
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science

Planted Random 3SAT
with a Small Fraction of 1-Clauses

Submitted for the degree of Master of Science
to the Scientific Council of the Weizmann Institute of Science

Under the supervision of Professor Uriel Feige

Alina Arbitman

February 2012

Abstract

A planted random 3SAT instance is formed by selecting a truth assignment and in-

cluding each clause consistent with it with a certain probability. When the clause

to variable ratio is Ω(log n) it is well known that the assignment can be recon-

structed by the Majority Vote heuristic, hence the more interesting case is when

the clause to variable ratio is constant. In a paper from 2003, Flaxman presented a

modified version of the planted model where clauses satisfied by different number

of literals are included with different probabilities. We focus on the case where

the number of clauses satisfied by exactly one literal is small, both in absolute and

in relative terms. We present polynomial time algorithms for the two distribution

families, where for the first one we are also able to handle a semi random model

for choosing the polarities of the formula.

Acknowledgments

First and foremost, I would like to express my deep gratitude to my advisor, Uriel

Feige, for outstanding guidance and encouragement, for introducing me with his

lucid way of thinking and for a great sense of humour.

Many thanks to the Mathematics and Computer Science faculty, and in par-

ticular to Oded Goldreich for enriching courses and reading material and Itai

Benjamini for inspiring courses and conversations.

Thanks to my fellow students at the faculty, for making each day at Weizmann

a true enjoyment.

Last but not least, I would like to thank my family and my dear Maor, for their

endless love and support.

1 Introduction

The classic problem of 3SAT is concerned with finding a satisfying assignment to

an input 3CNF formula in polynomial time. A 3CNF formula over the Boolean

variables x1, ..., xn is the conjunction of m clauses c1, ..., cm, where each clause is

the disjunction of 3 literals, ci = `i,1 ∨ `i,2 ∨ `i,3, and each literal `i,j is either a

variable or its negation (we denote the negation of x by ∼ x). A 3CNF formula

is satisfiable if there is an assignment of variables to {True, False} so that every

clause contains at least one literal assigned True. The 3SAT problem is well

known to be NP-Complete and no algorithm can succeed on all 3SAT instances

in polynomial time, unless P = NP ([11],[22]). The intractability of 3SAT in

the worst case has lead to an extensive average case research. We concentrate

on a probabilistic model for generating random 3CNF instances named ‘planted

random 3SAT’, and present algorithms for a previously suggested variant of that

model.

A planted random instance of 3SAT is formed by selecting a truth assignment φ

on n variables uniformly at random, and then including each clause satisfied by the

planted assignment φ with probability p. In a paper from 2003 Flaxman extended

this model, suggesting to assign different probabilities according to the number of

literals in the clause that are satisfied by φ ([16]). Let pi be the probability to

include a clause with exactly i literals satisfied by φ. Flaxman showed that for

any constants η2, η3 ∈ [0, 1] there is a constant dmin such that for all d > dmin his

spectral algorithm finds a satisfying assignment whp over instances with p1 =
d

n2
,

p2 =
η2d

n2
and p3 =

η3d

n2
. The algorithm relies on there being some positive fraction

of clauses with exactly one satisfied literal and does not handle the case where

p1 < min{p2, p3}. We extend Flaxman’s result by addressing two separate ranges

in which p1 < min{p2, p2}:

1. p2 + p3 =
d

n2
and p1 ≤

c

(d log d)n2
for a universal constant c and sufficiently

large d.

For somewhat smaller values of p1 we are also able to deal with a semi-random

version of the model.

7

2. p1 =
d1

n2
and p2 + p3 =

d2

n2
with 2d1 ≤ d2 ≤ 2cd1 for a universal constant c

and sufficiently large d1.

The leading constant in 2d1 ≤ d2 is to some extant arbitrary1.

Next we define the exact models in use and state the main result.

1.1 The Model

Definition 1 (i-clause). For i ∈ {0, 1, 2, 3} we say a clause c is an i-clause

w.r.t assignment ψ (to the variables that appear in c) if the number of literals in

c satisfied by ψ is i. For i ∈ {1, 2, 3} we may also say that ψ satisfies c as an

i-clause.

We consider two models for generating 3SAT instances:

Definition 2 (Planted Random 3SAT Model). In this model an instance

of 3SAT is formed by first choosing a truth assignment on n variables uniformly

at random, and then selecting each i-clause for i ∈ {1, 2, 3} independently with

probability pi, for some pi ∈ [0, 1].

Definition 3 (Planted Semi-Random 3SAT Model). In this model an in-

stance of 3SAT is formed by first choosing a truth assignment on n variables uni-

formly at random and then selecting m clauses as follows: for each clause its

variables are chosen independently at random; then their polarities may be chosen

adversarially, as long as all clauses are satisfied and the number of 1-clauses does

not exceed εm.

Note: There are two selection processes underlying the models described

above: in one, every i-clause is selected independently with an appropriate prob-

ability; in the other, m clauses are selected independently from all legal triples of

literals (with an appropriate fraction of i-clauses for every i). We shall use the two

1For most values of p1, p2 and p3 for which d2 ≤ 2d1 the analysis of Flaxman’s algorithm
applies, and hence our work does not address this range of parameters. There is a range of
parameters with d2 ≤ 2d1 where neither Flaxman’s algorithm nor ours work, namely, when
p1 = p3 and p2 is small. For such values the bottleneck is in finding an approximate assignment
(the first stage of the algorithm).

8

processes interchangeably throughout the work, for the sake of simplicity of the

presentation in question.

1.2 Our Result

We shall later introduce three algorithms: Alg1, Alg2 and Alg3; regarding these

algorithms we prove the following results.

Theorem 1. There exists a constant c < 1 such that for every sufficiently large d

the following holds: let F be a planted random 3SAT formula generated according to

the random model with p1 ≤
c

(d log d)n2
and p2 +p3 =

d

n2
, then the Alg1 algorithm

finds a satisfying assignment to F in polynomial time whp over the choice of F .

Theorem 2. There exists a constant c < 1 such that for every sufficiently large d

the following holds: let F be a planted random 3SAT formula generated according

to the semi-random model with m = dn and ε ≤
c

d4 log2 d
, then the Alg2 algorithm

finds a satisfying assignment to F in polynomial time whp over the choice of F .

Remark: Theorem 2 still holds even if F contains also 0-clauses (w.r.t the

planted assignment), as long as the number of 0- and 1- clauses together does not

exceed εm.

Theorem 3. There exists a constant c < 1 such that for every sufficiently large

d1 and for d2 with 2d1 ≤ d2 ≤ 2cd1 the following holds: let F be a planted random

3SAT formula generated according to the random model with p1 =
d1

n2
and p2+p3 =

d2

n2
, then the Alg3 algorithm finds a satisfying assignment to F in polynomial time

whp over the choice of F .

1.3 Related Work and Motivation

In the Random 3SAT problem a 3CNF formula on n Boolean variables is generated

by selecting m random clauses independently and uniformly from all triples of

literals. The goal is to find an assignment of variables to truth values so that the

entire formula is satisfied, or prove that no such assignment exists. The probability

9

of an instance drawn from this distribution to be satisfiable has an interesting

connection to m/n, which is the clause to variable ratio (often also referred as ‘the

clause density’). When the ratio is low, the instances are likely to be satisfiable,

whereas when the ratio is high, the instances are unsatisfiable with high probability.

