in one of k + i ways to create a
uniform random permutation of v′1, ..., v′k, v′′1 , ..., v′′i . To avoid a loop, it suffices to place v′′i
so that there are at least two clones between v′i and v′′i , because the distance never decreases
as the process goes further. This occurs with provability at least 1 − 4/k. A loop can be
regarded a cycle of length 1.

Generally, two clones are called adjacent in a permutation of clones if they are consecu-
tive or there is only one clone between them. Two vertices are also called adjacent if some
of their clones are adjacent. To avoid a cycle of length 2 or less, v′′i may be placed at a
distance of at least 2 from v′i and also from any clone of a vertex adjacent to vi. This occurs
with probability 1 − O(1/k). Since a pair of multiple edges may be regarded as a cycle of
length 2, multiple edges are not created either. One may repeat the same procedure to show
that there is no cycle of length 20 or less with probability (1− O(1/k))k = Ω(1). Though
this lower bound is doubly exponentially small in 20, we here do not try to optimize it.

For the range of 21 ≤ ` ≤ k/3, let ` = ak with a ≤ 1/3. If there are 3
2(a− b)k vertices of

degree 2 in a subhypergraph (of H2(k ;3)) with ak edges, then there are 3ak−3(a−b)k = 3bk
vertices of degree 1. Since any of the two clones of the vertices of degree 1 can participate,
the corresponding probability is at most

γ(a, b) :=

(
k

3
2(a− b)k, 3bk

)
23bkα(3ak)α(2k − 3ak)α(2k)−1.
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Appealing (2), we obtain

γ(a, b) = O
((

k
3
2(a− b)k, 3bk

)
23bk

(
2k

3ak

)−2/3)

= O(exp
(
k
(
H(3

2(a− b), 3b) + 3b log 2− 4
3H(3a

2 )
))

, (3)

where the entropy functions H(x, y) = −x log x−y log y−(1−x−y) log(1−x−y) and H(x) =
−x log x− (1− x) log(1− x). (Here the base of logarithms is e.) As γ(a, 0) = O(e−

k
3
H( 3a

2
))

and the exponent in (3) is continuous, there is ε0 > 0 such that γ(a, b) = O(e−Ω(ak)) for all
b ≤ ε0a. We prove this last statement for ε0 = 0.06, because then 3(1−ε0 )a

2 = 1.41, matching
the requirement in Lemma B.1. Let 0 ≤ ε ≤ ε0 := 0.06, b = εa and

F (a, ε) = H(3(1−ε)a
2 , 3εa) + 3εa log 2− 4

3H(3a
2 ).

Then,
∂F (a, ε)

∂ε
=

3a

2

(
− log(3a)− 2 log ε + log(1− ε) + log(2− 3(1 + ε)a)

)
.

Since ∂F (a,ε)
∂ε decreases as ε increases, ∂F (a,ε)

∂ε ≥ ∂F (a,ε0)
∂ε for all ε in the range. Moreover,

∂F (a,ε0)
∂ε > 0 for a ≤ 1

3 gives ∂F (a,ε)
∂ε > 0, which means that F (a, ε) increases as ε increases.

Hence, F (a, ε) ≤ F (a, ε0). Taking the second derivative of F (a, ε0) with respect to a, we
know that

∂2F (a, ε0)
∂a2

=
0.41
a

+
6

2− 3a
− 2.5281

1− 1.59a
> 0.

This implies that F (a, ε0)+0.012a is a convex function, especially, it has its maximum at one
of the end points, namely at a = 0 or at a = 1/3. As F (0, ε0) = 0 and F (1/3, ε0)+0.012/3 <
0, we deduce that F (a, ε) ≤ F (a, ε0) ≤ −0.012a. This establishes the desired results for the
range k

log k ≤ ` ≤ k
3 in Lemma B.1, and the failure probability for this case is exponentially

small in ak = ` ≥ k/ log k.
For the range 21 ≤ ` ≤ k

log k , we need to strengthen the results in two respects. One is to
tighten the bound on β(`) from 1.41` to 1.1`. The other is to make the failure probability
decrease as a function of k (a bound exponentially small in ` would not be sufficiently
strong when ` = 21), so that we can apply the union bound in combination with the case
` ≤ 20 and still get a simultaneous success probability δ > 0. To strengthen the results,
we use the fact that in the range 21 ≤ ` ≤ k

log k , we have that a ¿ 1. Then, using
H(x, y) = −(1+o(1))(x log x+y log y) and H(x) = −(1+o(1))x log x for x, y ¿ 1, we have,
for b = (1−2ε)a

3 with 0.1 ≤ ε ≤ 1/2,

H(3
2(a− b), 3b) + 3b log 2− 4

3H(3a
2 )

= −(1 + ε)a log((1 + ε)a)− (1− 2ε)a log((1− 2ε)a) + 2a log a + o(a log(1/a))

= a
(
ε log a− (1 + ε) log(1 + ε)− (1− 2ε) log(1− 2ε) + o(log(1/a))

)

= −(1 + o(1))εa log(1/a).

