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Abstract
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problem, achieving a constant approximation factor strictly smaller than 2, thus improving
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1 Introduction

Background: The minimum sum vertex cover (MSVC) problem is a special case of the
minimum sum set cover problem. It is related both to the classical minimum vertex cover
and to linear arrangement problems. The input to the problem is a graph, and the output is
a linear ordering of the vertices of the graph. The time a vertex is covered is defined as its
ordinal number in the ordering of the vertices, and the time an edge is covered is defined as
the minimal time in which one of its vertices (a.k.a. endpoints) is covered. The objective is to
order the vertices is such a way that the average time an edge is covered is minimal.

Linear arrangement problems on graphs often come up as heuristics for speeding up matrix
computations. Indeed, the MSVC problem came up in [2, Section 4] in the context of designing
efficient algorithms for solving semidefinite programs. This was the motivation for the study
of the problem.

Related work: In [2], the MSVC problem is applied as a tool for speeding up solvers of
semidefinite programs. It is approximated by a greedy algorithm, picking the vertices in
descending order according to their degree. A similar greedy algorithm is analyzed in [1] in
the context of min sum coloring, and is shown to approximate it within a factor of 4, given
the independent sets of the conflict graph.

A set of related linear arrangement problems is presented in [4], and an analysis of different
approaches for solving them is given. In particular, min sum set cover (MSSC) is presented
as a generalization of MSVC. It is shown that the analysis of [1] for the greedy algorithm
can be applied to MSSC and MSVC as well, yielding an approximation ratio of 4 on both.
Furthermore, it is shown that for every ε > 0, it is NP-hard to approximate MSSC within a
ratio of 4−ε. For MSVC, a linear-programming based algorithm using a randomized rounding
technique is presented, achieving an approximation ratio bounded by 2. It is shown that there
is some (unknown) constant such that it is NP-hard to approximate the problem within a
better factor. For d-regular graphs it is shown that MSVC can be approximated within a ratio
of ρ for some ρ < 4/3, and every d.

Although MSSC and MSVC are closely related to set cover and vertex cover problems (such
as min set cover and max k-cover, for which tight approximation bounds are known, and more),
there is a major difference between them. MSVC (and hence MSSC) is not “linear”, in the
sense that given an instance of MSVC which is composed of two disjoint instances, the optimal
solution is not necessarily a combination of the optimal solutions to each of the sub-instances.
An example (given in [4]) is the following. Let G1 be a graph on 9 vertices u, v1, w1, . . . , v4, w4,
in which vertex u is connected by a star to vertices v1, . . . , v4, and for every 1 ≤ i ≤ 4, vi is
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connected to wi. The optimal solution to MSVC first uses u to cover 4 edges, and then covers
the remaining edges one by one. However, if G is the disjoint union of G1 and G2, where G2

is a graph consisting of three isolated edges, then the optimal solution for MSVC becomes to
first take v1, . . . v4, and then cover the remaining edges of G2 one by one. As noted in [4], this
difference makes it more difficult to design and analyze algorithms for MSVC.

Our contributions: We revisit the linear programming relaxation that was previously used
in [4] for MSVC. We show how to modify the rounding technique that was presented in [4] so as
to obtain an approximation ratio strictly better than 2. Specifically, we show an approximation
ratio of 1.99995, though our analysis is not tight and a better approximation bound is probably
achievable.

Our results (as well as the factor 2 approximation previously given in [4]) extend to a
weighted version of MSVC, in which edges have nonnegative weights and the goal is to find a
linear order minimizing the weighted average time by which an edge is covered. Details about
this extension are omitted from this manuscript since they are fairly standard: as is often the
case, the approximation ratio achieved by linear programming relaxations is not sensitive to
nonnegative weights in the objective function.

The remainder of the paper is structured as follows. In Section 2 we review the algorithm
described in [4] and its analysis. This presentation is used as a basis for the definition of
a modified rounding technique, described in Section 3. The modified rounding technique is
analyzed in Section 4, and it is shown that for every instance, either the original rounding
technique or the modified one yield a constant approximation ratio strictly smaller than 2.
Section 5 concludes with some suggestions for further study.

2 Ratio 2 approximation for MSVC

This section reviews the algorithm of [4], named RR herein. This algorithm is later used as a
subprocedure in our algorithm. We also detail the analysis of algorithm RR, since the analysis
of the new algorithm builds upon it.

2.1 The linear program

Given a graph G on n vertices, indexed as {1, . . . , n}, consider the following linear program
Π. The program makes use of variables xit (for 1 ≤ i ≤ n and t ≥ 1) and yijt (for (i, j) an
edge in G, to be denoted as (i, j) ∈ G, and for t ≥ 1).
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Program Π: Minimize Π(G) =
∑

(i,j)∈G

∑
t yijt subject to

(C1)
∑

i xit ≤ 1, for every t ≥ 1.

(C2) yijt ≥ 1−∑
t′<t(xit′ + xjt′), for every (i, j) ∈ G and t ≥ 1.

(C3) 0 ≤ xit ≤ 1, for all xit.

(C4) 0 ≤ yijt ≤ 1, for all yijt.

By defining Xkt =
∑

t′<t

xkt, constraint (C2) can be rewritten as

(C2A) yijt ≥ 1− (Xit + Xjt).

We convert Π to an integer program Π′ (with variables x′ij and y′ijt respectively) by con-
verting constraints (C3) and (C4) to integrality constraints, i.e., x′it ∈ {0, 1} and y′ijt ∈ {0, 1}.
Note that in Π′ the variable x′it is an indicator variable indicating whether vertex i is chosen at
step t, and y′ijt is an indicator variable indicating whether edge (i, j) is still uncovered before
step t. Therefore, Π′ is a representation of MSVC as an integer program, implying that an
optimal solution to Π′ is a solution to MSVC.

The linear program Π is solvable in polynomial time. The resulting fractional solution
provides a lower bound for the optimal solution for MSVC.

Let us record some basic properties of Π for later use.

Lemma 2.1 Let 〈x, y〉 be an optimal solution for Π on a graph G. Then for every (i, j) ∈ G

and t ≥ 1 the following holds.

1. yijt = max(1− (Xit + Xjt), 0).

2. If yij(t+1) > 0, then yijt = yij(t+1) + xit + xjt.

2.2 The randomized rounding algorithm RR

Given a fractional solution 〈x, y〉 to the linear program, the following randomized rounding
technique RR is applied to obtain a rounded solution. Note that in the fractional solution, Xit

represents the cumulative contribution of node i to the coverage of the edge (i, j).

For each vertex i, let ti be the largest value of t for which Xit < 1/2. (If this holds for
every t, set ti = ∞.) Introduce new variables zit, defined as follows:

zit =





2xit , for t < ti,

1−∑
t′<ti

zit′ , for t = ti,

0 , for t > ti.
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Note that always

zit ≤ 2xit. (1)

Also note that zit ≥ 0 for every i and t, and that
∑

t zit = 1. Hence, for a fixed i, the vector
(zit)t≥1 can be viewed as a probability vector.

