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Abstract

We study the asymptotic value of several extremal problems on graphs and hyper-
graphs, that arise as generalized notions of girth. Apart from being combinatorially
natural questions, they are motivated by computational-theoretic applications.

1. An `-subgraph is a subgraph with ` edges per vertex, or equivalently, average
degree 2`. What is the optimal upper bound S`(n, d), such that any graph of size
n and density d must contain an `-subgraph of size at most S`(n, d)?

The ` = 1 case coincides with the girth problem, and the answer is well known
to be Θ(logd−1 n). For ` ≥ 2 we give nearly tight upper and lower bounds:

∀ε > 0, Ω(n/d
`
`−1 ) ≤ S`(n, d) ≤ O(n/d

`
`−1
− 1
`3−2`+1

−ε
)

For example for ` = 2, every graph of size n and density d contains a subgraph
of size O(n/d1.8−ε) and average degree 4. We further improve the upper bound
to O(n2−ε), nearly meeting the lower bound, for graphs with bounded density or
large girth, and conjecture it should hold for general graphs as well.

2. The `-girth of a graph is the size of its smallest subgraph with minimum degree
`. What is the optimal upper bound g`(n, d), such that any graph of size n and
density d has `-girth at most g`(n, d)?

Erdős et al. [EFRS90] proved that g`(n, d) = O(n/d). We prove,

∀ε > 0, Ω(n/d1+ 2
`−2 ) ≤ g`(n, d) ≤ O(n/d

1+ 1
`−2
− 1
`3−3`2+`+2

−ε
)

For example for 3-girth, we get Ω(n/d3) ≤ g3(n, d) ≤ O(n/d1.8−ε).

3. The S`(n, d) question is naturally posed on hypergraphs as well. We give up-
per bounds on the size of (2/3)-subgraphs in 3-uniform hypergraphs, progressing
towards a conjecture of Feige [Fei08] that was raised in the context of efficient
random 3CNF refutation.
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1 Introduction

This work deals with several extremal problems in Graph and Hypergraph Theory, that
can be described in terms of generalized notions of girth. The girth of a graph is the size
of the smallest cycle it contains (or infinity if there are none), and it poses a fundamental
graph-theoretic notion that arises in many contexts. The problems we study arise as natural
generalizations, and are further motivated by applications to analysis of algorithms as will
be detailed below.

All graphs under discussion are simple and undirected unless stated otherwise. The main
problem we address is as follows. An `-subgraph of a graph is a subgraph with at least `
edges per vertex, or equivalently, with average degree ≥ 2`.

Question 1.1. What is the optimal upper bound S`(n, d), such that any graph of size n and
density1 d must contain an `-subgraph of size at most S`(n, d)?

Observe that a smallest 1-subgraph is a smallest cycle and vice-versa, and therefore, the
size of the smallest `-subgraph may be viewed as a type of generalized girth. The ` = 1
case of Question 1.1 then asks how large can the girth of a graph be in terms of its size and
density, and it has been studied thoroughly. It is well known that S1(n, d) = Θ(logd−1 n),
that is, any graph of size n and density d contains a cycle of at most such size, and there
are graphs that exclude any smaller cycles. To the best of our knowledge (and somewhat
surprisingly), the question for larger values of ` has not yet been addressed.

A closely related notion of generalized girth, that has not eluded previous attention, is
the `-girth, defined as the size of the smallest subgraph with minimal degree ` (or infinity if
there are none). Similarly to Question 1.1, the following question arises.

Question 1.2. What is the optimal upper bound g`(n, d), such that any graph of size n and
density d has `-girth at most g`(n, d)?

Here the ` = 2 case coincides with the usual girth, hence g2(n, d) = S1(n, d) = Θ(logd−1 n).
Question 1.2 for ` > 2 has been addressed in the past, and existing bounds are reviewed
later in this section.

The third question we consider concerns hypergraphs. A hypergraph is a pair of a vertex
set V and a hyperedge set E ⊂ 2V , and is called r-uniform (or just a r-hypergraph) if each
hyperedge has size r. The r = 2 case clearly coincides with graphs in the usual sense. The
following is therefore a natural extension of Question 1.1.

Question 1.3. Answer Question 1.1 for r-uniform hypergraphs, with any r ≥ 2.

Remark on density measures. Our upper bounds on S`(n, d) and g`(n, d) will be proven
with d being the average degree, and our lower bounds with d being the minimal degree. In
both cases this is the stronger form of the result. Informally we refer to d as the “density”,
and think of it in terms of asymptotic dependence on n.

1By density we typically mean the average degree; see a later remark.
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1.1 Motivation and Related Work

Girth. The girth problem, which is to determine S1(n, d) (or equivalently g2(n, d)), has
been intensively studied. The aforementioned result S1(n, d) = Θ(logd−1 n) is in fact easy to
achieve: The upper bound is simply by a breadth-first search on the graph, and the lower
bound follows from a standard application of the probabilistic deletion method. Both can
be found in [Bol04, page 104, Theorems 1.1 and 1.2], and for the convenience of the reader,
they are re-proven here (in a formulation more suitable with this work) in Appendix D.

A major problem has been to identify the optimal leading constant c of the logd−1 n term
in the bound, which to date remains open, despite concentrated efforts. The best upper
bound is c ≤ 2 due to Alon, Hoory and Linial [AHL02], who have extended a trivial upper
bound on d-regular graphs (known as the Moore bound and obtained by the aforementioned
BFS) to arbitrary graphs with average degree d, thus resolving a long standing open question.
The best lower bound is c ≥ 4/3, originally achieved by Margulis [Mar82, Mar88] and
(independently) by Lubotzky, Phillips and Sarnak [LPS88], and subsequently reproved and
extended in a long sequence of works [Imr84, BB90, Mor94, LU95, Dah13]. Notably, their
proofs are by explicit constructions of extremal graphs (known as “Ramanujan graphs”),
and have attracted considerable attention in many other regards.

`-Girth. The `-girth has been studied since the late 80’s, and in particular, Question 1.2
was addressed by Erdős et al. [EFRS90] and by Kézdy and Markert [KM87, Kez91]. In
[EFRS90, Theorem 2] it is shown that g`(n, d) ≤ 2`n/d, and to our knowledge this is the
only known bound for general densities.

Apart from this result, research has primarily focused on borderline low densities. The
precise d that guarantees g`(n, d) <∞ is known (see [Kez91, Lemma 23]), and graphs with
that density and `-girth exactly n are studied in [Kez91, Chapter 5] and [KM87]. Upper
bounds in the presence of one extra edge are discussed in [EFRS90], and some properties of
graphs one edge short are studied by Erdős et al. [EFGS88] and by Bollobás and Brightwell
[BB89]. With respect to restricted types of graphs, the `-girth problem for cycle powers was
tackled by Bermond and Peyrat [BP89] and Brandt et al. [BMRR10].