This yields γ(a, b) = O(e−(1+o(1))0.1ak log(1/a)) for b ≤ 0.8a/3, or equivalently 3
2(a−b) ≥ 1.1a.

Therefore, the second inequality occurs with probability 1 − O(ake−(0.1+o(1))ak log(1/a)) =
1− e−Ω(` log(k/`)) for each ` in the range. 2
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For a set L of edges in a 3-uniform hypergraph, let V (L) be the set of all vertices
contained in edges in L, and Vj(L) is the set of vertices contained in precisely j edges in
L, j ≥ 1. If L can be extended to a 2-regular 3-uniform hypergraph with the expander
properties described in Lemma B.1, then 3|L| = |V1(L)|+ 2|V2(L)| implies that

|V (L)| = |V1(L)|+ |V2(L)| = 3|L| − |V2(L)| ≥ 3|L| − β(|L|). (4)

Corollary B.2 If L can be extended to a 2-regular 3-uniform hypergraph with the expander
properties described in Lemma B.1, then, for ` = |L|,

|V (L)| ≥





2` + 1 for 1 ≤ ` ≤ 20
1.9` for 21 ≤ ` ≤ k

log k

1.59` for k
log k ≤ ` ≤ k

3 .

B.2 Many 2-regular subhypergraphs

Our task in this section is to show that H(n, p) contains a collection of Θ(n1.4) 2-regular
subhypergraphs. To show this, we shall limit our attention only to 2-regular subhypergraphs
that have expansion properties as in Lemma B.1, because these expansion properties will
be used in certain variance calculations.

It is not hard to see that k can be chosen such that the expected number of expanding
H2(k; 3) is as desired. Indeed, Lemma B.1 implies that, in expectation, there are

Θ
((

n

k

)
2−kα(2k)p2k/3

)

2-regular subgraphs of H(n, p) with the expansion properties described in the lemma. Ob-
serving

(
n

k

)
2−kα(2k)p2k/3 = Θ

( nk((2k)!)2/3

k1/325k/3k!n3.2k/3

)
= Θ

( 1
k1/2

( k

2en0.2

)k/3)
,

we take k = 2en0.2 +4.5 log n−c1 for appropriate constant c1 so that the mean µ is between
cn1.4/2 and cn1.4 for a constant c determined later. (It may not be possible to take c1 so
that µ = (1 + o(1))cn1.4, since k must be an integer.)

Having established that the expected number of H2(k; 3) is as desired, the following
lemma uses the second moment method to show that with high probability, the expectation
is attained.

Lemma B.3 There is c > 0 so that, with probability 1 − o(1), the random hypergraph
H(n, p) with p = n−1.6 has a collection of 2-regular subhypergraphs on k vertices satisfying
the followings.

(i) The collection has more than (1− o(1))µ elements.
(ii) All subhypergraphs in the collection satisfy the expansion properties described in Lemma
B.1.
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Proof: Let H1,H2, ..., be all the 2-regular hypergraphs on k vertices in V with the
expansion properties. Then the expected number of such hypergraphs in H(n, p) is µ. In
other words, for the indicator random variable Xi = 1(Hi ∈ H(n, p)), and X :=

∑
i≥1 Xi,

the mean of X is µ.
To compute the variance of X and other related quantities, an estimation in a general

setting is convenient. For a set of L edges, we will estimate the mean of XL :=
∑

i:L⊆Hi
Xi

conditioned on L ∈ H(n, p). If |L| = 1, then

E[XL|L ∈ H(n, p)]

=

(
n

k − 3

)
2−(k−3)α(2k − 3)p2k/3−1(1

e + o(1)) Pr[H2(k ;3) has expansion properties]

=
(1 + o(1))µ

( n
k−3

)
2−(k−3)α(2k − 3)p2k/3−1

(n
k

)
2−kα(2k)p2k/3

= (1 + o(1))µk3n−323(2−1(2k)2)−1p−1 = (4 + o(1))µkn−1.4.

Generally, we have the following lemma.

Lemma B.4 Let ` := |L|. Then

E[XL|L ∈ H(n, p)] = (4 + o(1))µkn−1.4 for ` = 1,

and
E[XL|L ∈ H(n, p)] = O(µn−0.4`−0.8) for connected L with 2 ≤ ` ≤ 20.