This satisfiability threshold is known to lie between 3.42 [19] and 4.5 [20] and

experiments suggest that it is approximately 4.2 [12]. This is not yet proven,

but Friedgut [18] has shown that there exists a sequence γn such that if m/n ≤

γn − ε the probability of an instance (with such density) to be satisfiable tends

to 1 and if m/n ≥ γn + ε this probability tends to 0. It is still not known,

however, if the sequence γn converges (or, equivalently, can be taken as a constant

threshold). Several algorithms are known to perform well for instances drawn from

the random 3SAT distribution with low clause density. One such algorithm is the

Pure Literals Heuristic, for which a density as low as d ≈ 1.63 suffices ([23]).

Another greedy algorithm succeeds with asymptotically positive probability for

d ≈ 3.42 ([19]). Furthermore, experimental results suggest that algorithms from

the Survey Propagation family succeed for density very close to the conjectured

satisfiability threshold ([8]).

When evaluating algorithms, we generally require they perform well on most

instances drawn from a certain distribution. For instances with density above the

threshold, this means we expect them to find satisfying assignments for a small

fraction of the probability space, as only such fraction of instances is satisfiable.

It is thus natural to consider the conditional distribution, where a 3SAT instance

is formed by first selecting a formula at random and then keeping it only if it is

satisfiable. But unfortunately this distribution is both difficult to sample from and

to analyse. This has lead to research on ‘planted’ random 3SAT. In the planted

model first a truth assignment on n variables is selected uniformly at random (this

assignment is referred to as ‘the planted assignment’) and then the formula is

selected at random from all formulas which are satisfied by this assignment. One

selection process which guarantees the resulting formula is indeed satisfied by the

planted assignment is picking m clauses independently and uniformly at random

only from all triples of literals which are satisfied by the planted assignment. In

general, for a given triple of variables, there are 23 = 8 ways of choosing the

variables’ polarities (for every variable x we take either x or its negation ∼ x). If

10

we are constrained by an assignment chosen beforehand, then this number reduces

to 7, since there is exactly one possible choice of polarities for which all literals are

not satisfied by the assignment (resulting in the entire clause being unsatisfied),

and that choice should not be included in the instance. Another natural selection

process is choosing every clause satisfied by the assignment independently with a

certain probability p (sometimes it may be more convenient to think of this process

as proceeding in two stages: on the first stage we pick three variables at random

and then select their polarities out of the 7 legal possibilities).

When comparing the planted distribution to the uniform distribution on satisfi-

able instances, we notice that the number of assignments an instance has increases

its probability to be selected in the planted model, whereas in the uniform dis-

tribution clearly all satisfiable instances are selected with the same probability.

For a clause density as high as Ω(log n) a random satisfiable instance is likely to

have only one satisfying assignment, which may explain why in that range the two

distributions are statistically close ([5]). A justification to investigate the planted

distribution for a constant density may be found in a recent work, showing that

for such density (with sufficiently large constant) the two distributions possess a

similar structure of solution space, implying that in many cases algorithms for the

planted distribution may be applied for the uniform one as well ([10]).

Planted distributions have been the focus of research in several different con-

texts: planted graph coloring ([6],[3]), planted bisection ([7]), planted clique ([14],

[4]) and planted 3SAT ([21],[16],[15]). Some of the works inspired ours, and es-

pecially those of Flaxman ([16]) and Alon and Kahale ([3]) whose techniques are

applied here.

In the context of 3SAT, for instances drawn from the planted distribution with

clause density as high as Ω(log n), the Majority Vote reconstructs the planted

assignment whp ([21]). This heuristic assigns to each variable the truth value that

satisfies the majority of the clauses in which it appears. The motivation behind

it the following: if every clause consistent with the planted assignment is included

with the same probability, then there is a bias towards including the literal satisfied

by the planted assignment more frequently than its negation. For lower densities

(i.e., constant ones) the Majority Vote would not satisfy the entire formula but

may serve as a good starting point, and then the k-opt heuristic can complete

11

the assignment, as demonstrated in [15]. When the probabilities to include each

i-clause in the instance are set appropriately, the Majority Vote fails, but in such

case spectral steps apply ([16]).

As mentioned, Flaxman suggested a generalized version of the planted model

where clauses with different numbers of satisfied literals are included with different

probabilities. A further appealing generalization considers semi-random models,

wherein the underlying principle is in there being a mixture of random and adver-

sarial elements, with a varying proportion of the two. In general, the larger the

portion of the adversarial elements our algorithms can withstand, the larger the

probability space treated by them is, and hence the more robust they are.

Semi-random models have been suggested and studied for several problems

involving planted distributions, and among others, independent sets and graph

bisections ([13]) and graph coloring ([6]). In the context of 3SAT, Vilenchik and

Feige [15] considered an adversary who is allowed to add arbitrary 3-clauses to a

previously generated planted random 3SAT instance with a constant clause density.

In our work one of the models addressed is a semi random one, in which first

the variables of each clause are chosen randomly and then an adversary is allowed

to choose their polarities, as long as the fraction of 1-clauses is small.

2 Definitions

Definition 4 (Support). We say a variable x supports a clause c w.r.t assignment

ψ if c is a 1-clause w.r.t ψ and x (or ∼ x) is the satisfying literal of c w.r.t ψ.

Definition 5 (Partial assignment). Let X = {x1, ..., xn} be a set of Boolean vari-

ables. A partial assignment to X is an element of {True, False, ∗}n, where we

regard a variable assigned ∗ as unassigned. We say a clause is satisfied by a partial

assignment ψ (to the variables appearing in it) if it is satisfied by any of its literals

assigned in ψ.

Definition 6 (c-expansion). We say a set of k clauses has c-expansion if the

number of distinct variables in the set is at least ck. In such case we may also say

that the set is c-expanding.

12

Definition 7 (Formula graph). We associate with a formula F the following natu-

ral graph: the vertices represent the variables and two vertices share an edge if there

is a clause in F which contains their variables. We call this graph the formula

graph of F (in fact it is a multi-graph).

3 The Algorithms

Similar to the approaches in [3], [16], our algorithms proceed in three main steps:

finding an approximate assignment, an ‘Unassignment’ phase and completing the

partial assignment to one that satisfies all clauses. For each step we have several

different procedures possible.

3.1 Approximation

Majority Vote Given a 3CNF formula F , for every variable x compute the

Majority Vote for it, that is, count both the number of positive and negative

occurrences of x in the formula. If the first counter is larger than the second one

assign True to x. Otherwise assign False.

Reduction to MAX2SAT Given a 3CNF formula F , reduce it toMAX2SAT

as follows:

1. Convert F to a 2CNF formula by transforming each clause, say, (x∨y∨ ∼ z),

to (x ∨ y) ∧ (x∨ ∼ z) ∧ (y∨ ∼ z);

2. Apply on the 2CNF formula an approximation algorithm for MAX2SAT

known to have the following guarantee: if the input formula is (1 − ε)-

satisfiable then the assignment output by the algorithm will satisfy at least

a 1 − O(
√

ε) fraction of all clauses. Then take the assignment returned by

the algorithm applied. For example, the algorithm that was suggested by

Charikar, Makarychev and Makarychev in 2009 has such guarantee ([9]).