From a complexity-theoretic point of view, the computational problem of determining
the `-girth of an input graph was considered by Amini et al. [ASS12, APP+12], who have
shown various hardness of approximation results for ` ≥ 3. (The ` = 2 case is easily seen to
be polynomial-time solvable, by performing a BFS starting at each vertex.) We remark that
in Appendix A we discuss some computational aspects related to S`(n, d).

Hypergraphs. To motivate the discussion of hypergraphs, we present yet another notion
of generalized girth: An even cover is a subset of hyperedges by which each vertex is covered
an even (possibly zero) number of times. In graphs (r = 2), a smallest even cover coincides
with (the edge set of) a smallest cycle, so again we are dealing with a girth-type problem.

Question 1.4. What is the optimal upper bound ECr(n, d), such that any r-uniform hyper-
graph of size n and density γd, with γ a sufficiently large constant, must contain an even
cover of size at most ECr(n, d)?
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This question has been directly addressed in several works. Feige posed the following
conjecture [Fei08, Conjecture 1.2],

Conjecture 1.5. ECr(n, d) = Õ(n/d2/(r−2)), where the Õ notation may hide a multiplicative
polylogarithmic term.

This meets a known lower bound (exhibited by random hypergraphs), and hence offers
a full resolution of Question 1.4. The conjecture was priorly shown by Feige, Kim and Ofek
[FKO06] to hold for random hypergraphs, and for arbitrary hypergraphs, some progress has
been made on high densities. Naor and Verstraëte [NV08] proved the highest density case
for all even r, i.e. ECr(n, n

(r−2)/2) = O(log n) (see [Fei08, Proposition 2.2]). The odd r case
appears more difficult; focusing on r = 3, [Fei08] and [NV08] obtain logarithmic bounds on
EC3(n, d) for various densities in the regime Õ(

√
n), slightly above the borderline high case

of Conjecture 1.5 which is d =
√
n. For yet higher densities, Dellamonica et al. [DHL+12]

prove2 that EC3(n, n1/2+Θ(1/m)) = m for any m.
The connection between Questions 1.3 and 1.4 is twofold. On one hand, an even cover

in a r-hypergraph spans a (2/r)-subgraph, as each hyperedge covers r vertices and each
spanned vertex is covered at least twice. In graphs (r = 2) this simply means that a cycle
has at least as many edges as vertices. Question 1.3 is therefore suggested in [Fei08] as an
intermediate step towards proving Conjecture 1.5. On the other hand, an `-subgraph with
` > 1 must contain an even cover: Viewing each hyperedge as an indicator vector for its
vertices, a sub-hypergraph with more hyperedges than vertices contains a linear dependency
over F2, i.e. a subset of vectors that sum to zero modulo 2, and that subset forms an
even cover.3 Therefore, upper bounds on Question 1.3 in the ` > 1 regime apply directly to
Question 1.4.4 For example, Alon and Feige [AF09, Lemma 3.3] prove that any 3-hypergraph
of size n and density d contains a subgraph of size O(n log n/d) with strictly more hyperedges
than vertices, and hence an even cover of that size. For general densities this is currently
the best bound on the r = 3 case of both Question 1.3 with ` = 1 and Question 1.4.

The study of even covers, and in particular of Question 1.4, is well motivated by appli-
cations to Theory of Computation. In [NV08] it arises in the context of sparse parity-check
matrices, a key notion in Coding Theory. The motivation in [Fei08] is the design of refutation
algorithms for random 3CNF formulas, which is an average-case variant of the fundamental
3-satisfiability problem (3SAT). This task poses a main challenge in Computational Complex-
ity and further has implication to hardness of approximation [Fei02]. The approach centered
at even covers has so far been the most successful: Apart from achieving the best bounds for
random refutation [FO07], it has also been successfully applied to non-deterministic refuta-
tion in parameters regimes for which deterministic algorithms are unknown [FKO06], and
to refutation of semi-random formulas, in which the assignment of variables to clauses is
adversarial and the randomness is confined to variable polarities [Fei07]. This latter work is

2Their result assumes that any two hyperedges may intersect on at most one vertex, but by [Fei08, Lemma
2.4] removing this assumption has only a negligible effect on the density.

3In the even r case this holds already for ` = 1, i.e. at least as many hyperedges as vertices. This is
because each hyperedge e satisfies 1T e = 0 over F2 (where 1 is the all-1’s vector), so the hyperedges reside
in a subspace with co-dimension 1.

4Our work does not handle this regime, and only applies to Question 1.3 with ` approaching 1 from below.
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especially notable in our context, as it relies directly on upper bounds for Question 1.4 (in
the r = 3 case).

Turán-type problems. Questions 1.1 to 1.4 fit into a broader theme in Extremal Com-
binatorics known as Turán-type problems, where the goal is to determine the maximum
number of edges that a graph (or hypergraph) may have while avoiding certain subgraphs.
Typically, however, these problems are concerned with a single forbidden subgraph (the
original Turán Theorem avoids a clique) or a rather restricted forbidden family, whereas in
our case the “forbidden family” is very general (say in Question 1.1, all `-subgraphs up to
some size). Yet, a certain well studied line of Turán-type problems on hypergraphs relates
to Question 1.3 for very small sized `-subgraphs. Brown, Erdős and Sós [BES73b, BES73a]
initiated the study of the asymptotic growth of the maximum number of hyperedges in a r-
hypergraph that excludes all subgraphs with e hyperedges and v vertices, for small constants
v, e. A celebrated result of Ruzsa and Szemerédi [RS76] resolved the r = 3, e = 6, v = 3
case, that became known as the (6, 3)-problem, settling the answer at o(n2). Phrased in
terms of Question 1.3, it states that for any ε > 0 and sufficiently large n, density εn in
3-hypergraphs forces a 1/2-subgraph of size 6. This was extended by Erdős, Frankl and
Rödl [EFR86] to 1/(r − 1)-subgraphs of size 3r − 3 for any uniformity r. These have been
cornerstone results in their field: They are among the earliest applications of the Szemerédi
Regularity Lemma, and their proofs contain the first versions of the Triangle and Graph
Removal Lemmas; all three are by now recognized as highly consequential in various areas
of Mathematics and Computer Science. For some more recent bounds of this flavour, see
Alon and Shapira [AS06].

1.2 Our Results

`-Subgraphs. We give nearly tight bounds on the asymptotic value of S`(n, d), placing it
slightly above n/d`/(`−1). Generally we show for every ε > 0,

Ω(n/d
`
`−1 ) ≤ S`(n, d) ≤ O(n/d

`
`−1
− 1
`3−2`+1

−ε
)

(i) Lower bounds (Section 5). For all densities d we show S`(n, d) = Ω(n/d`/(`−1)).
For high densities we show this bound holds even for regular graphs. In the highest density
case we show S`(n, d) = ω(n/d`/(`−1)).