Otherwise, for 2 ≤ ` ≤ 20,
(

2k/3
`

)
E[XL|L ∈ H(n, p)] = O(µn−0.2`−1.6),

for 21 ≤ ` ≤ k/3,
(

2k/3
`

)
E[XL|L ∈ H(n, p)] = O(µn−(0.07+o(1))`).

Similarly, for k/3 ≤ ` ≤ 2k/3− 1,
(

2k/3
`

)
E[XL|L ∈ H(n, p)] = O(n−(0.07+o(1))(2k/3−`)).

Proof: Clearly,

E[XL|L ∈ H(n, p)] = O
((

n

k − |V (L)|

)
2−(k−|V (L)|)α(2k − 3`)p2k/3−`

)

= O
(µ

( n
k−|V (L)|

)
2−(k−|V (L)|)α(2k − 3`)p2k/3−`

(n
k

)
2−kα(2k)p2k/3

)
.
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Since L has to satisfy the expander properties to be in any of Hi, if ` := |L| ≤ 20, then
|V (L)| ≥ 3`− β(`) ≥ 2` + 1 and, using (2), we have

E[XL|L ∈ H(n, p)] = O
(
µk2`+1n−2`−122`+12`(2k)−2`p−`

)
= O(µn−0.4`−0.8).

Moreover, if L is not connected, then |V (L)| ≥ 2` + 2 gives

E[XL|L ∈ H(n, p)] = O
(
µk2`+2n−2`−222`+22`(2k)−2`p−`

)
= O(µn−0.4`−1.6).

As
(2k/3

`

) ≤ k`, the desired inequality follows.
For ` in the range 20 ≤ ` ≤ k/ log k, |V (L)| ≥ 1.9` gives

E[XL|L ∈ H(n, p)] = O
(
µk1.9`n−1.9`21.9`2`k−2`p−`

)

= O(µ22.9`n−0.32`) = O(µn−(0.32+o(1))`).

Since
(2k/3

`

) ≤ k` = O(n(0.2+o(1))`), the result follows. If k/ log k ≤ ` ≤ k/3, then |V (L)| ≥
1.59` gives

E[XL|L ∈ H(n, p)] = O
(
µk1.59`n−1.59`21.59`2`k−2`p−`

)

= O(µ22.59`n−0.07`) = O(µn−(0.07+o(1))`).

As ` ≥ k/ log k implies that
(2k/3

`

)
= no(`), the corresponding inequality follows.

If k/3 ≤ ` ≤ 2k/3− k/ log k, then observing that k−|V (L)| must be less than β(2k/3−
`) ≤ 1.41(2k/3− `), we have

E[XL|L ∈ H(n, p)] = O
((

n

k − |V (L)|

)
2−(k−|V (L)|)α(2k − 3`)p2k/3−`

)

= O
(n1.41(2k/3−`)((2k − 3`)!)2/3p2k/3−`

(1.41(2k/3− `))!

)

= O(n−0.07(1+o(1))(2k/3−`)).

For ` in the range 2k/3− k/ log k ≤ ` ≤ 3k/2− 1, k − |V (L)| ≤ β(2k/3− `) ≤ 1.1` implies
that

E[XL|L ∈ H(n, p)] = O
(n1.1(2k/3−`)((2k − 3`)!)2/3p2k/3−`

(1.1(2k/3− `))!

)

= O(n−(0.32+o(1))(2k/3−`)).

As
(2k/3

`

)
= no(2k/3−`) for k/3 ≤ ` ≤ 2k/3 − k/ log k and

(2k/3
`

)
= n(0.2+o(1))(2k/3−`) for

2k/3− k/ log k ≤ ` ≤ 2k/3− 1, the last inequality follows. 2

Using Lemma B.4 we complete the proof of Lemma B.3.
To estimate the variance of X =

∑
i≥1 Xi, consider

∑

j:j 6=i

Pr[Xj = 1|Xi = 1]− Pr[Xj = 1] ≤
∑

`≥1

∑
L:L⊆Hi
|L|=`

E[XL|L ∈ H(n, p)].
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Lemma B.4 yields that the case ` = 1 contributes much more than all other cases com-
bined. (Here the distinction between connected and disconnected L is not necessary. The
distinction will be needed to prove (iii). See (5) below.) Using the fact that any one of the
2k/3 clauses associated with Xi can be the clause shared with Xj , one obtains

E[(X − µ)2] = (8/3 + o(1))k2n−1.4µ2 = O(n1.8).

Chebyschev’s Inequality then gives

Pr[|X − µ| ≥ tn0.9] = O(t−2), for t ≥ 1.