13

3.2 Unassignment

0-Clause Unassignment Let ψ be the approximate assignment from the pre-

vious step.

While there are clauses unsatisfied by ψ,

1. Form a partial assignment ψ′ from ψ by unassigning all variables that appear

in such clauses.

2. ψ ← ψ′.

Consider the final partial assignment (after the last iteration), denote it by σ.

Then we notice there are only two types of clauses w.r.t σ: ‘satisfied’ clauses (in

which at least one of the variables is assigned) and ‘unassigned’ clauses - clauses

whose variables are all unassigned in σ.

Small-Support Unassignment Let again ψ be the approximate assignment

from the previous step.

1. Form a partial assignment ψ′ from ψ by unassigning all variables which

support less than
d1

2
clauses w.r.t ψ.

2. While there are variables which support less than
d1

3
fully assigned clauses

w.r.t ψ′,

(a) Form a partial assignment ψ′′ from ψ′ by unassigning all such variables.

(b) ψ′ ← ψ′′.

3.3 Completing the partial assignment

Matching Let σ be the final partial assignment of the ‘0-Clause Unassignment’

phase and consider the set of ‘unassigned’ clauses w.r.t σ. Construct a bipartite

graph for this set of clauses, as follows: on the left hand side we will have one vertex

for each variable and on the right hand side one vertex for each clause. A left hand

side vertex and a right hand side vertex share an edge only if the corresponding

14

variable appears in the corresponding clause. Find a maximum matching in the

graph. If every right hand side vertex is matched in this matching, assign each

variable according to the demand of the clause matched to it. Otherwise, fail.

Note that a maximum matching in a bipartite graph may be found efficiently.

Exhaustive Search Let σ be the final partial assignment of the ’Small-Support

Unassignment’ phase. First simplify F as follows: set all variables assigned in σ

according to their assignment, remove all satisfied clauses and remove the assigned

variables from the remaining clauses. If this results in an empty clause, fail.

Otherwise, consider the simplified formula yet to be handled. Notice it has three

types of clauses: clauses with 1, 2 or 3 literals. Next perform a Unit Propagation,

that is, apply iteratively the following: 1. If there is a clause with a single literal,

set its variable as required by the polarity. 2. Simplify the formula as previously.

3. If this results in an empty clause, fail. At the end of this procedure we are

left only with clauses of length 2 or 3. Consider the formula graph induced by the

formula at hand. If it contains a connected component of size larger than log n,

fail. Otherwise look for a satisfying assignment by performing an exhaustive search

over the variables in each connected component of this graph separately. If no

assignment satisfies the formula, fail. Otherwise return the satisfying assignment.

3.4 The algorithms

The three algorithms proceed as follows:

Alg1

1. Majority Vote

2. 0-Clause Unassignment

3. Matching

Alg2

1. Reduction to MAX2SAT

15

2. 0-Clause Unassignment

3. Matching

Alg3

1. Majority Vote

2. Small-Support Unassignment

3. Exhaustive Search

3.5 Algorithms Overview

Our work addresses two different 3SAT distribution families: in one, the absolute

number of 1-clauses is small (p1 ≤ O(d log d)−1n−2), while in the other this number

is small in relative terms (p1 = d1n
−2 for d1 ≤ d2/2). For the first distribution, we

consider both a random and a semi-random model versions.

For the random model (in both distribution families), our algorithms begin by

applying the democratic procedure which counts for each variable both the number

of clauses in which it appears as a positive literal and those in which it appears

negatively (it treats each such occurrence as a ‘vote’) and makes its decision based

on the majority preference. A delicate choice of the probabilities to include each

i-clause in the formula might fool the Majority Vote. That is the reason why

Flaxman’s algorithm begins with spectral steps instead. In our case, however, the

fraction of 1-clauses is small enough for this heuristic to be applicable.

In the semi-random model an adversary chooses the polarities and so she can

tilt the statistics of a large linear set of variables, causing their Majority Vote

to be uninformative. We overcome this obstacle by exploiting the small number

of 1-clauses in a different manner; we observe that the formula reduced to its

2- and 3-clauses is in fact a satisfiable 2SAT instance, and hence a MAX2SAT

approximation algorithm may be applied on the entire formula. In such case the

initial number of 1-clauses should be somewhat smaller than in the random model.

An interesting feature of the model version in which the fraction of 1-clauses

is small in absolute terms is that all 1-clauses may be replaced by 0-clauses. In

16

such case the planted assignment itself does not satisfy the formula, but our proofs

show that a satisfying assignment exists and moreover can be found in polynomial

time.

For a clause density which does not depend on n (as we consider), the Majority

Vote is not likely to satisfy the formula and therefore a correction is required;

indeed in our algorithms it is followed by an unassignment procedure. For the range

in which the number of 1-clauses is small in absolute terms (p1 ≤ O(d log d)−1n−2),

we consider a very natural iterative process which we call ‘0-Clause Unassignment’:

it begins by unassigning all variables that appear in clauses unsatisfied by the

Majority Vote and does it iteratively until all clauses are satisfied by the obtained

partial assignment. For a sufficiently small number of initial 1-clauses, the number

of clauses whose variables would be unassigned during such process is small. This

ensures, for an instance which was initially generated in a random manner, that

the residual formula possesses a particular enpension property, which guarantees

the existence of a clause to variable matching (by Hall’s theorem). In such case we

are able to complete the assignment by assigning each variable according to the

preference of the clause matched to it.

When the number of 1-clauses is small only in relative terms (d1 ≤ d2/2),

however, the unassignment procedure described above does not have to result in a

small number of unassigned clauses and therefore a different kind of unassignment

is required. For such case we consider another natural procedure, inspired by [16],

which we call ‘Small-Support Unassignment’: at every iteration all variables that

do not support enough fully assigned clauses are unassigned. This procedure is

based on 1-clauses and as such it has the following useful property: every variable

which is assigned by the Majority Vote differently than by the planted assignment

and has also ‘survived’ the unassignment must support many clauses, each of

which contains another variable on which the two assignments disagree. Then the

subgraph induced by such variables would have more edges than expected from

a similar-sized subgraph in a random formula. Indeed it is this property that

guarantees no variables on which the Majority Vote disagrees with the planted

assignment ‘survive’ the unassignment phase.

To complete the assignment we consider the residual formula graph and perform

a very simple procedure: exhaustive search over all connected components of this

17

graph. When the number of unassigned variables at the end of the previous step

is small (as we are able to show), this graph does not contain any connected

component larger than log n whp. Since the unassignment procedure is based on

1-clauses, whose number depends on d1, whereas the connected components are

induced by 2- and 3-clauses as well (whose number depends on d2), here we need

an additional assumption restricting the number of 2- and 3-clauses as a function

of the number of 1-clauses: d2 ≤ 2O(d1).

It is not clear to us how this assumption can be removed. Increasing the number

of 2- and 3-clauses will improve the Majority Vote further, but might also result

in larger than log n-sized components in the residual formula graph. In such case

a different procedure than an exhaustive search may be needed for completing the

assignment.