(ii) Upper bounds (Sections 3 and 4). We focus on the ` = 2 case for concreteness.
The above lower bound is then n/d2, and we attempt to establish its tightness in two natural
senses: The first is by making a small compromise on the edge-to-vertex ratio of the target
subgraph, from 2 to 2− ε. We prove that for every ε > 0, there are (2− ε)-subgraphs of size
O(n/d2). That is, S2−ε(n, d) = O(n/d2).

The other sense of tightness is a small compromise on the size of the target subgraph,
from n/d2 to n/d2−ε. This turns out far more challenging to analyse, and constitutes the
main part of our work. Our main result is the following:
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Theorem (main; informal). Let ε > 0. Every graph of size n and density d contains a
2-subgraph of size O(n/d2−ε) if,

• ε > 1/5, or

• d ≤ n1/Θ(log(1/ε)), or

• G has girth ≥ Θ(log(1/ε)).

(The constants suppressed in the Θ notation are very small.)
We conjecture that S2(n, d) = O(n/d2−ε) for every ε > 0, i.e. that none of the bullets is

necessary. The first bullet may be rephrased as S2(n, d) = O(n/d1.8−ε′) for every ε′ > 0. The
second and third bullets close the gap towards our conjecture gradually, by either density
or girth; in particular, the conjecture is proven for low densities (d ≤ polylog (n)) and for
graphs with super-constant girth.

`-Girth (Section 6). As immediate consequences of the above, we get for every ε > 0:

Ω(n/d1+ 2
`−2 ) ≤ g`(n, d) ≤ O(n/d

1+ 1
`−2
− 1
`3−3`2+`+2

−ε
)

The upper bound is a significant improvement over O(n/d) by [EFRS90]. The lower bound
is the first we are aware of. For concreteness, let us write the bounds for 3-girth:

Ω(n/d3) ≤ g3(n, d) ≤ O(n/d1.8−ε)

As in the case of S2(n, d), the upper bound improves gradually by either density or girth,
and reaches O(n/d2−ε) for graphs with polylogarithmic density or with super-constant girth.

Hypergraphs (Section 7). We show how upper bounds on S`(n, d) extend to hyper-
graphs, and in particular we derive results for the ` = 2

3
case in 3-hypergraphs. (Recall this

is the minimum edge-to-vertex ratio of any even cover.)
For every ε > 0, we get an upper bound of O(n/d2) on the size of (2

3
− ε)-subgraphs,

and O(n/d1.8−ε) on the size of 2
3
-subgraphs. The latter bound gradually improves as the

density lowers and reaches O(n/d2−ε) for polylogarithmic densities, which nearly meets a
conjectured bound of Õ(n/d2) by Feige [Fei08, Conjecture 1.7].
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2 Preliminaries

In this section we record some simple facts that we will be of repeated use in our proofs.

2.1 Concentration Lemmas

We will often need to argue that with sufficiently high probability, a random variable does
not stray too far away from its expected value. We begin with a lemma for arbitrarily
distributed random variables, with bounds on the support.

Lemma 2.1. Let X be distributed over 0, . . . , n with E[X] = µ. Then Pr[X ≥ 1
2
µ] ≥ µ

2n
.

Proof. For each i = 0, . . . , n denote pi = Pr[X = i], and let p =
∑

i≥ 1
2
µ pi. We have,

µ =
n∑
i=0

pii =
∑
i< 1

2
µ

pii+
∑
i≥ 1

2
µ

pii ≤
∑
i< 1

2
µ

pi
1

2
µ+

∑
i≥ 1

2
µ

pin =
1

2
µ(1− p) + np ≤ 1

2
µ+ np

Rearranging gives p ≥ µ
2n

.

The next lemma offers a trade-off between the multiplicative deviation from the expec-
tation, and the probability for that deviation.

Lemma 2.2. Let X be a non-negative random variable. There is an integer t ≥ 1 such
that Pr[X ≥ 2

9
· 2t · EX] ≥ (2tt2)−1. Furthermore if M is an upper bound on X, then

t ≤ log(9
2
M/E[X]).

Proof. Suppose no t satisfies the statement, then

E[X] ≤ 2E[X]

9
+
∑
t≥1

2E[X]

9
2t+1 2−t

t2
=

2E[X]

9
(1 + 2

∑
t≥1

1

t2
) =

2E[X]

9
(1 + 2

π2

6
) < E[X],

a contradiction. This proves the first assertion of the lemma. The second assertion follows,
because a value of 2

9
· 2t · E[X] or larger is now known to be in the support of X, and hence

it cannot exceed the bound M . Rearranging 2
9
· 2t · E[X] ≤M gives t ≤ log(9

2
M/E[X]).

We will also need the following case of the Chernoff bound.

Lemma 2.3 (a Chernoff bound). If X is binomially distributed, then,

Pr[X < 2E[X]] ≥ 1− (0.25e)E[X].

The proof is well known and can be found, for example, in [WS11, Theorem 5.24].
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2.2 Minimum Degree Guarantees

Following is a sequence of lemmas that show how in various situations, we can ensure a lower
bound on the degrees of a subset of vertices in a graph.

Lemma 2.4. A graph with average degree d has a subgraph with minimum degree ≥ b1
2
d+1c.

Proof. Let G be a graph on n vertices and average degree d, so 1
2
dn edges. Iteratively, as long

as there are vertices with degree ≤ 1
2
d, pick an arbitrary one and remove it from the graph.

The resulting subgraph H has minimum degree greater than 1
2
d as long as it is non-empty.

Supposing by contradiction that H is empty, we have performed n iterations; in each one
we have removed at most 1

2
d edges, and in the last one no edges were removed (as the graph

then contained only a single vertex). Altogether we have removed at most 1
2
d(n− 1) edges,

less than the total number of edges in G, and hence there are surviving edges H, which
contradicts its being empty.

Lemma 2.5 (half-matching). Let G(V, U ;E) be a bipartite graph such that each v ∈ V has
degree d, and each u ∈ U has degree at most 2. There is a subset of edges E ′ such that in
G′(V, U ;E ′), each v ∈ V has degree at least b1

2
dc, and each u ∈ U has degree at most 1.

Proof. Construct an auxiliary bipartite graph H(VH , U ;EH) from G, by replacing each v ∈ V
with b1

2
dc copies, each connected to the neighbours of v in U . For W ⊂ VH , each w ∈ W

has d outgoing edges, and each u ∈ U has (in H) at most 2b1
2
dc incoming edges, so W has

neighbourhood of size at least N(W ) ≥ d|W |/2b1
2
dc ≥ |W |. Hence H satisfies the condition

of Hall’s Theorem, and thus has a perfect matching E ′H ⊂ EH . Re-unify all copies of each
vertex v ∈ V into a single vertex. The resulting subgraph of G is G′(V, U ;E ′).