2

B.3 Hyperedges participate in only few 2-regular subhypergraphs

Lemma B.3 established that with high probability, H(n, p) has collection of roughly µ =
Θ(n1.4) 2-regular subhypergraphs, where each such subhypergraph is on k = Θ(n0.2) ver-
tices and has the expansion properties of Lemma B.1. It remains to show that we can find
a subcollection of this collection that has the additional property that no hyperedge partic-
ipates in more than O(k) of the subhypergraph. For this purpose we impose an additional
constraint on the collection.

Definition B.5 A collection of 2-regular hypergraphs is called nearly disjoint if each pair
of hypergraphs in the collection shares at most one hyperedge.

We can now strengthen Lemma B.3 so as to achieve our main lemma.

Lemma B.6 (Main Lemma) There is c > 0 so that, with probability 0.9+o(1), the random
hypergraph H(n, p) with p = n−1.6 has a nearly disjoint collection of 2-regular subhypergraphs
on k vertices satisfying the following.

(i) The collection has more than (1 + o(1))µ/2 elements.
(ii) All subhypergraphs in the collection satisfy the expander properties described in Lemma
B.1
(iii) For each edge e in H(n, p), the number of hypergraphs containing e in the collection is
at most (12 + o(1))n−1.4µk.

Proof: To prove Lemma B.6, we take a subcollection of the collection already given by
the proof of Lemma B.3.

We estimate the number Y of pairs of distinct Hi, Hj that share two or more hyperedges.

E[Y ] ≤
∑

i≥1

Pr[Xi = 1]
∑

`≥2

∑
L:L⊆Hi
|L|=`

E[XL|L ∈ H(n, p)] = O(kn−1.6µ2), (5)

The last equality follows from Lemma B.4. By inspection, the case of ` = 2 and L being
connected contributes much more than all other cases combined. The term O(kn−1.6µ2)
is then derived as follows. One µ factor comes from the outer summation. A factor of
O(µn−1.6) comes from plugging ` = 2 in the connected case of Lemma B.4. A factor of 2k/3
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comes from the choice of one of the hyperedges shared by the two 2-regular hypergraphs.
Because of the connectivity requirement and the fact that every vertex appears in two
(rather than more) hyperedges, after fixing one hyperedge in Hi to be shared with Hj ,
there are only three ways of choosing the other hyperedge.

Since c
2n1.4 ≤ µ ≤ cn1.4 and k = O(n0.2), we may take c small enough to ensure that

E[Y ] ≤ 0.05µ. In particular, the Markov Inequality gives Pr[Y ≥ µ/2] ≤ 2E[Y ]/µ ≤ 0.1.
Deleting one Hi from each pair contributed in Y , we have, with probability at least 0.9+o(1),
there are more than µ/2 Hi’s in H(n, p) that are nearly disjoint. Parts (i) and (ii) of the
main lemma are proven.

For part (iii), observe that, for a fixed edge e,

ν := E
[ ∑

i:e∈Hi

Xi|e ∈ H(n, p)
]

= (4 + o(1))µkn−1.4.

Let Ze be the size of a largest collection of 2-regular subhypergraphs in H(n, p) each pair
of which shares only e in common. Notice that, for any nearly disjoint collection of Hi’s,
e ∈ H(n, p) is contained in at most Ze subhypergraphs in the collection. Thus, it is enough
to show that, with probability 1 − o(1), Ze ≤ 3ν for all e ∈ H(n, p), or equivalently,
Pr[∃ e ∈ H(n, p) s.t. Ze > 3ν] = o(1). To do so, we use the proof idea of the disjointness
lemma of Erdős and Tetali [9]: For the sum

∑
{Hi1

,...,Hir
} over all nearly disjoint collection

of distinct Hi1
, ..., Hir with e ∈ Hij and

∑
(Hi1

,...,Hir
) over all such collections of ordered

r-tuples (Hi1
, ..., Hir ), it follows that

Pr[Ze ≥ r|e ∈ H(n, p)] ≤
∑

{Hi1
,...,Hir

}

r∏

j=1

Pr[Xij
= 1|e ∈ H(n, p)]

=
1
r!

∑

(Hi1
,...,Hir

)

r∏

j=1

Pr[Xij
= 1|e ∈ H(n, p)]

≤ 1
r!

∑
Hi1

,...,Hir
e∈Hij

r∏

j=1

Pr[Xij
= 1|e ∈ H(n, p)] =

νr

r!
,

where Hij
’s in the last sum have no restriction except e ∈ Hij

(and hence the last sum has
value N r(ν/N)r, where N denotes the total number of Hi that contain e). Therefore,

Pr[∃ e ∈ H(n, p) s.t. Ze ≥ 3ν] ≤ pn3(e/3)−ν = (e/3)−Ω(n0.2).

2

Remark. Lemma B.6 can be strengthened to hold with probability 1 − e−n0.8+o(1)
.

Details are omitted from the current version of this manuscript.
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