4 Correctness

4.1 Approximation

Lemma 4.1. Let F be a planted random 3SAT formula generated according to the

random model with p1 =
d1

n2
, p2 + p3 =

d2

n2
, where the actual parameters are as in

Theorem 1 or 3. Then whp over the choice of F the Majority Vote disagrees with

the planted assignment on at most 2−Ω(d2)n variables.

Proof. Take any variable x. First we show that the Majority Vote maj and the

planted assignment φ disagree on its assignment with probability 2−Ω(d2). Assume

φ(x) = True and fix two more variables y and z. We are interested in the number

of clauses consisting of the three variables x, y and z, where x appears as a positive

literal (x) and in those where it appears negatively (∼ x). In total we have four

such clauses with positive occurrences of x: one 1-clause, two 2-clauses and one

3-clause, and three clauses with negative occurrences: two 1-clauses and one 2-

clause. Let px be a random variable counting the actual number of clauses in F

where x appears positively and similarly nx for negative occurrences. Then E[px] =

(p1 +2p2 +p3)n
2 and E[nx] = (2p1 +p2)n

2. The Majority Vote disagrees with φ on

the assignment of x when px ≤ nx. Since E[px]−E[nx] = (p2+p3−p1)n
2 = d2−d1 ≥

d2/2, where the last inequality is due to the assumed parameters in Theorem

18

1 or 3, and both px and nx are binomial random variables, we have Pr[px ≤

(E[px] + E[nx])/2] ≤ 2−Ω(d2) and similarly Pr[nx ≥ (E[px] + E[nx])/2] ≤ 2−Ω(d2).

We conclude that Pr[px ≤ nx] ≤ 2−Ω(d2). Next from linearity of expectation, the

expected number of variables on which maj and φ disagree is 2−Ω(d2)n and by

Markov inequality this happens with probability 1− 2−Ω(d2).

A stronger concentration result (with probability that depends only on n) may

be obtained by looking at the process of clauses selection as a martingale with

bounded difference and applying Azuma’s inequality; consider the process in which

m clauses are selected independently at random. Let Mi denote the number of

variables on which maj and φ disagree up to the selection of the i-th clause, for

i ∈ [1,m] (then Mm is the total number of variables on which maj and φ disagree).

Since each new selected clause can effect the Majority Vote of at most 3 variables,

it holds that |Mi−Mi+1| ≤ 3 for all i. In such case Azuma’s inequality guarantees

that Pr[|Mm − E[Mm]| ≥ t] ≤ 2exp

(

−
t2

18m

)

. Plugging in t = E[Mm] we obtain

that with probability 1− e
− Ω(n)

2Ω(d2) , Mm is indeed 2−Ω(d2)n as expected.

Lemma 4.2. Let F be a planted random 3SAT instance as in Theorem 1. Then

whp over the choice of F the number 0- and 1-clauses w.r.t the Majority Vote is

at most
n

O(d log d)
(and the rest are 2- or 3-clauses).

Proof. In the following analysis we consider the model in which m = dn clauses

are picked uniformly at random.

The 1-clauses of F (w.r.t the planted assignment φ) may serve as 0- or 1-clauses

w.r.t the Majority Vote maj as well, and their number is
n

O(d log d)
. Apart from

these clauses, any 2- or 3-clause w.r.t φ that maj and φ disagree on one or more

of its variables might also contribute to the count of 1- and 0-clauses w.r.t maj.

Hence we are interested in bounding the number of such clauses. Look at all

variables upon which maj and φ disagree. We would condition on the event there

are 2−αdn such variables for some constant α, as guaranteed by Lemma 4.1. Let

X be a fixed set of 2−αdn variables. The average degree of X may be expressed by
1

|X|

∑
x∈X,c∈F 1{x∈c} (where the summation is over all clauses of F and variables of

X and 1{x∈c} represents the indicator variable of the event ‘x appears in the clause

19

c’).

E

[
1

|X|

∑

x∈X,c∈F

1{x∈c}

]

=
1

|X|

∑

x∈X,c∈F

Pr[x ∈ c] =
1

2−αdn
∙ 2−αdn ∙ dn ∙

3

n
= 3d.

Since the selection process of the clauses is independent, by Chernoff bound we

know that for δ > α/2 with probability 1− 2−Ω(αd2−αd)n the average degree of X is

at most (1 + δ)3d. Taking the union bound over all sets of size 2−αdn, we obtain

the probability that any such set has an average degree larger than (1 + δ)3d is

upper bounded by the following expression:

(
n

2−αdn

)

2−Ω(αd2−αd)n ≤
(en

2−αdn

)2−αdn

2−Ω(αd2−αd)n ≤ 2−2−O(d)n

We conclude that whp the number of clauses in which all disagreed variables appear

is at most O(d)2−Ω(d)n = 2−Ω(d)n.

Lemma 4.3. Let F be a planted semi-random 3SAT instance as in Theorem 2.

Then whp over the choice of F the number of 0- and 1-clauses w.r.t the approx-

imate assignment found by Alg2 in the first step (Reduction to MAX2SAT) is at

most
n

O(d log d)
(and the rest are 2- or 3-clauses).

Proof. Recall that to obtain an approximate assignment for F , Alg2 first trans-

forms it to a 2SAT form and then applies a known technique for approximating

MAX2SAT.

Take any clause, say, (x ∨ y∨ ∼ z), and assume it is satisfied by the planted

assignment as a 2- or 3-clause. Then for any two literals of this clause, say, x and

y, the planted assignment would also satisfy their disjunction (x ∨ y), and hence

it must satisfy the following 2SAT form as well: (x ∨ y) ∧ (x∨ ∼ z) ∧ (y∨ ∼ z).

Thus if we transform each clause to a 2SAT form in such manner, we may

now view the entire formula as a MAX2SAT having an assignment that satisfies a

1− ε fraction of the clauses for ε =
c

d4 log2 d
(since we are guaranteed that in the

original formula only an ε fraction of the clauses are 0- or 1-clauses w.r.t φ, and the

rest are 2- or 3-clauses). The approximation algorithm for MAX2SAT used in the

‘Reduction to MAX2SAT’ phase of Alg2 satisfies a 1−O(
√

ε) fraction of all clauses

20

([9]). In our case applying such algorithm would result in an assignment w.r.t

which the number of 0- and 1-clauses is at most O(
√

ε)m = O(
√

d−4 log−2 d)dn =
n

O(d log d)
.

4.2 Some technical lemmas

Lemma 4.4. There exists a constant c such that for every sufficiently large d the

following holds: let F be a 3SAT formula with dn clauses and assume the variables

of each clause were chosen independently at random. Then whp over the choice of

F every subset of i clauses for i ≤
cn

d
contains at least i distinct variables.

Proof. We would like to determine the largest possible m for which whp over the

choice of F every set of i clauses for i ≤ m contains at least i distinct variables.