Corollary 2.6 (edge orientation). Let G be a graph with minimum degree d. Its edges can
be oriented such that each vertex has at least b1

2
dc edges oriented towards it.

Proof. Consider the bipartite incidence graph BG of G which has sides V and E, and v ∈ V ,
e ∈ E are adjacent in BG iff e is incident to v in G. Apply Lemma 2.5 on BG to get an
assignment of each edge in G to at most one of its end vertices. Orient the edges according
to that assignment.

Lemma 2.7. Let G(V, U ;E) be a bipartite graph such that side V has average degree d and
maximum degree D. There is a subset V ′ ⊂ V with size |V ′| ≥ d

2D
|V | such that each v ∈ V ′

has degree ≥ 1
2
d.

Proof. By Lemma 2.1 with µ = d, n = D, and X the degree of a random vertex in V .
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3 Degree Compromise

As a first step towards tackling our main problem, we consider a relaxation that allows a
small compromise on the target average degree: Instead of seeking `-subgraphs, we settle
for (` − ε)-subgraphs for an arbitrarily small ε > 0. We give the following result, stating
that S`−ε(n, d) = O(n/d`/(`−1)) (To see this, plug ∆ = 2` in the statement). Note that the
constant hidden in the big O notation depends on ε.

Theorem 3.1 (degree compromise). Let ∆ > 1 be an integer and ε > 0. There is a
constant C = C(∆, ε), such that every graph on n vertices with average degree d (satisfying
∆ − ε ≤ d ≤ O(n(∆−2)/∆)) contains a subgraph of size at most C · n/d∆/(∆−2) with average
degree ≥ ∆− ε. (So at least 1

2
(∆− ε) edges per vertex.)

The proof is fairly straight-forward, and we use it to lay the foundations towards the
more involved proofs of Section 4. To keep the presentation simple, we focus on the following
special case that captures the main ideas. It is restricted to ` = 2 and to only a partial range
of the possible densities. The full proof of Theorem 3.1 is conceptually similar but rather
cumbersome, and is deferred to Appendix B.

Theorem 3.2. Let ε > 0 be arbitrary. There is a constant C = C(ε) such that every graph
with n vertices and average degree d satisfying 4−ε ≤ d = o(

√
n/ log n), contains a subgraph

of size at most C · n/d2 with average degree ≥ 4− ε.
We begin with an overview of the proof. The idea is to sample a random subset A

of vertices and then count certain induced sub-structures. We “mark” each vertex with
independent probability p = α/d2 (where α is a large constant that depends on ε), thus
including it A. We denote by B the subset of vertices that have two marked neighbours.
Each vertex is included in B with probability

(
d
2

)
p2 (for picking two of its neighbours and

marking them), which roughly equals αp, so we get E|A| = np and E|B| = αnp. Note that
both sizes are O(n/d2). By probabilistic existence arguments, there is a marking of vertices
that realizes these expected sizes.

In the subgraph H induced by A and B, each vertex of B comes with two edges connecting
it to A, thus “paying for itself” towards the end of attaining average degree 4. The vertices
in A are not paid for, but since |B|/|A| = α, their number can be reduced to an arbitrarily
small constant fraction of the vertices in H by choosing α sufficiently large (namely, α ∼ 1/ε).
This brings the average degree of H arbitrarily close to 4.

The remainder of this section is dedicated to the formal proof.

Proof of Theorem 3.2

Let G(V,E) be a graph as in the statement of the theorem. By Lemma 2.4 we may assume,
up to a slight variation of constants, that G has minimum degree d (by applying the proof
on the subgraph given in the lemma). Moreover it is enough to prove the theorem for all
sufficiently large values of d, as the lower values can then be handled by a proper choice of
constant C. We will use o(1) to denote a term that tends to 0 as d grows.

Let α be a large constant that will be determined later. Sample a random subset A ⊂ V
by including each vertex in A with independent probability p = α/d2. We refer to vertices in
A as marked. Note that |A| is binomially distributed with parameters n, p, and E|A| = αn/d2.
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For each vertex v we fix an arbitrary subset N(v) of exactly d of its neighbours. Define
B to be the random subset of vertices v that are not marked, and have (exactly) two marked
neighbours in N(v). We then have,

Pr[v ∈ B] = (1− p) ·
(
d

2

)
p2(1− p)d−2 =

1

2
(1− o(1))p2d2 =

1− o(1)

2
α2/d2

where the middle equality holds since (1−p)d−1 = (1− 1
d2

)d−1 = 1−o(1). Hence by linearity

of expectation, E|B| = 1−o(1)
2

α2n/d2.

By the Chernoff bound (Lemma 2.3) applied to |A|, we get:

Pr [|A| < 2E|A|] ≥ 1− (0.25e)αn/d
2

> 1− o(d−2)

where the final inequality is by the assumption d = o(
√
n/ log n) and by choosing α suffi-

ciently large. On the other hand, by Lemma 2.1, |B| attains half its expected value with

probability at least E|B|
2n

= 1−o(1)
4

α2/d2 = Ω(d−2). Summing the bounds yields:

Pr [|A| ≤ 2E|A|] + Pr

[
|B| ≥ 1

2
E|B|

]
≥ 1− o(d−2) + Ω(d−2)

The bound on the right-hand side is strictly more than 1 for sufficiently large d, and hence
there is a positive probability that both of the events |A| ≤ 2E[|A|] and |B| ≥ 1

2
E[|B|] occur.

We fix this event from now on, and arbitrarily remove vertices from B until |B| = 1
2
E[|B|].

The following bounds now hold:

|A|+ |B| ≤ 2E|A|+ 1

2
E|B| =

(
2α +

1− o(1)

4
α2

)
· n
d2

(3.1)

|B|
|A|
≥

1
2
E|B|

2E|A|
=

1− o(1)

8
· α (3.2)

We take our target subgraph H to be that induced by A ∪ B. By eq. (3.1), its size is
bounded by C · n/d2 for, say, C = 1

2
α2. To bound its average degree, note that each vertex

in B is incident to two edges connecting it to A, and since A and B are disjoint (recall that
vertices in B are not marked), each such edge has a unique end in B. Hence we count at
least 2|B| different edges in H, and find that its average degree is:

avgdeg(H) ≥ 2 · 2|B|
|A|+ |B|

= 4− 4

1 + |B|
|A|

≥ 4− 4

1 + 1−o(1)
8
· α

using eq. (3.2) for the final inequality. The bound on the right-hand side is guaranteed to
be at least 4− ε as long as we pick α > 33

ε
, and the proof is complete.
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4 Size Compromise

4.1 Overview

We now turn to the primary goal of this work, which is to establish upper bounds on
S`(n, d). We focus on the ` = 2 case, the first non-trivial one, which is further motivated by
the applications described in Section 1. An extension to general values of ` is also discussed.