Randomly select the timestep t at which vertex i is chosen by using the probability vector
zi (i.e., taking zit as the probability that vertex i is chosen at timestep t). For the chosen t,
set x̌it = 1 and for all other timesteps t′, set x̌it′ = 0. Note that the resulting rounded solution
x̌it is a cover since in an optimal solution to the linear program Π every edge (i, j) is covered
at some point t in time (i.e., yijt = 0), implying by constraint (C2A) that either Xit ≥ 1/2 or
Xjt ≥ 1/2 (or both).

Also note that the rounded solution might violate the first constraint, (C1), since the
timestep selection is done independently for each vertex, implying that more than one vertex
can be chosen at a given timestep. Hereafter, we refer to this intermediate rounded solution as
the Timestep phase, and the term timestep will always be used to denote a partition of time
into distinct steps without restriction on the number of vertices chosen at each such step.

For every timestep t, denote the number of vertices chosen at timestep t by st =
∑

i x̌it.
Replace timestep t by st timeslots and assign the vertices originally chosen at timestep t to
these new timeslots, one vertex per timeslot, at a random order. The variables x̂it will be used
to denote the new vertex selection sequence. The resulting solution x̂it again satisfies the first
constraint (C1). Hereafter, the term timeslots will always be used to denote a sub-partition
of the timesteps into slots, at each of which exactly one vertex (out of the vertices originally
chosen at the corresponding timestep) is chosen.

Using the rounded solution x̂it for the selection of vertices, assign to ŷijt the optimal values
possible. Output the solution 〈x̂, ŷ〉, namely, the values {x̂it} and {ŷijt}.

2.3 Analysis of the integrality gap

For a given input graph G, denote by RR(G) the expected value of the solution selected by
procedure RR on G. It obviously holds that Π(G) ≤ Π′(G) ≤ RR(G). Let

Wij =
∑

0≤t<∞
yijt (2)

be the cost of the edge (i, j) when applying Π to G. Note that Π(G) =
∑

(i,j)∈G

Wij .

Let Ŵij denote the expectation of the timestep at which the edge (i, j) is covered when
applying RR to G. Denote by pijt the probability that the edge (i, j) is not covered by algorithm
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RR prior to timestep t. The random variable wijt (defined for every edge (i, j) ∈ G and every
timestep t) denotes the number of vertex selections in timestep t prior to the cover of (i, j).
In particular, if neither i nor j gets selected during timestep t, then wijt is the total number
of timeslots timestep t is split into. Note that wijt is defined conditioned on (i, j) not being
covered prior to timestep t. Then it holds that

Ŵij =
∑

0≤t<∞
pijtIE(wijt) and RR(G) =

∑

(i,j)∈G

Ŵij . (3)

Before beginning the analysis, we state the following helpful lemma.

Lemma 2.2 Let 0 ≤ a, b ≤ 1/2. Then a + b ≥ 4ab.

We now analyze the approximation ratio of RR.

Lemma 2.3 If t ≤ min(ti, tj) then

pijt = 1− 2(Xit + Xjt) + 4XitXjt

= yijt − (Xit + Xjt) + 4XitXjt.

Proof First note that the probability pijt satisfies

pijt =

(
1−

∑

t′<t

zit′

)(
1−

∑

t′<t

zjt′

)
.

As t ≤ min(ti, tj), by the definition of zit we can substitute 2xit for zit and the same for j, and
get

pijt =

(
1−

∑

t′<t

2xit′

)(
1−

∑

t′<t

2xjt′

)
= (1− 2Xit)(1− 2Xjt) = 1− 2(Xit + Xjt) + 4XitXjt,

and by Lemma 2.1 (1)

pijt = yijt − (Xit + Xjt) + 4XitXjt.

We use this lemma to get the following.

Lemma 2.4 pijt ≤ yijt.

Proof If t > ti, then Xit ≥ 1/2 and hence pijt = 0 ≤ yijt (and similarly for t > tj).
Otherwise, t ≤ min(ti, tj). In this case, by Lemma 2.3,

pijt = yijt − (Xit + Xjt) + 4XitXjt.
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As Xit ≤ 1/2 and Xjt ≤ 1/2 we get (using Lemma 2.2)

Xit + Xjt ≥ 4XitXjt

and therefore pijt ≤ yijt.

Lemma 2.5 IE(wijt) ≤ 2.

Proof Recall that the definition of wijt is conditioned on the edge (i, j) not being covered
prior to timestep t. Due to this condition it cannot be assumed that the total expected number
of vertices selected at timestep t is 2. Without the conditioning, and using the inequality in
Equation (1) as well as constraint (C1), it holds that the expected value is simply

∑

k

zkt ≤ 2
∑

k

xkt ≤ 2.

Let rt (r standing for “rest”) denote the number of vertices chosen at timestep t excluding i

and j. The expectation of rt can be calculated (using Equation (1) and constraint (C1) again)
as

IE(rt) =
∑

k 6=i,j

zkt ≤ 2
∑

k 6=i,j

xkt ≤ 2.

The proof analyzes three different cases.

1. In case neither xit nor xjt are rounded to 1 in timestep t, IE(wijt) = IE(rt) ≤ 2.

2. In case either xit or xjt are rounded to 1 in timestep t, but not both, the expected number
of timeslots within timestep t is 1 + IE(rt) ≤ 3. Therefore the expected waiting time
IE(wijt) is the expected number of vertices preceding the selected vertex in the sequence
(of size at most 3), plus one. Since the location is random, the expected waiting time is
IE(wijt) = IE(rt)/2 + 1 ≤ 2.

3. In case both xit and xjt are rounded to 1 in timestep t, the expected number of timeslots
within timestep t is 2 + IE(rt) ≤ 4. Therefore the expected waiting time IE(wijt) is the
expected number of vertices preceding the selection of the first out of i or j in the sequence
(of size 4), plus one. This is calculated as IE(wijt) = IE(rt)/3 + 1 ≤ 5/3 < 2.

To conclude, in all of these cases IE(wijt) ≤ 2, proving the lemma.

Corollary 2.6 For every graph G and for every edge (i, j), it holds that

Ŵij ≤ 2Wij , implying that RR(G) ≤ 2Π(G).
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Proof Using Lemmas 2.4 and 2.5 we get that pijt · IE(wijt) ≤ 2yijt. Therefore, for every
edge (i, j),

Ŵij =
∑

0≤t<∞
pijtIE(wijt) ≤ 2

∑

0≤t<∞
yijt = 2Wij .

Summing over all edges (i, j) ∈ G yields

RR(G) =
∑

(i,j)∈G

Ŵij ≤ 2
∑

(i,j)∈G

Wij = 2Π(G).

Note that as the fractional solution lower bounds the optimal integral one, this yields a
bound over the approximation ratio for MSVC.