We would bound the complement by considering an event with even greater prob-

ability, that is, the existence of a set of such size which contains at most i distinct

variables. Formally we ask when does the following expression converge to 0 as n

tends to ∞:

Sn =
m∑

i=4

(
dn

i

)(
3i

i

)(
i

n

)2i

For every i we choose the i clauses out of the possible dn, fix i variable positions

(these are the distinct candidates) and require variables in all other positions are

chosen out of these candidates. We start the summation from 4 since every set of

1, 2 or 3 clauses contains at least 3 distinct variables (no repeated variables within

a clause).

Note that here we assume the simpler to analyse model, in which for every

clause its variables are chosen independently one of another (this process will

result whp in at most O(d) invalid clauses with two identical variables each, which

would be excluded from the formula).

We upper bound this expression using
(

n
k

)
≤ (en

k
)k to obtain:

Sn ≤
m∑

i=4

ai =
m∑

i=4

(
edn

i

)i(
3ei

i

)i(
i

n

)2i

=
m∑

i=4

(3e2d)i

(
i

n

)i

21

We notice that

ai+1

ai

=

(3e2d)
i+1

(
i + 1

n

)i+1

(3e2d)i

(
i

n

)i = 3e2d

(

1 +
1

i

)i(
i + 1

n

)

≤ 3e2d ∙ e1

(
i + 1

n

)

.

Taking m =
n

O(d)
with an appropriately chosen leading constant in O(d) (6e3

should be enough), we guarantee that
ai+1

ai

≤ q for some q < 1.

Hence this sum may be bounded by an infinite geometric one, as follows:

Sn ≤
a4

1− q
=

(3e2d)4(4
n
)4

1− q
=

(12e2d)4

1− q

1

n4
= O

(
1

poly(n)

)

= o(1).

We conclude that every subset of i clauses for i ≤
n

O(d)
contains at least i

distinct variables whp.

Lemma 4.5. There exists a constant c > 0 (c = 12 suffices) for which the following

holds: let F be a planted random 3SAT instance as in Theorem 3 and consider

the formula graph associated with F . Then whp over the choice of F every vertex

induced subgraph of size as small as
n

O(d2)
has an average degree of at most c.

Proof. Consider a set of variables S which induces a subgraph with average degree

of at least c = 6c′, then this subgraph must contain at least 3c′|S| edges and

hence there are k clauses containing at least two variables from S each, for k ∈

[c′|S|, 3c′|S|] (each clause corresponds to either 1 or 3 edges of the graph).

The total number of clauses containing at least two variables from S which are

also satisfied by the planted assignment is l = 7n
(|S|

2

)
, so for every k the probability

at least k such clauses are actually included in F is at most
(

l
k

)
(max{p1, p2, p3})k ≤

(
l
k

)
(d2n

−2)k. We take the union bound over all possible values of k and over all

sets S of size up to O(d−2
2)n to estimate the probability of any such set to exist.

Sn =

O(d−2
2)n∑

i=6c′

(
n

i

) 3c′i∑

k=c′i

bk =

O(d−2
2)n∑

i=6c′

(
n

i

) 3c′i∑

k=c′i

(
7n
(

i
2

)

k

)(
d2

n2

)k

22

3c′i∑

k=c′i

bk =
3c′i∑

k=c′i

(
7n
(

i
2

)

k

)(
d2

n2

)k

≤
3c′i∑

k=c′i

(
7eni2

2k

)k (
d2

n2

)k

≤

≤
3c′i∑

k=c′i

(
7eni2

2c′i

)k (
d2

n2

)k

=

=
3c′i∑

k=c′i

(
7ed2

2c′
i

n

)k

≤

≤
∞∑

k=c′i

(
7ed2

2c′
i

n

)k

=

=

(
7ed2

2c′
i

n

)c′i(

1−
7ed2

2c′
i

n

)−1

≤

≤

(
7ed2

2c′
i

n

)c′i(

1−
1

2

)−1

=

= 2

(
7ed2

2c′
i

n

)c′i

where the last inequality is justified by i ≤ O(d−2
2)n with appropriately chosen

constant.

Thus we obtain:

Sn ≤ 2

O(d−2
2)n∑

i=6c′

ai = 2

O(d−2
2)n∑

i=6c′

(en

i

)i
(

7ed2

2c′
i

n

)c′i

= 2

O(d−2
2)n∑

i=6c′

(

ec′+1

(
7d2

2c′

)c′ (
i

n

)c′−1
)i

23

Next we would bound this sum by an infinite geometric one.

ai+1

ai

= ec′+1

(
7d2

2c′

)c′

(
i + 1

n

)(c′−1)(i+1)

(
i

n

)(c′−1)(i)
=

= O(dc′

2)

(

1 +
1

i

)i(c′−1)(
i + 1

n

)c′−1

≤

≤ O(dc′

2)ec′−1

(
i + 1

n

)c′−1

=

= O(dc′

2)

(
i + 1

n

)c′−1

For c′ ≥ 2 (when the average degree c = 6c′ is at least 12) and by choosing the

appropriate constant in i ≤ O(d−2
2)n (a constant of 3.5−2e−4 would be sufficient)

we may bound O(dc′

2)
(

i+1
n

)c′−1
by some q < 1, implying that

Sn ≤
2a6c′

1− q
=

c′′

poly(n)
= o(1)

Lemma 4.6. There exists a constant c > 0 for which the following holds: let F be

a planted random 3SAT instance as in Theorem 3 and consider the formula graph

associated with F . Then whp over the choice of F every vertex induced subgraph

of size as small as
n

O(d1)
, where only edges corresponding to 1-clauses w.r.t the

planted assignment are considered, has an average degree of at most c.

Proof. The proof is identical to that of Lemma 4.5 but considers sets of at most

O(d−1
1)n variables and replaces max{p1, p2, p3} by p1 = d1n

−2.

4.3 Unassignment

Lemma 4.7. Let F be a 3SAT formula with dn clauses and assume the variables

of each clause were chosen independently at random. Consider an arbitrary as-

signment ψ w.r.t which the number of 0- and 1-clauses is at most
n

O(d log d)
. Then

24

whp over the choice of F a 0-Clause Unassignment which begins with ψ results in

at most
n

O(d)
unassigned clauses.

Proof. Let σ be the final partial assignment of the ‘0-Clause Unassignment’ phase

(it is partial to ψ, the initial assignment of that phase). In the following analysis

an i-clause is such w.r.t the initial assignment ψ whereas an unassigned clause or

variable is such w.r.t the final partial assignment σ.

Let minit be the number of 0- and 1-clauses, and mend be the number of unas-

signed clauses at the end of the unassignment. Our objective is to upper bound

mend by a function of minit. Let mend = m01 + m23, where m01 is the number

of unassigned clauses which are 0- or 1-clauses (w.r.t ψ) and similarly m23 is the

number of unassigned clauses which are 2- or 3-clauses (w.r.t ψ). The number of

distinct variables that appear in the unassigned clauses is at most 3m01+m23, since

each 0- or 1-clause contributes at most three distinct variables, whereas each 2- or

3-clause, in the moment it becomes unsatisfied (and as a result unassigned), must

contain at least two variables already unassigned (otherwise it could not become

unsatisfied), thus contributing at most one new variable.

We assume towards a contradiction that mend ≥ cm01 for some constant c.