The ` = 2 case. In Section 5 we will show that S2(n, d) = ω(n/d2), and in Section 3 we
have shown that S2−ε(n, d) = O(n/d2) for any ε > 0. It is therefore natural to postulate that
S2(n, d) = O(n/d2−ε) for any ε > 0. Let us formally record it as a conjecture.

Conjecture 4.1.1. Let ε > 0. There is a constant C = C(ε) such that every graph G with
n vertices and average degree d (satisfying 4 ≤ d ≤ O(

√
n)) contains a subgraph of size at

most C · n/d2−ε and average degree 4.

We will devise a framework towards proving the conjecture, and use it to prove the
following special cases:

Theorem 4.1.2 (summary of positive results5). Conjecture 4.1.1 holds under each of the
following additional conditions (separately and independently of each other):

1. ε > 1
5
. (See Corollary 4.2.9)

2. d = O(n1/t) where t = blog(8
3
(1
ε
− 2))c. (See Theorem 4.4.1)

3. G has girth ≥ 2t− 1 where t = blog(8
3
(1
ε
− 2))c. (See Corollary 4.2.10)

4. ε > 1
11

and G is square-free, i.e. contains no cycles of length 4. (See Theorem 4.5.1)

Item 1 of the theorem arises as a special case of both Item 2 and Item 3, since for ε > 1
5

we get t ≤ 2 (and then d = O(n1/t) holds by hypothesis, and girth ≥ 3 holds for any simple
graph)6. It is stated separately for emphasis, as it is a non-trivial result that applies to all
graphs.

Item 2 is the interesting one of the four. It provides a gradual improvement to the ε-range
that we can handle according to the density d. On the highest end d ∼

√
n we get Item 1,

and on the low end d = polylog (n) we get the full range of ε > 0 (as then d = O(n1/t) holds
for arbitrarily large t). This in fact proves Conjecture 4.1.1 for polylogarithmic densities.
Similarly, Item 3 proves Conjecture 4.1.1 for graphs with super-constant girth.

For the formal statements and proofs of the four items of Theorem 4.1.2, see the pointers
in the theorem itself.

5Our proofs work for d = O(n1/(2−δ)) with any δ < ε, but for clarity we state our results with d = O(
√
n).

6Note the use of the floor operator in the value of t. Plugging ε = 0.2 yields t = 3; plugging ε > 0.2 yields
log( 8

3 ( 1
ε − 2)) < 3, and hence t ≤ 2.
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General ` values. The proofs in this section can be applied to any ` ≥ 2 with straight-
forward adjustments. This is a merely technical treatment and is mostly omitted from this
work; we explicitly extend only the result for general graphs, i.e. Item 1 of Theorem 4.1.2.
In accordance with Conjecture 4.1.1, we postulate that a bound of S`(n, d) = O(n/d`/(`−1)−ε)
for any ε > 0 should hold, but only manage to prove it for ε > 1/(`3 − 2` + 1). Note that
the gap between this upper bound (formalized in the next theorem) and the lower bounds
given in Section 5 becomes narrower as ` grows.

Theorem 4.1.3. Let ` > 1 be an integer and ε > 0. There is a constant C = C(`, ε)
such that every graph on n vertices with average degree d (satisfying 2` ≤ d ≤ O(n(`−1)/`))

contains a subgraph of size at most C · n/d
`
`−1
− 1
`3−2`+1

−ε
with average degree 2`.

The proof is given in Appendix C. Apart from demonstrating how the extension to
general ` can be done, it can be beneficial as a simplified, self-contained proof of Item 1 of
Theorem 4.1.2 (outside the framework that allows the proofs of the other items).

Organization of this section. In Section 4.2 we present the framework, which is a reduc-
tion to a setting similar to that used in Section 3. Items 1 and 3 of Theorem 4.1.2 will follow
as corollaries. The reduction itself is proven in Section 4.3. Items 2 and 4 of Theorem 4.1.2
are then proven in Sections 4.4 and 4.5, respectively.

4.2 Approach

Much like the proof of Theorem 3.2, our approach is to mark each vertex in the graph with
independent probability p, and then use structures induced by the marking as building-
blocks in constructing the desired subgraph. The key property a structure should satisfy
is that each non-marked vertex contributes two edges, thus “paying for itself” when used
to construct a 2-subgraph. The building-block used in Section 3 was a non-marked vertex
attached to two marked neighbours; here we will be using larger structures with the same
property. For example, consider a non-marked vertex with a marked neighbour and a non-
marked neighbour, the latter having two marked neighbours of its own. Such a structure
has 2 non-marked vertices and 4 edges and hence is usable for our purposes.

In general, we can visualize structures in a natural way as full7 binary trees in which
the leaves are marked and the internal vertices are non-marked. We therefore refer to non-
marked vertices in a structure as roots. A full binary tree with k leaves has exactly 2k − 2
edges (this is easy to verify), so in a graph with minimum degree d, we intuitively expect
each vertex to be the root of a structure with k marked vertices with probability roughly
d2k−2pk, for choosing each edge out of d possible edges and for marking the leaves. Notice
how this coincides with Section 3, where each structure would occur with probability ∼ d2p2.

With the notion of roots in mind, we shift our attention to a related one that we call
excited vertices. An excited vertex is a neighbour of a root, so if we mark one of its other
neighbours it would become a root by itself. In a sense, it is “half-way” into being a root.
In accordance with the intuition described above, we expect each vertex to be excited with

7A binary tree is full if each vertex has either 2 or 0 children.
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probability roughly d2k−1pk (for any k), as we have d choices for a neighbour and probability
roughly d2k−2pk for that neighbour to be a root.

We formally reduce the problem of finding 2-subgraphs to showing that each vertex is
indeed excited with at least that probability. This would be the case had the graph been
a tree, but in general the topology of the graph may create dependencies that affect the
probability. The task we face within our framework is to show that regardless of the specific
graph we are given, the probability for each vertex to be excited is not significantly reduced.
As an example, it is straight-forward to observe that in a graph with minimum degree d and
p = o(d−1), each vertex has probability ≥ (1 − o(1))pd to have a marked neighbour, i.e. to
be excited with k = 1. In our framework this immediately implies Item 1 of Theorem 4.1.2.
The larger k for which we can prove this, the closer to Conjecture 4.1.1 we would get.