RR can be made deterministic using the method of conditional expectation, thus achieving
an approximation ratio as good as the expected one in polynomial time. This is done iteratively
in the following way. Mark all vertices as “undecided”. Pick an undecided vertex, k. For every
timestep t for which zit > 0, check the expectation of the total value of Π(G) conditioned on
k being selected at t, and all the other “decided” vertices selected according to their assigned
selection timesteps. As the unconditional expectation (i.e., when k’s selection timestep is
undecided) is the sum of these conditional expectations with weights according to zkt, at least
one of the conditional expectation terms must be smaller than or equal to the unconditional
expectation. Denote the timestep for which this holds by tk. Assign the selection timestep of
k to be tk, and mark k as “decided”. Repeat until all vertices are “decided”.

The split of the timesteps to timeslots can be derandomized in a similar manner.

3 A modified rounding algorithm MRR

3.1 The reorganization step

We modify RR as follows. After the timestep phase, perform the following reorganization step:

• For every timestep t, and for every vertex i selected at that timestep, change the vertex
timestep selection to t− ε1 with probability p, or to t + ε2 with probability 1− p (where
p, ε1 and ε2 are parameters depending on t).

We refer to the modified algorithm as MRR.

To illustrate the potential gains achievable by applying the reorganization step over RR,
let us furnish the following simplified analysis of wijt. Recall that (assuming neither i nor j

are selected prior to timestep t) there are three possibilities:
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• Neither i nor j are selected in timestep t.

• Exactly one (either i or j) is selected in timestep t.

• Both i and j are selected during timestep t.

For the sake of the simplified analysis, we fix p = 1/2 and ε1 = ε2 = 1, and analyze the effect
of the reorganization step in each of the three possibilities. We ignore (for the time being)
effects caused due to boundary conditions (in particular, for t = 1 the reorganization step is
not yet defined).

In case neither i nor j are selected during timestep t, IE(wijt) is unchanged, yielding
IE(wijt) = IE(rt) = 2. This holds since all the vertices rounded to 1 in timestep t, prior
to the reorganization step, will move either one timestep forward or one timestep backward,
with equal probability. On the other hand (assuming that IE(rt−1) = IE(rt+1) = 2), in expec-
tation, one vertex from timestep t−1 and one vertex from timestep t+1 will move to timestep
t. Note that for the sake of simplicity we neglect the case that either i, j, or both are rounded
to 1 in timestep t + 1 and one of them moves to timestep t in the reorganization step. Such a
case only reduces the expectation. Therefore, the expected number of vertices rounded to 1 in
timestep t remains unchanged following the reorganization step.

In case either i or j (but not both) is rounded to 1 during timestep t, assume w.l.o.g. that i

is the vertex rounded to 1 in timestep t. With probability 1/2 it moves to the previous timestep,
resulting in IE(wijt) = 0 for this timestep. With probability 1/2 it moves to the next timestep
resulting in a total waiting time of IE(wijt) = IE(rt)+IE(wij(t+1)) = 2+IE(wij(t+1)) ≤ 4, where
IE(rt) = 2 due to 2 vertices moving into timestep t, and IE(wij(t+1)) ≤ 2 due to the expected
waiting time during timestep t + 1. Again, for simplicity we neglect the case that j is rounded
to 1 in timestep t + 1 and moves into timestep t. As noted before, this case can only reduce
the expectation. The total expected waiting time in this case is therefore still bounded by 2.

In case both i and j are rounded to 1 during timestep t there is a 3/4 probability that at
least one of them will move to timestep t − 1, resulting in IE(wijt) = 0, and a probability of
1/4 that both will move to timestep t+1, resulting in IE(wijt) = IE(rt)+ IE(wij(t+1)) ≤ 4. The
total expected waiting time is therefore reduced to 1 in this case!

We conclude that in the third case we gain by applying the reorganization step.
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3.2 An addition to the original algorithm

A slight modification is needed for RR to make the analysis of MRR complete. At step 2, after
defining zit, add a new set of variables defined as follows:

z′it =





0 , for t < ti,(
2

∑
t′≤ti

xit′
)
− 1 , for t = ti,

2xit , for t > ti.

To ensure that (z′it)t≥1 also forms a probability vector for every i, we define z′i∞ = 1−∑
t<∞ z′it.

We extend RR to select a second instance of every vertex i using the new probability vector,
(z′it)t≥1. Note that this modification does not affect the analysis of the integrality gap of RR,
and the approximation ratio of RR after this modification remains 2. However, it does imply
that the expected number of vertices (or instances of vertices) covering each edge (i, j) that are
selected during the execution of RR is at least 2. This claim is used in the upcoming analysis.

3.3 A parametrized version of MRR

We now define a parametrized version of MRR, using a parameter 0 < µ < 1, which will be
used to determine the values of ε1 and ε2. The parametrized version of the algorithm will be
denoted by MRR(µ). In particular, we restrict our selection by assuming that the time shifts ε1

and ε2 are linear functions of t, and that p = 1/2. We can therefore redefine the reorganization
step as follows:

• For every timestep t, and for every vertex i selected at that timestep, change the vertex
timestep selection to t− ε1(µ) with probability 1/2, or to t + ε2(µ) with probability 1/2.

Denoting ε1(µ) = µ1t and ε2(µ) = µ2t, we require that 0 < µ1, µ2 < 1.

A problem that can arise in the parametrized version of the algorithm is due to “pushing”
too many vertices to a few timesteps. This occurs if µ1 >> µ2, in which case many vertices are
expected to “jump” to an earlier timestep, or stay more or less at the same timestep. Obviously
this incurs a penalty applying to all edges covered later on, because after performing the
reorganization step each of the first timesteps will include more vertices than it did originally.
Each such timestep will therefore be divided into a larger number of timeslots. In order to
avoid this problem we require that, on the average, the number of vertices in each timestep
remains unchanged. This is achieved by analyzing “cuts”, and ensuring the following property:

Property 3.1 For each timestep t, the number of vertices that jump (on average) from timesteps
smaller than t to timesteps larger than or equal to t is equal to the number of vertices that jump
from timesteps larger than or equal to t to timesteps smaller than t.
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The average number of vertices that jump from timesteps smaller than t to timesteps larger
than or equal to t is equal to the number of timesteps in times t′ < t for which t′ + µ2t

′ ≥ t

(assuming an average of two vertices per timestep and a probability of 1/2 for jumping to
a later timestep). In the other direction, the number of vertices that jump from timesteps
larger than or equal to t to timesteps smaller than t is equal to the number of timesteps for
which t′ ≥ t and t′ − µ1t

′ < t. The number of timesteps corresponding to the first condition
is exactly t − t− where t− + µ2t− = t, implying t− = t/(1 + µ2). Similarly the number
of timesteps corresponding to the second condition is exactly t+ − t where t+ − µ1t+ = t,
implying t+ = t/(1− µ1). The difference is therefore

(t− t−)− (t+ − t) = t

(
2− 1

1− µ1
− 1

1 + µ2

)
≡ Dt.