For the sake of analysis, let us terminate the process at the very iteration when

mend = cm01. Also assume for simplicity all 1-clauses are unassigned, that is,

m01 = minit. Plugging in the parameters according to our assumption we obtain

that the number of distinct variables is at most 3m01+m23 = 3m01+(mend−m01) =

3m01 +(cm01−m01) = (c+2)m01; in other words, the maximal possible expansion

of the set of unassigned clauses is 1 + 2
c
. Our strategy is to show that for small

enough minit every set of size at most cminit is whp at least (1 + 2
c
)-expanding,

which would imply that mend must be in fact smaller than cminit. To be more

concrete, we are looking for the largest mend such that every set of at most mend

clauses is at least (1 + 2
c
)-expanding whp. Similarly to Lemma 4.4, we ask what is

the maximal mend for which the following sum converges to 0 when n tends to ∞:

Sn =

mend∑

i=3

(
dn

i

)(
3i

(1 + 2
c
)i

)(
(1 + 2

c
)i

n

)[3−(1+ 2
c
)]i

For every i we choose the i clauses out of the possible dn, fix (1 + 2
c
)i variable

25

positions, which serve as the distinct candidates, and require all variables in other

positions are chosen out of these candidates.

Next, we upper bound this expression using
(

n
k

)
≤ (en

k
)k to obtain:

Sn ≤
mend∑

i=3

ai =

mend∑

i=3

(
edn

i

)i(
3ei

(1 + 2
c
)i

)(1+ 2
c
)i((1 + 2

c
)i

n

)(2− 2
c
)i

=

=

mend∑

i=3

(

31+ 2
c

(

1 +
2

c

)1− 4
c

e2+ 2
c d

)i(
i

n

)(1− 2
c
)i

;

Hence,

ai+1

ai

=

(
31+ 2

c

(
1 + 2

c

)1− 4
c e2+ 2

c d
)i+1

(
i + 1

n

)(1− 2
c
)(i+1)

(
31+ 2

c

(
1 + 2

c

)1− 4
c e2+ 2

c d
)i
(

i

n

)(1− 2
c
)i

=

=

(

31+ 2
c

(

1 +
2

c

)1− 4
c

e2+ 2
c d

)(

1 +
1

i

)i(1− 2
c
)(

i + 1

n

)1− 2
c

≤

≤

(

31+ 2
c

(

1 +
2

c

)1− 4
c

e2+ 2
c d

)

e1− 2
c

(
i + 1

n

)1− 2
c

=

=

(

31+ 2
c

(

1 +
2

c

)1− 4
c

e3d

)(
i + 1

n

)1− 2
c

.

This time we need to choose mend <
n

(
31+ 2

c

(
1 + 2

c

)1− 4
c e3d

) c
c−2

to have
ai+1

ai

≤ q

26

for some q < 1, so we can bound Sn by the following infinite geometric sum:

Sn ≤
a3

1− q
=

(
31+ 2

c

(
1 + 2

c

)1− 4
c e2+ 2

c d
)3

1− q

(
3

n

)(1− 2
c
)3

=

=

(
32
(
1 + 2

c

)1− 4
c e2+ 2

c d
)3

1− q

1

n(1− 2
c
)3

=

= O

(
1

poly(n)

)

= o(1).

To complete the proof, we require that mend ≤ cminit ≤
n

O(d)
.

Considering the maximal mend possible, that is,
n

O(d
c

c−2)
, we obtain the con-

straint:
c

d
c

c−2

≤
1

d
,

or,

c ≤ d
2

c−2

which implies

(c− 2) log c ≤ 2 log d.

Taking c = O

(
log d

log log d

)

we guarantee the above constraint is met (by simple

algebraic manipulations).

We conclude that when minit ≤
n

O(d log d)
then mend ≤

n

O(d)
.

Lemma 4.8. Let F be a planted random 3SAT instance as in Theorem 3. Then

whp over the choice of F , at the end of the ‘Small-Support Unassignment’ phase

of Alg3 there are at least (1 − 2−Ω(d1))n assigned variables and the assignment of

all assigned variables agrees with the planted assignment φ.

Proof. The proof consists of two parts. First we identify a set of variables of size

(1−2−Ω(d1))n on which the planted assignment φ and the Majority Vote maj agree

and which remains assigned during the unassignment phase. Secondly we show no

variables on which φ and maj disagree ‘survive’ the unassignment phase.

27

For the sake of analysis of the first part, consider exactly the same unassignment

process as described in Alg3 in which prior to the unassignment all variables on

which φ and maj disagree are unassigned as well (denote this set by A). Clearly,

such a process can result in only fewer assigned variables than the original process,

and therefore it is enough to identify a set as described above for the new process.

Let also B be the set of variables which support less than d1/2 clauses w.r.t

maj and let C be the set of variables removed during iterations. Let S be the

set of variables which remain assigned at the end of the new defined process,

S = A∪B∪C. Lemma 4.1 guarantees that |A| ≤ 2−Ω(d2)n. Also, |B| ≤ 2−Ω(d1)n by

the following argument: it is enough to consider both variables which support less

than d1/2 clauses w.r.t φ and those which appear in some clause together with a

variable on which maj and φ disagree. Any individual variable x supports a total

number of n2 clauses and each such clauses is actually included in the formula

with probability p1 = d1/n
2, so x is expected to support exactly d1 clauses (w.r.t

φ). The number of clauses x supports is a binomial random variable and strongly

concentrated around its mean; hence x has probability 2−Ω(d1) of supporting less

than d1/2 clauses. The expected number of variables which support less than d1/2

clauses each is therefore 2−Ω(d1)n and by considering the martingale of the clause

selection process the actual number is indeed 2−Ω(d1)n whp (similarly to Lemma

4.1). In addition, as explained in Lemma 4.2, the number of clauses which contain

some variable on which maj and φ disagree is whp at most 2−Ω(d2)n. The total

number of variables that appear in such number of clauses is at most 3 ∙2−Ω(d2)n =

2−Ω(d2)n. To summarize, whp there are at most 2−Ω(d1)n + 2−Ω(d2)n ≤ 2−Ω(d1)n

variables which support less than d1/2 clauses each.

Assume towards a contradiction that at some iteration C has reached the size

of |A|+ |B| and consider the formula graph induced by the variables of A, B and C

on that iteration. By our assumption it has 2(|A|+ |B|) ≤ 2(2−Ω(d2) + 2−Ω(d1))n ≤

2−Ω(d1)n < O(d−2
1)n vertices. On the other hand, the average degree depends on

d1 since each variable supports (w.r.t maj) at least (1/2 − 1/3)d1 = d1/6 clauses

with variables from A∪B∪C. All these edges correspond to 1-clauses also w.r.t

φ, except for maybe 2−Ω(d2)n 2- and 3-clauses w.r.t φ which are 1-clauses w.r.t

maj, as mentioned above. The total contribution of these clauses is negligible

since their number is much smaller than the number of the variables involved and

28

hence we can ignore them. Therefore, the average degree is still Ω(d1) with all

edges corresponding to 1-clauses, contradicting Lemma 4.6. We conclude that

|C| ≤ |A|+ |B| ≤ 2−Ω(d1)n which implies that |S| ≥ n− 2|C| ≥ (1− 2−Ω(d1))n.