Lastly, we emphasize the crucial benefit of our reduction: In Section 3, the non-marked
vertices paid for themselves, but the marked vertices were not paid for. Therefore we came
short of attaining average degree 4 and settled for 4− ε. Here the entire goal is to avoid this
loss. Our reduction exploits the fact that excited vertices are “half-way” into being roots,
and combines them in a way that covers also for the marked vertices, thus achieving average
degree 4 at the expense of a slight increase in the size of the subgraph (ε in Conjecture 4.1.1).
This is a delicate issue that poses a main challenge in proving the reduction. It is done in
a black-box fashion, so when using the framework to prove Theorem 4.1.2, we only need to
count excited vertices and need not worry about paying for the marked vertices at all.

4.2.1 Definitions

Definition 4.2.1 (graph with random subset model). Let G(V,E) be a graph. For p ∈
[0, 1], we define G(V,E, p) to be a random model in which each vertex in V is marked with
independent probability p.

Definition 4.2.2 (root). In G(V,E, p), a vertex is a 1-root if it is marked. For an integer
k > 1, a vertex is a k-root if, inductively, it has two distinct neighbours which are a k1-root
and a k2 root, and k1 + k2 = k.

Definition 4.2.3 (excited vertex). In G(V,E, p), for an integer k ≥ 1, a vertex is k-excited
if it has a k-root neighbour.

(Remark: A vertex may be a k-root concurrently for several values of k, or for the same
k due to several combinations of neighbours. The same goes for being k-excited. Moreover,
a vertex may be a k-root and k-excited at the same time.)

Definition 4.2.4 (tree-like graph). For an integer k ≥ 1, p ∈ [0, 1] and γ > 0, a graph
G(V,E) with minimum degree d is (k, p, γ)-tree-like if in G(V,E, p), each vertex is k-excited
with probability at least min{γ · pkd2k−1, 0.99}.

The meaningful case that should be in mind is when d is arbitrarily large, p � d−1,
and k and γ are constants. In this case, the following proposition is important to note. It
motivates the terminology of Definition 4.2.4.
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Claim 4.2.5. Let t ≥ 2 be a constant integer and k = 2t−2. Let T (V,E) be a d-ary tree with
d arbitrarily large, rooted by v ∈ V and with all leaves in level t. (The root is considered
to be in level 1.) Then in T (V,E, p) with p = o(d−1), the probability that v is k-excited is
min{Ω(pkd2k−1), 0.99}.

Proof. We only sketch the proof as it is very clear. Let u1, . . . , ud be the children of v, and let
Ai denote the event that ui is a k-root. We show by induction on t that Pr[Ai] = Ω(pkd2k−2):
In the base case t = 2 we get k = 1, so we need to show that ui is a 1-root w.p. p, which holds
by definition. For t > 2, by induction, each child of ui is a (1

2
k)-root w.p. q = Ω(pk/2dk−2),

and these events are independent since T is a tree. Hence the number of (1
2
k)-roots among

the children of ui is binomially distributed with parameters (d, q), and the probability that
two of them are (1

2
k)-roots is Ω(d2q2) = Ω(pkd2k−2). This renders ui a k-root, so the proof

by induction is complete.
The events A1, . . . , Ad are independent since T is a tree, so the number of k-roots among

u1, . . . , ud is binomially distributed with parameters (d, p′) for p′ = Ω(pkd2k−2). If this
number is at least one then v is k-excited, and this occurs w.p. Ω(d, p) = Ω(pkd2k−1).

We see that in the setting described above, a graph is tree-like if for the purpose of
counting excited vertices in G(V,E, p), it behaves roughly as if the k-neighbourhood of each
vertex was a tree. We now get to our main definition.

Definition 4.2.6 (good graph). For integer k ≥ 1, p ∈ [0, 1] and γ > 0, a graph G is
(k, p, γ)-good if for each vertex v in G, the graph G− {v} is (k, p, γ)-tree-like.

Put simply, a good graph is a “robust” tree-like graph. We will reduce Conjecture 4.1.1 to
the problem of proving that graphs are good. As we will be interested in very general classes
of graphs, our “goodness” proofs will only use global properties (such as minimum degree,
girth, etc.) and not rely on any specific topologies. Hence we will actually be proving that
the graphs under discussion are tree-like, and the robustness will follow without additional
effort. See for example the proofs of Corollaries 4.2.9 and 4.2.10 below.

4.2.2 The Reduction

The reduction simply states that Conjecture 4.1.1 holds for good graphs. This is formalized
in the following theorem. Its proof is deferred to Section 4.3.

Theorem 4.2.7 (reduction theorem). Let k ≥ 1 be an integer and ε > 1/(3k+ 2). There is
a constant C = C(k, ε) such that for sufficiently large d the following holds: If G is a graph
with n ≥ Ω(d2) vertices and minimum degree d, and G is (k, p, γ)-good with p = 1/d2−ε

and γ = Ω(1/polylog (d)), then G contains a subgraph of average degree 4 and size at most
C · n/d2−ε. (The power of the polylog (d) term in the bound on γ may depend on k.)

We remark that in order to prove Theorem 4.1.2 it suffices to let γ be constant. Yet in
the statement of Theorem 4.2.7 we let it be as low as Ω(1/polylog (d)), since it does not
complicate the proof and may be useful in future contexts.

The following conjecture is posed just to clarify our mindset towards proving Theo-
rem 4.1.2. In practice we will prove some very particular cases of it.
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Conjecture 4.2.8. Let k ≥ 1 be an integer. For sufficiently large d, every graph with
n > Ω(d2) vertices and minimum degree d, either contains a subgraph of average degree 4
and constant size, or is (k, p,Ω(1))-good for every d−2 � p� d−1.

Conjecture 4.1.1 is implied by Conjecture 4.2.8, by choosing k large enough so that ε >
1/(3k+2) and applying Theorem 4.2.7. Evidently, various weaker versions of Conjecture 4.2.8
would also suffice (for example, it is not necessary to handle the full range of p for each k).

With Theorem 4.2.7 at hand, we can prove special cases of Conjecture 4.1.1 by showing
that some restricted families of graphs are good for restricted values of k. As warm-up
examples, we can immediately derive the following two corollaries.

Corollary 4.2.9 (Item 1 of Theorem 4.1.2). Let ε > 0.2. There is a constant C = C(ε)
such that every graph G with n vertices and average degree d (satisfying 4 ≤ d ≤ O(

√
n))

contains a subgraph of size at most C · n/d2−ε and average degree 4.