If D > 0, the difference will grow with time, meaning the density will decrease. If D < 0, the
density will increase. We require that D = 0 (thus looking for the smallest difference between
µ1 and µ2 that still doesn’t cause penalty due to increase in the density). This is achieved by
requiring that

2 =
1

1− µ1
+

1
1 + µ2

, or, µ2 =
µ1

1− 2µ1
.

We therefore define

ε1(µ) = µ1t = µt and ε2(µ) = µ2t =
µ

1− 2µ
t.

3.4 A motivating analysis for MRR(µ)

In a similar manner to the simplified analysis of Section 3.1, the following possibilities exist
for every edge (i, j):

If only i or j are selected at the timestep t at which (i, j) is first covered, then the expected
timestep at which (i, j) is covered after the reorganization step is at most

(t− µ1t)/2 + (t + µ2t)/2 = t + µµ2t,

where the equality is due to the definition of µ1 and µ2. This is an upper bound since if i and j

are selected at relatively close timesteps, it is possible that the one chosen at the later timestep
will move to a timestep smaller than that the one chosen earlier ends up in. We neglect this
effect for the time being.

If both i and j are selected at the same timestep t then the expected cover time of edge
(i, j) changes to

3
4
(t− µ1t) +

1
4
(t + µ2t) = t +

µ2(3µ− 1)
2

t,
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again using the definition of µ1 and µ2. In this case, if µ1 < 1/3 then the added factor is
negative, implying an improvement in the covering time of the edge.

Looking at the worst example analyzed in [4], which is composed of a large set of disjoint
edges, each of which is covered by assigning a value of 1/2 to each of its endpoints at some
timestep t, the second case always occurs. In this case we therefore expect (neglecting boundary
conditions for the time being) an improvement of the approximation ratio by a factor of
δ = µ2(3µ1−1)

2 . Selecting, for example, µ1 = µ = 1/5 and hence µ2 = 1/3, will yield an
improvement by a factor of δ = 1/15 over the original 2 factor, giving a total approximation
ratio of 2− δ · 2 = 28/15 for that example.

3.5 Boundary condition effect for the first time step

The definition of the reorganization step did not specify how it works on the first timestep
(where no preceding timesteps exist), in case a vertex should move to a previous timestep. In
this case, vertices that should move to previous timesteps are left in the same timestep.

This creates a penalty as it violates the requirement that, on average, the number of vertices
in each timestep remains unchanged (as for the first timestep, vertices might move to it from
itself and following timesteps, but none moves from timesteps preceding it). We note that
due to our selection of µ1 and µ2, the boundary condition penalty is constant. Assuming (as
indeed is the case) that µ < 1, the penalty is bounded (on average) by 1. However, this penalty
applies to all the edges, meaning that the reorganization step adds (on average) a one step
delay for the cover time of every edge.

Even though one can generate arbitrarily large graphs for which this delay is not negligible,
we claim that for these graphs other techniques can be applied to find a good approximating
solution. Specifically, for a given edge (i, j), if the delay is not negligible (i.e., the delay causes
a more than ε change to the cost of that edge) then it implies that the edge’s cost is at most
1/ε, meaning it is covered by timestep 1/ε. Therefore, by solving MSVC using an exhaustive
method for the first 1/ε vertices (and applying MRR to the rest), we ensure that the effect is
negligible.

4 Achieving a better approximation bound

4.1 Edge-wise analysis

Our analysis concentrates on the notion of the cost of an edge, or the contribution of an edge
to the total cost of a solution to Π, as defined in Equation (2). Recall that Ŵij is the expected
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time step at which the edge (i, j) is covered when applying RR to G, as defined in Equation
(3). We define Wij as the expected time step at which the edge is covered when applying MRR

to G. In a similar manner to (3) it then holds that

MRR(G) =
∑

(i,j)∈G

Wij .

We define the ratios R̂ij = Ŵij/Wij and Rij = Wij/Wij . We show that there exist constants
ε1 and ε2 such that for any input graph G and a fractional solution 〈x, y〉 (as Π(G) may have
more than one optimal assignment, the construction depends upon the specific assignment
Π(G) outputs), the edges of G can be divided into two groups, E = Ea ∪ Eb, such that

1. the edges of Ea satisfy R̂ij ≤ 2− ε1 and Rij ≤ 2 + 2µ2

1−2µ , and

2. the edges of Eb satisfy Rij ≤ 2− ε2 and R̂ij ≤ 2.

Subsequently, for a given fractional solution to a given instance of MSVC, we can check
the relative cost each group contributes to the total value of the fractional solution. According
to the ratio between the contributions of the two groups, we apply one of the two rounding
techniques, to yield an approximation ratio strictly better than 2.

4.2 Refined analysis of RR

We analyze two conditions under which RR yields an approximation ratio smaller than 2. We
combine these conditions to define Ea.

Lemma 4.1 For a given parameter 0 < α < 1, if yijt ≤ 1− α then pijt ≤ (1− α)yijt.

Proof If t > ti, then Xit ≥ 1/2 and hence pijt = 0 ≤ (1 − α)yijt (and similarly for t > tj)
regardless of the value of yijt. Otherwise, t ≤ min(ti, tj). In this case, by Lemma 2.3, we get
that in order to prove pijt ≤ (1− α)yijt, it suffices to show that

(1− α)(1− (Xit + Xjt)) ≥ (1− (Xit + Xjt))−Xit −Xjt + 4XitXjt,

or, simplifying, that

(1 + α)(Xit + Xjt) ≥ α + 4XitXjt.

Assuming that Xit + Xjt = c for some constant c, we note that the right hand side of the
inequality is maximal when Xit = Xjt = c/2. Therefore, the required inequality will hold for
any Xit and Xjt satisfying that (1 + α)c ≥ α + c2 , or, (c− 1)(c−α) ≤ 0. This holds wherever
α ≤ c ≤ 1. The latter condition holds by the premise of the lemma.
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For simplicity of notation define γ =
√

1− 4α and ψ(α) = 1−γ
2 . Note that assuming

0 < α < 1/4,

α =
1−√1− 4α + 4α2

2
< ψ(α).

Lemma 4.2 For a given parameter 0 < α < 1/4, if ψ(α) ≤ yijt ≤ 1−ψ(α), then pijt ≤ yijt−α.

Proof If t > ti, then Xit ≥ 1/2 and hence pijt = 0 (and similarly for t > tj). As yijt ≥
ψ(α) > α, the lemma holds in this case.

Otherwise, t ≤ min(ti, tj). In this case, by Lemma 2.3, to prove the requirement that
pijt ≤ yijt − α it suffices to show that

Xit + Xjt ≥ α + 4XitXjt.

As observed in the proof of Lemma 4.1, assuming that Xit + Xjt = c for some constant c, the
right hand side of the inequality is maximal when Xit = Xjt = c/2. The required condition
thus transforms into the quadratic equation c2 − c + α ≤ 0, which yields the requirement

ψ(α) ≤ c ≤ 1− ψ(α).

Therefore, the required condition holds for every timestep t for which ψ(α) ≤ yijt ≤ 1− ψ(α)
(taking the boundaries induced on yijt from the boundaries calculated for c). The lemma
follows.