For the second part, by Lemma 4.1 whp there are at most 2−Ω(d2)n variables

on which φ and maj disagree. Consider the set O consisting of such variables that

have also survived the unassignment. Then each variable of O must support at least

d1/3 fully assigned clauses, otherwise it would have been unassigned during the

iterative process of the unassignment (the support is w.r.t σ, the final assignment

of the unassignment phase; since it is partial to maj and these clauses are fully

assigned by σ the support is w.r.t maj as well). In each such clause there is another

variable of O since it is a 1-clause w.r.t maj and the satisfying variable is assigned

differently than in φ. Consider the formula graph induced by the variables of O.

It is of size at most 2−Ω(d2)n with average degree at least d1/3, in contradiction to

Lemma 4.5.

4.4 Completing the partial assignment

Lemma 4.9. Let F be a planted random 3SAT instance as in Theorem 3. Then

whp over the choice of F , at the end of the ‘Small-Support Unassignment’ phase

of Alg3 the formula graph induced by the unassigned variables has connected com-

ponents of size at most log n.

Proof. Our objective is to estimate the probability that the formula graph induced

by the set of unassigned variables (during the unassignment phase) contains a

connected component of size log n. Towards estimating this, we start from a

fixed set T of log n variables and ask what is the probability that the following two

events occurred simultaneously: 1. T has been all unassigned by the un assignment

process. 2. The formula graph induced by T is connected, or, if we rephrase it, the

formula contains a set of clauses such that the corresponding formula graph induced

by T is connected. In fact, it is enough to consider a minimal set of such clauses I ′

(in this context we say a set of clauses is minimal if deleting any clause disconnects

the corresponding subgraph). Two types of clauses are to be considered: ‘type 1’

clauses, which contain two variables from T , and ‘type 2’ clauses, which contain

three variables from T . We think of selecting a set of clauses that would induce

29

a connected subgraph on T as the following process: we begin with a subgraph

containing the variables of T but no edges and add one clause at a time. Then

any ‘type 1’ clause can reduce the number of connected components by at most

1, whereas ‘type 2’ reduces it by at most 2 (for a minimal set we obtain exactly

1 and 2, respectively1). Let t denote the number of variables in T and ti denote

the number of ‘type i’ clauses. In the initial state of the subgraph the number of

connected components is t and in the final state this number is 1, which gives us

the following constraint: t1 + 2t2 = t − 1. First we analyse the probability of the

second event to occur for any set T of size t; denote this probability by Pt.

Pt ≤
∑

T,I ′

Pr[I ′ ⊂ F] ≤

(
n

t

) ∑

t1+2t2=t−1

(
7nt2

t1

)(
7t3

t2

)(
d2

n2

)t1+t2

where
(

n
t

)
is the number of possibilities to choose t variables out of the total

n;
(
7nt2

t1

)
is the number of possibilities to choose ‘type 1’ clauses (satisfied by the

planted assignment φ);
(
7t3

t2

)
is the number of possibilities to choose ‘type 2’ clauses

(satisfied by φ); and
(

d2

n2

)t1+t2 is the probability that all chosen clauses are actually

included in the formula. The cases t1 = 0 and t2 = 0 are simpler, thus we perform

1In fact even in a minimal set there might be ‘type 2’ clauses reducing the number of connected
components only by 1. We may think of such clauses as ‘type-1’ clauses having their third variable
in T and therefore such cases are also treated by our calculation.

30

the analysis assuming neither t1 nor t2 are 0.

Pt ≤
(en

t

)t
t−3∑

t1=1

(
7ent2

t1

)t1 (7et3

t2

)t2 (d2

n2

)t1+t2

=

=
(en

t

)t
t−3∑

t1=1

(7ed2)
t1+t2

(
t

n

)t1+2t2 (t

t1

)t1 (t

t2

)t2

≤

≤
(en

t

)t
t−3∑

t1=1

(7ed2)
t

(
t

n

)t−1(
t

t1

)t1 (t

t2

)t2

≤

≤ n(7e2d2)
t

(
t

t1

)(
t

t2

)

≤

≤ n(7e2d2)
t2t2t =

= n(28e2d2)
t.

Back to the first event: let S denote the set of variables which have survived the

unassignment, to be consistent with the notation of Lemma 4.8 (and so S denotes

the set of variables which have been unassigned). From this lemma the probability

that all variables of T have been unassigned is 2−Ω(d1)t. Let I ′ be a set of clauses

as before. In general it holds that

∑

T,I ′

Pr[(I ′ ⊂ F) ∩ (T ⊂ S)] =
∑

T,I ′

Pr[(I ′ ⊂ F)]Pr[(T ⊂ S)|(I ′ ⊂ F)]

= PtPr[(T ⊂ S)|(I ′ ⊂ F)]

If the two events were independent, it would hold that Pr[(T ⊂ S)|(I ′ ⊂ F)] ≤

Pr[(T ⊂ S)], hence the desired probability (of both events to occur) would be

at most Pt ∙ Pr[T ⊂ S] ≤ n(28e2d2)
t ∙ 2−Ω(d1)t, so for t = log n, large enough d1

and d2 ≤ 2O(d1), it could be upper-bounded by 2−Ω(log n) = o(1) which completes

the proof. However, this is not the case and our strategy would be to consider a

particular T ′ ⊂ T and a slightly modified unassignment process resulting in a set

S ′ for which the two events would indeed be independent. Also note that for any

T ′ ⊂ T it holds that Pr[(T ⊂ S)|(I ′ ⊂ F)] ≤ Pr[(T ′ ⊂ S)|(I ′ ⊂ F)], hence it

is sufficient to show that for a particular such T ′ (defined below) it is true that

Pr[(T ′ ⊂ S)|(I ′ ⊂ F)] ≤ Pr[(T ′ ⊂ S ′)].

31

Let again I ′ be a minimal set of clauses, then the number of variables of T

that appear at most 6 times in I ′ is at least t/2 (otherwise there would be at least
6t
3∙2 = t clauses in I ′ in contradiction to minimality). Denote this subset of variables

of T by T ′.

For the sake of analysis, consider an unassignment process as suggested in

Lemma 4.8 where A contains not only the variables on which the Majority Vote

maj and the planted assignment φ disagree, but also those variables on which the

two assignments agree but the bias of maj towards their assignment in φ is at most

6. In addition, the following two sets would be removed prior to the iterations as

well: 1. T\T ′ (which contains at most t/2 variables); 2. every variable not in

T which appears more than 6 times in I ′ (there are at most t/6 such variables

since I ′ has at most t clauses and every clause has at most one variable not in

T). Denote by S ′ the set of variables which have survived the modified process.

When we would like to emphasize that the survival set S ′ (or S) is defined w.r.t a

particular set of clauses I, we denote it by S ′
I (or SI). In the following analysis I

denotes the set of clauses of the formula F .