Proof. We prove for sufficiently large d, and the lower values can then be handled by a
proper choice of constant C. Moreover by Lemma 2.4 we may assume that d is the minimum
degree (as in the proof of Theorem 3.2). Set p = d−(2−ε). In G(V,E, p), the probability for
each vertex to be 1-excited (that is, to have a marked neighbour) is ≥ (1 − o(1))dp, hence
G is (1, p, 1− o(1))-tree-like. This holds even if we remove any single vertex from G, hence
it is (1, p, 1 − o(1))-good. The corollary now follows from Theorem 4.2.7, as the condition
ε > 1/(3k + 2) is met for k = 1 by hypothesis.

Put equivalently, the corollary follows by simply observing that a vertex with all its
neighbours form a tree with two levels, and applying the same reasoning used in Claim 4.2.5.

Corollary 4.2.10 (Item 3 of Theorem 4.1.2). Let ε > 0. There is a constant C(ε) such
that every graph with n vertices, average degree d (satisfying 4 ≤ d ≤ O(

√
n)) and girth

≥ 2t − 1 for t = blog(8
3
(1
ε
− 2))c, contains a subgraph of average degree 4 and size at most

C(ε) · n/d2−ε.

Proof. Let G(V,E) be a graph as in the statement. Again we prove for sufficiently large d
and assume d is the minimum degree. Let k = 2t−2; by rearranging, one may verify that the
value set for t in the statement is the smallest integer for which ε > 1/(3k + 2).

Since G has no cycles of length 2t − 1 or less, the radius-(t − 1) neighbourhood of each
vertex is a tree. In other words, each vertex v is the root of a d-ary tree with all leaves in level
t. Hence by Claim 4.2.5, v is k-excited with probability Ω(pkd2k−1) for p = d−(2−ε). This
means G is (k, p,Ω(1))-tree-like, and the argument remains intact (up to a small change
of constants) even if we remove any single vertex from G, so it is (k, p,Ω(1))-good. The
corollary now follows from Theorem 4.2.7.

4.3 Proof of the Reduction

In this section we prove Theorem 4.2.7. Let us first present an overall description of the
proof. As explained in Section 4.2, we use roots in G(V,E, p) to identify small structures
with two edges per non-marked vertex, and our plan is to use them as building-blocks to
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construct a 2-subgraph. These structures are referred to as arrangements and are discussed
in Section 4.3.1.

The key to the proof is to combine arrangements in a way that earns an additional edge,
that would eventually be used to pay for the marked vertices. This is done in the main
lemma, proven in Section 4.3.2. It states that with sufficiently high probability, we can
identify structures in which one vertex contributes three edges, and not just two. That extra
edge makes all the difference in achieving average degree 4.

In Section 4.3.3 we prove Theorem 4.2.7, in a way quite similar to the proof of Theo-
rem 3.2. However, one additional point requires attention: The structures we use to build
our target subgraph are rather large and may overlap in edges, causing us to pay with the
same edge for two different vertices (its two endpoints). In Section 3 this issue did not arise,
as each edge in a structure had only one non-marked endpoint and was counted to pay for
it. To solve this now, we equip each arrangement with an orientation of its edges and decide
that each edge pays for its destination vertex.

4.3.1 Arrangements in G(V,E, p)

We now formalize the notion explained above, of structures that have two edges per each
non-marked vertex.

Definition 4.3.1 (arrangement; arrangeable subgraph). Given a fixed marking of vertices
sampled from G(V,E, p), an arrangement is a pair (G′, O) of a subgraph G′(V ′, E ′) of G,
and an orientation O of the edges in E ′ such that each non-marked vertex in V ′ has at least
two edges oriented towards it.

G′ is an arrangeable subgraph if there is an orientation O of its edges such that (G′, O)
is an arrangement.

The following lemma states that under a fixed marking of vertices, arrangeable subgraphs
are closed under union.

Lemma 4.3.2 (union of arrangements). Given a fixed marking of vertices sampled from
G(V,E, p), let H1 and H2 be arrangeable subgraphs in G. The union subgraph H = H1 ∪H2

is arrangeable.

Proof. Let O1, O2 be orientations of the edges in H1, H2 respectively, such that (H1, O1) and
(H2, O2) are arrangements. We orient the edges in H as follows: For an edge e, if it is present
in H1 then we orient it by O1. Otherwise e is present in H2, and then we orient it by O2.
Call the resulting orientation O.

To see that (H,O) is an arrangement, let v ∈ H be any vertex. If v ∈ H1 then some two
edges e, e′ ∈ H1 are oriented towards v in O1, and by the above they are oriented towards
v also in O. Otherwise we have v ∈ H2, and then some two edges e, e′ ∈ H2 are oriented
towards v in O2. Neither of them can be in H1 (as v /∈ H1), so they are oriented in O as they
are in O2, towards v. Thus, every vertex in H has two edges oriented towards it by O.

The next lemma states that k-roots are part of arrangements with small (constant) size.
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Proposition 4.3.3. Let k ≥ 1 be an integer. Given a fixed marking of vertices sampled
from G(V,E, p), if v is a k-root, then v is part of an arrangeable subgraph with at most k−1
non-marked vertices.

Proof. By induction on k: The base case k = 1 is trivial, since a 1-root is just a marked
vertex, which by itself constitutes an arrangement with 0 non-marked vertices.

For k > 1, by definition v has two distinct neighbours u1 and u2 which are a k1-root and
a k2-roots respectively, such that k1 + k2 = k. By induction, u1 is part of an arrangeable
subgraph H1 with at most k1 − 1 non-marked vertices, and u2 is part of an arrangeable
subgraph H2 with at most k2 − 1 non-marked vertices.

Let H be the union of H1 and H2; it is an arrangeable subgraph by Lemma 4.3.2, and
it has at most k − 2 non-marked vertices. Let O be an orientation such that (H,O) is an
arrangement. If v ∈ H, then we are done. Otherwise, we add v to H together with the two
edges connecting v to u1 and u2, orienting both towards v. (Note that v /∈ H implies that
the edges vu1 and vu2 are not already orientated by O, so we can orient them as we wish.)
We have added a single non-marked vertex to H, so it now has at most k − 1 non-marked
vertices, as required.

4.3.2 Main Lemma: That Extra Edge

Lemma 4.3.4 (main). Let k ≥ 1 be an integer, M > 0 an arbitrary constant, and ε >
1/(3k+ 2). For sufficiently large d, the following holds: If G(V,E) is a graph with minimum
degree d that is (k, p, γ)-good for p = d−(2−ε) and γ = Ω(1/polylog (d)), then in G(V,E, 2p),
each vertex v ∈ V has probability ≥M ·p to be part of an arrangement Hv with the following
properties:

• v has three edges oriented towards it in Hv.

• Hv has at most 3k + 1 non-marked vertices.

(The power of the polylog (d) term in the bound on γ may depend on k.)

Proof. We assume d is sufficiently large wherever needed, possibly without explicitly stating
so. Moreover in order to simplify the presentation, we do not attempt to optimize the
constants involved in the proof.