For a given fractional (optimal) assignment to the edge (i, j), defined by assignments to
(xit)0≤t<∞, (xjt)0≤t<∞ and (yijt)0≤t<∞, we define the following.

• Let t1 denote the first timestep for which yijt1 ≤ 1− ψ(α).

• Let t2 denote the first timestep for which yijt2 ≤ ψ(α).

• Let t3 denote the first timestep for which yijt3 = 0 (i.e., the time when the edge is fully
covered).

These times turn out to be the natural break points for categorizing the edges for which
R̂ij < 2. Note that formally, t1, t2 and t3 are functions of the edge (i, j) and should thus be
denoted accordingly; we omit the reference to (i, j) for notational simplicity, and throughout
we make sure it is clear from the context.

Let Yij [t′, t′′] =
∑

t′≤t<t′′ yijt. Similarly, let Pij [t′, t′′] =
∑

t′≤t<t′′ pijt. For abbreviation, let
Yij = Yij [t1,∞], and similarly for Pij .

With these definitions, we have the following corollaries.
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Corollary 4.3 For a given parameter 0 < β < 1, if Yij [t1, t3] ≥ βWij, then R̂ij ≤ 2− 2αβ.

Proof Starting with Equation (3), observe that by Lemma 2.5

Ŵij =
∑

0≤t<∞
pijtIE(wijt) ≤ 2Pij = 2 (Pij [0, t1] + Pij [t1, t3]) .

Using Lemmas 2.4 and 4.1 we get that

Ŵij ≤ 2 (Yij [0, t1] + (1− α)Yij [t1, t3]) = 2Wij − 2αYij [t1, t3] ≤ (2− 2αβ)Wij .

The lemma follows.

Corollary 4.4 For a given parameter 0 < β < 1, if t2 − t1 ≥ βt2 then R̂ij ≤ 2− 2αβ.

Proof As in the previous proof, by Equation (3) and Lemma 2.5

Ŵij =
∑

0≤t<∞
pijtIE(wijt) ≤ 2Pij = 2 (Pij [0, t1] + Pij [t1, t2] + Pij [t2, t3]) .

Using Lemmas 2.4, 4.1 and 4.2 we get that

Ŵij ≤ 2


Yij [0, t1] +

∑

t1≤t<t2

(yijt − α) + (1− α)Yij [t2, t3]




= 2 (Yij [0, t2]− α(t2 − t1) + (1− α)Yij [t2, t3]) .

As t2 − t1 ≥ βt2, and since yijt ≤ 1, implying that t2 ≥ Yij [0, t2], we deduce that α(t2 − t1) ≥
αβYij [0, t2]. Substituting in the previous inequality yields

Ŵij ≤ 2 ((1− αβ)Yij [0, t2] + (1− α)Yij [t2, t3])

≤ 2 (Wij − αβYij [0, t2]− αYij [t2, t3]) ≤ (2− 2αβ)Wij .

The lemma follows.

4.3 A global bound on the approximation ratio of MRR

Denote by εijt the event that the edge (i, j) is first covered by algorithm RR in timestep t. To
bound the performance of MRR(µ) on all edges we use the following lemma.

Lemma 4.5 For every edge (i, j) ∈ G, Rij ≤ 2 + 2µ2

1−2µ .
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Proof The expected time step in which the edge (i, j) is covered when applying algorithm
RR can be calculated as

Ŵij = 2
∑

1≤t<∞
IP(εijt)t,

where the 2 factor stems from the fact that, as implied by the proof of Lemma 2.5, on average,
every timestep preceding timestep t is split into two timeslots.

Using Corollary 2.6 and the definition of algorithm MRR(µ), we deduce that the expected
time step at which the algorithm covers the edge can be bounded by

Wij ≤ (1 + (µ2 − µ1)/2)Ŵij ≤ 2(1 + (µ2 − µ1)/2)Wij .

This holds since in case RR covered the edge at timestep t, MRR(µ) will cover it in timestep
t−µ1t with probability at least 1/2 (this is only a lower bound since in case both of the edge’s
covering instances happened in timestep t, this probability is 3/4) and in timestep t+µ2t with
probability at most 1/2. By substituting the values for µ1 and µ2, the lemma follows.

4.4 Edge classification

Using Corollaries 4.3 and 4.4 as well as Lemma 4.5, we define the sets Ea and Eb (depending
on the parameters α and β) as follows:

E1
a = {(i, j) ∈ G | (1− β)t2 ≥ t1} ,

E2
a = {(i, j) ∈ G | Yij [t1, t3] ≥ βWij} ,

Ea = E1
a ∪ E2

a,

Eb = G\Ea = {(i, j) ∈ G | (1− β)t2 < t1 and Yij [t1, t3] < βWij} .

Substituting ε1 = 2αβ, we note that Ea conforms to the assertions in Section 4.1:

Lemma 4.6 If (i, j) ∈ Ea then R̂ij ≤ 2− ε1 and Rij ≤ 2 + 2µ2

1−2µ .

Proof Assuming (i, j) ∈ Ea,

• If (i, j) ∈ E1
a, then t2 − t1 ≥ βt2, and using Corollary 4.4 we get that R̂ij ≤ 2− 2αβ.

• If (i, j) ∈ E2
a, then Yij [t1, t3] ≥ βWij , and using Corollary 4.3 we get that R̂ij ≤ 2− 2αβ.

The bound Rij ≤ 2 + 2µ2

1−2µ follows directly from Lemma 4.5.

We proceed to prove that edges (i, j) ∈ Eb satisfy Rij ≤ 2− ε2 for some positive ε2.
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4.5 Analysis of MRR(µ) on edges of Eb

Subclassification of Eb edges: We evaluate the expected time step at which MRR(µ) covers
an edge under different conditions. Note that (referring to the timestep phase) a vertex k is
chosen in timestep t with probabilities zkt and z′kt, meaning that if both are non-zero then k

can be chosen up to two times in timestep t. Recall that according to the definitions of zkt

and z′kt, it holds that if t < tk then z′kt = 0, and that if t ≥ tk then surely vertex k was chosen
prior to timestep t.

We partition Eb into two subsets:

1. Esmall
b = {(i, j) ∈ Eb|t2 < min(ti, tj)}, namely, the edges such that the number of in-

stances an endpoint of the edge is chosen prior to timestep t2 is 0, 1 or 2.

2. Elarge
b = {(i, j) ∈ Eb|t2 ≥ min(ti, tj)}, namely, the edges such that the number of instances

an endpoint of the edge is chosen prior to timestep t2 is 1, 2, 3 or 4. Edges of Elarge
b are

therefore surely covered by timestep t2 in the timestep phase.

In the upcoming analysis we use the following notation.

• Let ϕm,t denote the event that by timestep t, exactly m instances of an endpoint of the
edge (i, j) were chosen in the timestep phase. We use ϕm as a shorthand for ϕm,t2 .