Claim 1. S ′
I ⊂ SI∪I′

Proof. First, we show that this relation holds prior to the iterations. Let x be a

variable in SI∪I′ (prior to the iterations), we will show that x is also in S ′
I . We

distinguish two cases: if x ∈ T\ T ′ or not in T but appears more than 6 times in

I ′ then it is in S ′
I by the definition of the new process; if x /∈ T\ T ′ or not in T

and appears at most 6 times in I ′ then again we have two cases: if x is unassigned

because it supports less than d1/2 clauses w.r.t I ∪ I ′ then all the more it would

support less than d1/2 clauses w.r.t I . If it is unassigned because maj and φ

disagree on its assignment, removing the clauses of I ′ in which it appears at most

6 times can result in a bias of at most 6 towards its assignment in φ and hence it

is also in S ′
F . We notice that this already implies the assertion of the claim since

the iterations are defined equally for both processes.

Next, let F = I denote the event: ‘I is the set of clauses of the formula F ’.

32

We have:

Pr[(T ′ ⊂ S ′)] =
∑

I:T ′⊂S′
I

Pr[F = I] ≥

≥
∑

I:T ′⊂SI∪I′

Pr[F = I] ≥

≥
∑

I′′:I′′∩I′=∅,T ′⊂SI′′∪I′

Pr[F = I ′′ ∪ I ′] =

= Pr[(T ′ ⊂ S)|(I ′ ⊂ F)]

where the first inequality is due to the claim.

It remains to bound the probability Pr[(T ′ ⊂ S ′)]. Indeed, w.r.t every choice

of S ′ (which depends on T\T ′ and T , i.e., it depends only on T ′) a very similar

argument to that of Lemma 4.8 guarantees that S ′ is of size at least 2−Ω(d1)n, whp

(we notice that prior to the iterations only additional O(log n) variables could

have been unassigned). Since this choice does not depend on T ′, we conclude that

Pr[(T ′ ⊂ S ′)] ≤ 2−Ω(d1 log n), which completes the proof.

4.5 Proofs of the theorems

Proof of Theorem 1. Lemma 4.2 guarantees that during its approximation phase,

Alg1 will find an assignment w.r.t which the number of 0- and 1-clauses in F

is at most
n

O(d log d)
(and so the rest are 2- are 3-clauses). Lemma 4.7 implies

that in such case the number of unassigned clauses at the end of the ’0-Clause

Unassignment’ phase of Alg1 is whp at most
n

O(d)
. Next, Lemma 4.4 guarantees

that whp every subset of this set of clauses is 1-expanding. Now by Hall’s condition

there is a matching of clauses to variables, which means that Alg1 would find a

matching in the bipartite graph constructed during its ‘Matching’ phase (without

spoiling the rest of the clauses which are already satisfied by other variables).

Proof of Theorem 2. Similar to the proof of Theorem 1, substituting Lemma 4.2

by Lemma 4.3.

Proof of Theorem 3. The Majority Vote computed by Alg3 during its approxima-

33

tion phase agrees with the planted assignment on at least (1− 2−Ω(d2))n variables

whp, as promised by Lemma 4.1. When the ‘Small-Support Unassignment’ phase

begins with such an assignment, Lemma 4.8 implies that whp the partial assign-

ment obtained at the end of that phase agrees with the planted assignment and

that at least (1− 2−Ω(d1))n variables remain assigned. In such case we are guaran-

teed the residual formula (which is induced by the unassigned variables) is indeed

satisfiable. Then by Lemma 4.9 the connected components of this formula’s graph

are whp of size at most log n, which guarantees that Alg3 would complete the

assignment successfully in polynomial time during its exhaustive search phase.

References

[1] A. Agarwal, M. Charikar, K. Makarychev, Y. Makarychev. O(
√

logn) approx-

imation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut

problems. STOC, 2005.

[2] N. Alon and U. Feige. On the power of two, three and four probes. SODA,

346-354, 2009.

[3] N. Alon and N. Kahale. A spectral techniques for coloring random 3-colorable

graphs. SIAM Journal of computation 26(6), 1733-1748, 1997.

[4] N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a

random graph, Random Structures and Algorithms 13, 457-466, 1998.

[5] E. Ben-Sasson, Y. Bilu and D. Gutfreund. Finding a Randomly Planted As-

signment in a Random 3-CNF. Manuscript, 2002.

[6] A. Blum, and J. Spencer. Coloring random and semirandom k-colorable

graphs. Journal of Algorithms 19, 204-234, 1995.

[7] R. B. Boppana, Eigenvalues and graph bisection: an average case analysis.

FOCS, 280-285, 1987.

34

[8] A. Braunstein, M. Mezard, and R. Zecchina, Survey propagation: an algo-

rithm for satisfiability. Random Structures Algorithms 27(2), 201-226, 2005.

[9] M. Charikar, K. Makarychev, Y. Makarychev. Near-optimal algorithms for

maximum constraint satisfaction problems. SODA, 2007.

[10] A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik. Why almost all satisfiable

k-CNF formulas are easy. In proc. 13th International Conference on Analysis

of Algorithms, DMTCS proc., 89-102, 2007.

[11] S. Cook. The complexity of theorem-proving procedures. FOCS, 151-158,

1971.

[12] J.M. Crawford and L.D. Auton. Experimental Results on the Crossover Point

in Random 3SAT. Artificial Intelligence, 81, 1996.

[13] U. Feige, and J. Kilian. Heuristics for Semirandom Graph Problems. Journal

of Computer and System Sciences 63, 639-671, 2001.

[14] U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique

in a semi random graph. Random Structures and Algorithms 16(2), 195-208,

2000.

[15] U. Feige and D. Vilenchik. A Local Search Algorithm for 3SAT. Technical

Report MCS 04-07, Computer Science and Applied Mathematics, The Weiz-

mann Institute of Science, 2004.

[16] A. Flaxman. A spectral technique for random satisfiable 3CNF formulas.

SODA, 357-363, 2003.

[17] A. Flaxman. Algorithms for Random 3-SAT, extended version of chapter in

Encyclopedia of Algorithms, 742-744, 2008.

[18] E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem.

Journal of American Mathematical Society 12, 1017-1054, 1999.

[19] A. C. Kaporis, L. M. Kirousis. E. G. Lalas, The probabilistic analysis of a

greedy satisfiability algorithm. Random Structures and Algorithms, Wiley.

35

[20] A. C. Kaporis, L. M. Kirousis, Y. C. Stamatiou, M. Vamvakari, and Michele

Zito. Coupon collectors, q-binomial coefficients and the unsatisfiability thresh-

old. ICTCS, 328-338, 2001.

[21] E. Koutsoupias, and C. H. Papadimitriou. On the greedy algorithm for satis-

fiability. Inform. Process. Lett. 43 (1), 53-55, 1992.

[22] L. A. Levin. Universal enumeration problems. Problemy Peredachi Informacii

9(3), 115-116, 1973.

[23] M. Molloy, Cores in random hypergraphs and Boolean formulas. Random

Structures Algorithms 27(1), 124-135, 2005.

[24] D. Vilenchik. Finding a satisfying assignment for semi-random satisfiable

3CNF formulas. Master Thesis, The Weizmann Institute of Science, 2004.

36

	Introduction
	The Model
	Our Result
	Related Work and Motivation

	Definitions
	The Algorithms
	Approximation
	Unassignment
	Completing the partial assignment
	The algorithms
	Algorithms Overview

	Correctness
	Approximation
	Some technical lemmas
	Unassignment
	Completing the partial assignment
	Proofs of the theorems