• Let ρkt denote the event that vertex k was chosen by timestep t. We use ρk as a shorthand
for ρkt2 .

• Let E(m, t) denote the expectation of the timestep at which the edge is covered due to
the reorganization step, given that ϕm,t occurred. Note that E(m, t) is upper bounded
by the expectation of the timestep at which the edge is covered due to the reorganization
step, given that it was covered by m instances at timestep t. In our calculations we use
the latter as an upper bound. We use Em as a shorthand for E(m, t2).

• Ē is the expected number of timeslots each timestep is split into after the reorganization
step. As the reorganization step has Property 3.1, Lemma 2.5 implies that Ē ≤ 2.

We note that

E(1, t) ≤ 1
2(t + tµ2) + 1

2(t− tµ1) = t + 1
2 t(µ2 − µ1),

E1 ≤ 1
2(t2 + t2µ2) + 1

2(t2 − t2µ1) = t2 + 1
2 t2(µ2 − µ1),

E2 ≤ 1
4(t2 + t2µ2) + 3

4(t2 − t2µ1) = t2 + 1
4 t2µ2 − 3

4 t2µ1,

E3 ≤ 1
8(t2 + t2µ2) + 7

8(t2 − t2µ1) = t2 + 1
8 t2µ2 − 7

8 t2µ1.

We recall the definition of εijt as the event that the edge (i, j) is first covered by Algorithm
RR in timestep t. We need the following lemma in our analysis.
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Lemma 4.7 If yijt ≤ 1/4 then IP(εijt) ≤ yijt − yij(t+1).

Proof Note that εijt can be described as the event that (i, j) is covered by Algorithm RR

prior to timestep t + 1 but not prior to timestep t. Thus

IP(εijt) = pijt − pij(t+1).

Also note that if t > min(ti, tj) then surely the edge is covered by timestep t, implying that
IP(εijt) = 0 ≤ yijt − yij(t+1) and proving the lemma in this case.

Otherwise, t ≤ min(ti, tj). We therefore use Lemma 2.3 and the definition of Xkt to get
that

IP(εijt) = 2(Xi(t+1) + Xj(t+1))− 2(Xit + Xjt) + 4XitXjt − 4Xi(t+1)Xj(t+1)

= 2(xit + xjt) + 4XitXjt − 4(Xit + xit)(Xjt + xjt)

= 2(xit + xjt)− 4(Xitxjt + Xjtxit + xjtxit)

≤ 2(xit + xjt)− 4min(Xit, Xjt)(xjt + xit)− 4xjtxit,

and using Lemma 2.1 (2),

IP(εijt) ≤ (2− 4 min(Xit, Xjt))(yijt − yij(t+1))− 4xjtxit

≤ (2− 4 min(Xit, Xjt))(yijt − yij(t+1)).

By the premise of the lemma and by Lemma 2.1 (1), 1/4 ≥ yijt = 1 − (Xit + Xjt), or,
Xij + Xjt ≥ 3/4. As t ≤ min(ti, tj), max(Xit, Xjt) ≤ 1/2, implying that min(Xit, Xjt) ≥ 1/4.
Therefore, for such timesteps, it holds that

IP(εijt) ≤ (2− 4min(Xit, Xjt))(yijt − yij(t+1)) ≤ yijt − yij(t+1).

Bounding Wij for Esmall
b edges: We assume that α ≤ 3/16, implying ψ(α) ≤ 1/4. We

show the following.

Lemma 4.8 If (i, j) ∈ Esmall
b , then

Wij ≤ 2t2 + t2µ(2µ2 − (1− 2ψ(α))(1 + µ2)) + 2(1 + µµ2)t2ψ(α) + 2(1 + µµ2)Yij [t2, t3].

Proof For Esmall
b edges, Wij can be evaluated as the sum of the following terms.

• The probability that (i, j) is covered by one instance of its endpoints by timestep t2,
IP(ϕ1), times the expected timestep it will be covered at due to the reorganization step,
given that ϕ1 occurred, E1, times the expected number of timeslots each timestep pre-
ceding it is split into, Ē.
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• The probability that (i, j) is covered by two instances of its endpoints by timestep t2,
IP(ϕ2), times the expected timestep it will be covered at due to the reorganization step,
given that ϕ2 occurred, E2, times the expected number of timeslots each timestep pre-
ceding it is split into, Ē.

• For any timestep t > t2, the probability that (i, j) is first covered at timestep t, IP(εijt),
times the expected timestep it will be covered at due to the reorganization step given that
εijt occurred, which is upper bounded by E(1, t), times the expected number of timeslots
each timestep preceding it is split into, Ē.

We therefore get that for these edges,

Wij ≤ IP(ϕ1) · E1 · Ē
+ IP(ϕ2) · E2 · Ē
+

∑

t2<t≤t3

(IP(εijt) · E(1, t) · Ē).

We bound each of these terms separately.

We observe that under the assumption that max(Xit2 , Xjt2) < 1/2 it holds that

IP(ϕ1,t) = IP((ρit ∩ ρjt) ∪ (ρjt ∩ ρit)) = IP(ρit)(1− IP(ρjt)) + IP(ρjt)(1− IP(ρit)),
IP(ϕ2,t) = IP(ρit ∩ ρjt) = IP(ρit)IP(ρjt).

Putting the above together, we get that Wij is bounded by

Wij ≤ 2t2(IP(ρi)(1− IP(ρj)) + IP(ρj)(1− IP(ρi)))(1 + (µ2 − µ1)/2)

+2t2IP(ρi)IP(ρj)
(

1 +
(

1
4
µ2 − 3

4
µ1

))

+2
∑

t2<t≤t3

tIP(εijt)(1 + (µ2 − µ1)/2)

= 2t2(IP(ρi) + IP(ρj)− IP(ρi)IP(ρj))

+t2

(
IP(ρi) + IP(ρj)− 3

2
IP(ρi)IP(ρj)

)
(µ2 − µ1)

−t2IP(ρi)IP(ρj)µ1

+2
∑

t2<t≤t3

tIP(εijt)(1 + (µ2 − µ1)/2).

The worst assignment (in terms of the cost MRR(µ) assigns to the edge), when assuming
that IP(ρi) + IP(ρj) = c for some constant 2 − 2ψ(α) ≤ c ≤ 2, is achieved when IP(ρi)IP(ρj)
is minimal, i.e., (w.l.o.g) when IP(ρi) = 1 and IP(ρj) = c− 1. Substituting this assumption in
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the inequality results in

Wij ≤ 2t2 + t2(3/2− c/2)(µ2 − µ1)− t2(c− 1)µ1

+2
∑

t2<t≤t3

tIP(εijt)(1 + (µ2 − µ1)/2).

This term is maximal when c is minimal. We therefore substitute the minimal value for c,
c = 2− 2ψ(α), and get

Wij ≤ 2t2 + t2(1− (1− 2ψ(α))/2)(µ2 − µ1)− t2(1− 2ψ(α))µ1

+2
∑

t2<t≤t3

tIP(εijt)(1 + (µ2 − µ1)/2).

Substituting µ2 = µ
1−2µ and thus µ2 − µ1 = 2µ2

1−2µ = 2µµ2 we get

Wij ≤ 2t2 + t2µ(2µ2 − (1− 2ψ(α))(1 + µ2)) + 2
∑

t2<t≤t3

tIP(εijt)(1 + µµ2).

Using Lemma 4.7 we note that
∑

t2<t ≤ t3

tIP(εijt) ≤
∑

t2<t≤t3

t(yijt − yij(t+1)) = t2yijt2 + Yij [t2, t3] ≤ ψ(α)t2 + Yij [t2, t3].

Substituting this in the previous inequality concludes the proof.

Bounding Wij for Elarge
b edges: For the edges in Elarge

b we show the following.

Lemma 4.9 If (i, j) ∈ Elarge
b , then

Wij ≤ 2t2 + t2µ

(
2µ2 − (µ2 + 1)(1− 2ψ(α))

(
1− 1− 2ψ(α)

8

))
.

Proof We bound the expected value of Wij by relying on the fact that for Elarge
b edges it

holds that

Wij = IP(ϕ1) · E1 · Ē + IP(ϕ2) · E2 · Ē + IP(ϕ3) · E3 · Ē.

We neglect the case of ϕ4 and regard it as a sub-case of ϕ3, i.e., we refer to ϕ3 as the event
that by timestep t2 the edge was covered by at least 3 instances. We note that, as adding
another covering instance prior to timestep t2 decreases the expected cover time of the edge,
the bound stated above is valid. Note that Elarge

b edges are surly covered by timestep t2, so
the terms evaluating the expectation given that (i, j) is covered after timestep t2 are all 0.
We assume (w.l.o.g) that max(Xit2 , Xjt2) = Xit2 . In the following calculations, i′ denotes the
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second instance of vertex i (i.e., ρi′ denotes the event that the second instance of vertex i is
chosen by timestep t2). Note that according to our assumption IP(ρi) = 1. It will therefore
not be explicitly written, unless necessary.

We observe that in this case

IP(ϕ1,t) = IP(ρi′t ∩ ρjt) = (1− IP(ρi′t))(1− IP(ρjt)),
IP(ϕ2,t) = IP((ρi′t ∩ ρjt) ∪ (ρjt ∩ ρi′t)) = IP(ρi′t)(1− IP(ρjt)) + IP(ρjt)(1− IP(ρi′t)),
IP(ϕ3,t) = IP(ρi′t ∩ ρjt) = IP(ρi′t)IP(ρjt).

As in the proof of Lemma 4.8, we combine the above terms to bound the value of Wij by

Wij ≤ 2t2(1 + (µ2 − µ1)/2)(1− IP(ρi′))(1− IP(ρj))

+2t2(1 + (µ2 − µ1)/4− µ1/2)(IP(ρi′)(1− IP(ρj)) + IP(ρj)(1− IP(ρi′))

+2t2

(
1 +

1
8
(µ2 − µ1)− 3

4
µ1

)
IP(ρi′)IP(ρj)

= 2t2

+t2(µ2 − µ1)(1− IP(ρi′)/2)(1− IP(ρj)/2)

−t2µ1(IP(ρi′) + IP(ρj)− IP(ρi′)IP(ρj)/2).

Assuming that IP(ρi′) + IP(ρj) = c for some constant c, the term above is maximal when
IP(ρi′)IP(ρj) is maximal, i.e., when IP(ρi′) = IP(ρj) = c/2. The above equation thus becomes

Wij ≤ 2t2 + t2(µ2 − µ1)(1− c/4)2 − t2µ1(c− c2/8).

Substituting µ2 − µ1 = 2µµ2 (and further simplifying) yields

Wij ≤ 2t2 + t2µ(2µ2(1− c/4)2 − c(1− c/8))

= 2t2 + t2µ(2µ2 − (µ2 + 1)c(1− c/8)).

Note that since 0 ≤ yijt2 ≤ ψ(α), it follows that 1 − 2ψ(α) ≤ IP(ρi′) + IP(ρj) ≤ 1, implying
that 1− 2ψ(α) ≤ c ≤ 1. The bound is maximal when c is minimal, yielding

Wij ≤ 2t2 + t2µ

(
2µ2 − (µ2 + 1)(1− 2ψ(α))

(
1− 1− 2ψ(α)

8

))
.

A combined bound on Eb edges: We note that the bound of Lemma 4.9 can be rewritten
as

Wij ≤ 2t2 + t2µ(2µ2 − (µ2 + 1)(1− 2ψ(α))) + t2µ(1 + µ2)
(1− 2ψ(α))2

8
,

and therefore, Lemmas 4.8 and 4.9 can be combined into the following.
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Corollary 4.10 If (i, j) ∈ Eb then

Wij ≤ 2t2 + t2µ(2µ2 − (µ2 + 1)(1− 2ψ(α)))

+max
(

t2µ(1 + µ2)
(1− 2ψ(α))2

8
, 2(1 + µµ2)(t2ψ(α) + Yij [t2, t3])

)

Lower bounding Wij on Eb edges: We bound from below the value that Π can assign to
an edge (i, j) ∈ Eb. This bound is used to obtain an upper bound on Rij on such edges. We
need this bound to get a term that is dependent on t1, t2 and t3. We start by showing the
following.

Lemma 4.11 For all (i, j) ∈ G,

Wij ≥ (1− 2ψ(α))t1 + ψ(α)t2 + Yij [t2, t3].

Proof Express Wij as

Wij = Yij [0, t3] = Yij [0, t1] + Yij [t1, t2] + Yij [t2, t3].

Note that by the definition of t1, yijt ≥ 1−ψ(α) for all t < t1. Also note that by the definition
of t2, yijt ≥ ψ(α) for all t1 ≤ t < t2. Thus

Wij ≥
∑

0≤t<t1

(1− ψ(α)) +
∑

t1≤t<t2

ψ(α) + Yij [t2, t3]

= (1− ψ(α))t1 + ψ(α)(t2 − t1) + Yij [t2, t3]

= (1− 2ψ(α)t1 + ψ(α)t2 + Yij [t2, t3].

Edges (i, j) ∈ Eb satisfy t1 > (1− β)t2. Therefore we get the following.

Corollary 4.12 If (i, j) ∈ Eb then

Wij ≥ (1− 2ψ(α))(1− β)t2 + ψ(α)t2 + Yij [t2, t3]

Bounding Rij on Eb edges: To bound Rij on edges in Eb we consider the two cases analyzed
in Lemma 4.8 and in Lemma 4.9. When considering the case of Lemma 4.8 we get

Lemma 4.13 If (i, j) ∈ Esmall
b then

Rij ≤ 2(1− µ)(−2γβ2 + 2(γ − 1)β + µ(2γβ2 − (γ − 2)β − 3)− γ + 3)
(2µ− 1)((2β − 1)γ − 1)

.
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Proof Dividing the bound from Lemma 4.8 by the bound from Corollary 4.12 yields

Rij ≤ 2t2 + t2µ(2µ2 − (1− 2ψ(α))(1 + µ2)) + 2(1 + µµ2)t2ψ(α) + 2(1 + µµ2)Yij [t2, t3]
(1− 2ψ(α))(1− β)t2 + ψ(α)t2 + Yij [t2, t3]

.

We note that (assuming Rij < 2) this term is maximal when Wij is minimal, but Yij [t2,t3]
Wij

is

maximal. As (i, j) ∈ Eb implies that Yij [t2,t3]
Wij

≤ β, and reusing the bound form Corollary 4.12,
we get that

Yij [t2, t3]
(1− 2ψ(α))(1− β)t2 + ψ(α)t2 + Yij [t2, t3]

= β,

that results in

Yij [t2, t3] =
β

1− β
((1− 2ψ(α))(1− β)t2 + ψ(α)t2).

Substituting Yij [t2, t3] in the definition of Rij (and canceling t2) yields

Rij ≤ (1− β)(2 + µ(2µ2 − (1− 2ψ(α))(1 + µ2)) + 2(1 + µµ2)ψ(α))
(1− 2ψ(α))(1− β) + ψ(α)

+ 2β(1 + µµ2).

Substituting µ2, ψ(α) and simplifying yields

Rij ≤ 2(1− µ)(−2γβ2 + 2(γ − 1)β + µ(2γβ2 − (γ − 2)β − 3)− γ + 3)
(2µ− 1)((2β − 1)γ − 1)

When considering the case analyzed in Lemma 4.9 we get

Lemma 4.14 If (i, j) ∈ Elarge
b then

Rij ≤ (µ− 1)(µ(4α + 8γ + 15)− 16)
4(2µ− 1)((2β − 1)γ − 1)

.

Proof Dividing the bound from Lemma 4.9 by the bound from Corollary 4.12 yields

Rij ≤
2t2 + t2µ

(
2µ2 − (µ2 + 1)(1− 2ψ(α))

(
1− 1−2ψ(α)

8

))

(1− 2ψ(α))(1− β)t2 + ψ(α)t2 + Yij [t2, t3]
.

This value is maximal when Yij [t2, t3] is minimal, i.e., when Yij [t2, t3] = 0, which yields (when
simplifying)

Rij ≤
2 + µ

(
2µ2 − (µ2 + 1)(1− 2ψ(α))

(
1− 1−2ψ(α)

8

))

(1− 2ψ(α))(1− β) + ψ(α)
.

Substituting µ2 and ψ(α) yields

Rij ≤ (µ− 1)(µ(4α + 8γ + 15)− 16)
4(2µ− 1)((2β − 1)γ − 1)

.

Combining Lemmas 4.13, 4.14 and 2.6 yields:
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Corollary 4.15 If (i, j) ∈ Eb then

Rij ≤ max (
2(1− µ)(−2γβ2 + 2(γ − 1)β + µ(2γβ2 − (γ − 2)β − 3)− γ + 3)

(2µ− 1)((2β − 1)γ − 1)
,

(µ− 1)(µ(4α + 8γ + 15)− 16)
4(2µ− 1)((2β − 1)γ − 1)

)

and R̂ij ≤ 2.

We note that for certain choices of the values of the parameters α, β and µ, the bound on
Rij implied by the corollary is strictly smaller than 2. In particular, when assigning α = 0.01,
β = 0.01, and µ = 0.2 we get that the second case is the maximum and is equal to 1.943.

4.6 Bounding the approximation ratio of min(RR,MRR(µ))

We need to get a term for the global approximation bound depending on α, β and µ. We
proceed to find an assignment maximizing this term. We use the definitions of Ea and Eb to
devise a way to get an approximation ratio strictly better than 2 for MSVC.

Lemma 4.16 For any input graph G, and solutions Π(G), RR(G) and MRR(µ,G), it holds
that

min
(

RR(G)
Π(G)

,
MRR(µ,G)

Π(G)

)
≤ 2− ε1ε2

ε1 + ε2 + 2µ2

1−2µ

< 2

Proof Use the output of Π to obtain Ea and Eb.

Define WH =
∑

(i,j)∈H Wij , where H = Ea or Eb. In a similar manner define ŴH =∑
(i,j)∈H Ŵij and WH =

∑
(i,j)∈H Wij .

Let 0 ≤ Z ≤ 1 s.t., WEa = Z
∑

(i,j)∈G Wij = ZΠ(G). Note that WEb
= (1− Z)Π(G).

According to Lemma 4.6 and Corollary 4.15 we get that

RR(G) = ŴEa + ŴEb

≤ (2− ε1)WEa + 2WEb

= ((2− ε1)Z + 2(1− Z))Π(G),
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and that

MRR(µ,G) = WEa + WEb

≤
(

2 +
2µ2

1− 2µ

)
WEa + (2− ε2)WEb

=
((

2 +
2µ2

1− 2µ

)
Z + (2− ε2)(1− Z)

)
Π(G).

Finding the value of Z for which the two terms are equal Zmax yields an upper bound
on the approximation ratio, since if Z > Zmax RR(G)/Π(G) is reduced, and if Z < Zmax

MRR(µ,G)/Π(G) is reduced. We therefore get that Zmax satisfies

((2− ε1)Zmax + 2(1− Zmax))Π(G) =
((

2 +
2µ2

1− 2µ

)
Zmax + (2− ε2)(1− Zmax)

)
Π(G),

which yields

Zmax =
ε2

ε1 + ε2 + 2µ2

1−2µ

.

The approximation ratio (B) is thus bounded by

B ≤ (2− ε1)Zmax + 2(1− Zmax) = 2− ε1Zmax = 2− ε1ε2

ε1 + ε2 + 2µ2

1−2µ

Finding an optimal assignment for α, β and µ (that minimizes the approximation ratio) is

done numerically. It results in an approximation ratio of 1.9999460023987983, with

µ → 0.1599419805972847,

α → 0.010241449815300075,

β → 0.020142468138612125

5 Further improvements

There are a few ideas we believe can be investigated to improve the approximation ratio. In
particular, we note that the probability of moving vertices to previous or latter timesteps is
arbitrarily chosen as 1/2. Adding it as a parameter to the analysis and solving for its optimal
value may improve the results. Also, one might consider defining the reorganization step using
a more sophisticated distribution than the binary one we used. Finally, there are a few “slacks”
in our analysis of MRR that can be reduced by a more careful analysis. For example, adding
notions for timesteps at which yijt crosses values in between t1 and t2 can be used to either
increase the lower bound on Wij or decrease the upper bound on Wij , thus reducing Rij .

24



The other main technique that can be applied and analyzed is semidefinite programming. A
motivating example of the usage of semidefinite programming is presented in [4], were results
from [3] are applied to construct an algorithm achieving a better approximation ratio for
min sum vertex cover on regular graphs. The subject of applying semidefinite programming
techniques for approximation algorithms is presented in [5].
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