Fix a vertex v ∈ V for the remainder of the proof. We begin by removing v from G,
along with all of its incident edges. Since G is (k, p, γ)-good, the resulting graph G − {v}
is (k, p, γ)-tree-like. To ease notation, we will refer to G− {v} as G(V,E), keeping in mind
that it no longer contains v.

To sample from G(V,E, 2p), we mark the vertices of G in two independent phases, each
with probability p. That is, a vertex that was not marked in the first phase has probability p
to be marked in the second phase, hence total probability of 2p−p2 to be marked at all. Since
p � 1, this is equivalent to G(V,E, 2p) up to a small variation of constants. Importantly,
note that the first phase is a sample from G(V,E, p).

Let N(v) denote the set of neighbours of v. We restrict our attention to exactly d
neighbours of v (arbitrarily chosen), so |N(v)| = d. Our current (and main) goal is to show
that with probability M · p, three vertices in N(v) are (k + 1)-roots after the second phase.
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Preliminaries. We begin by orienting the edges incident to vertices in N(v). In principle
we would like all edges incident to u ∈ N(v) to point towards u, but there might be edges
with two ends in N(v). Bypassing this issue is a mere technicality: Since each vertex in
N(v) has at least d incident edges,8 we can use Corollary 2.6 to find an orientation by which
each vertex has 1

2
d edges oriented towards it. Fix this orientation henceforth.

Consider an arbitrary vertex u ∈ N(v), and let ei = wiu be the edges oriented towards
it, for i = 1, . . . , 1

2
d. Suppose u is k-excited after the first phase, which means it has a k-root

neighbour w. In this case, we call each edge ei = uwi with wi 6= w an excited edge. So if u is
k-excited after the first phase, it is incident to 1

2
d excited edges9 that are oriented towards

it. (There may be additional excited edges incident to u but oriented away from it, towards
other vertices in N(v).)

The source vertex wi of an excited edge ei will be called a touched vertex. Observe that
if wi is marked in the second phase, then u becomes a (k + 1)-root. This is illustrated in
fig. 1. Lastly, we say that a touched vertex is light if it is the source of one or two excited
edges, and heavy if it is the source of at least three excited edges.

Figure 1: After the first phase, w is a k-root, rendering u a k-excited vertex in N(v).
The edge wiu is thus excited, and wi is a touched vertex (which is either heavy or light,
depending on how many additional excited edge are oriented away from it). If wi is marked
in the second phase, u would become a (k + 1)-root.

Counting excited edges. Let X denote the subset of k-excited vertices in N(v) after
the first phase. Since G is (k, p, γ)-tree-like, each vertex has probability q = γpkd2k−1 to be
k-excited, and since |N(v)| = d, we get E|X| = dq.

Let Y be the set of excited edges. As each vertex in X renders 1
2
d edges excited, we have

|Y | = 1

2
d|X| (4.1)

and therefore,

E|Y | = 1

2
dE|X| = 1

2
qd2 (4.2)

8In fact d− 1 edges, having removed v from G, but we suppress the −1 for simplicity.
9In fact u is incident to either 1

2d (if w is one of the wi’s) or 1
2d− 1 (otherwise) excited edges, but again

we suppress the -1.
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Applying Lemma 2.2 to |Y |, we get:

Pr[|Y | ≥ 1

9
· 2tqd2] ≥ 1

2tt2
(4.3)

for some integer t ≥ 1.

Proposition 4.3.5. t < 2 log d.

Proof. We take the bound M in the statement Lemma 2.2 of to be 1
2
d2, as this is the total

number of edges that can be excited (1
2
d edges per vertex in N(v)). Hence:

t < log(
9

2
M/E|Y |) ≤ log(9/2q)

(plugging eq. (4.2) for E|Y |.) And by recalling that p = d−(2−ε) and γ = Ω(1/polylog (d)):

q = γpkd2k−1 = Ω(1/polylog (d))
dkε

d
>

1

d

(for sufficiently large d.) Combining the latter two inequalities, we obtain: t < log(9
2
) +

log d < 2 log d.

Recall that an excited edge has a touched vertex as its source. Each touched vertex is
either light or heavy, so for each fixed marking of the vertices in phase 1, either half the
excited edges are sourced in light vertices, or half are sourced in heavy vertices. By applying
an averaging argument on eq. (4.3), we get that with probability 1

2
(2tt2)−1, one of these two

cases holds concurrently with the event |Y | ≥ 1
9
· 2tqd2. We now handle each case separately.

Case 1 - Light vertices: With probability 1
2
(2tt2)−1, we have at least 1

9
· 2tqd2 excited

edges, half of which are sourced in light vertices.
In this case, we want the second phase to turn three k-excited vertices in N(v) into

(k + 1)-roots by marking a light vertex for each. See fig. 2 for illustration. Let L be the set
of light vertices. Since each light vertex is incident to at most two excited edges, we have
|L| ≥ 1

2
|Y | = 1

4
d|X|, where the last equality is by eq. (4.1).

Our intention is now to uniquely assign light vertices to k-excited vertices in N(v) (i.e.
those in X). Towards this end, we consider the bipartite graph with sides X and L and with
the excited edges as the edge set. In fact, X and L may intersect; in such case we make two
copies of each vertex in the intersection, putting one copy on the X-side and the other on
the L-side. Note that all the edges are oriented from L to X.

Side X has average degree |X|/|L| ≥ 1
4
d and maximum degree 1

2
d (as each vertex in

X is the end of only 1
2
d excited edges), so by Lemma 2.7, there is a subset X ′ ⊂ X with

size |X ′| ≥ 1
4
|X|, such that each vertex in X ′ is adjacent to at least 1

8
d vertices in L. Now

consider the bipartite graph with sides X ′ and L: Side X ′ has minimum degree 1
8
d, and side

L has degree at most 2 (since a light vertex is adjacent to at most two vertices in X, and
hence in X ′). So by applying Lemma 2.5, we can assign the vertices in L to the vertices in
X ′ in a way that each L-vertex is assigned to at most one X ′-vertex, and each X ′-vertex has
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at least 1
16
d L-vertices assigned to it. This concludes the assignment of light vertices to (a

large subset of the) k-excited vertices.
The event we are interested in, denoted henceforth as A, is that the second phase turns

three vertices in X into (k + 1)-roots. Given the assignment we have just worked out, it
is sufficient to pick three vertices in X ′ and for each of them to mark in the second phase
an assigned vertex in L. Since each vertex in X ′ has 1

16
d uniquely assigned vertices in L,

the probability to mark one of them is 1
16
dp(1 − p)d/16, which is lower-bounded by 1

32
dp for

sufficiently large d. Moreover these events are independent for distinct vertices in X ′ (by the
unique assignment), hence in total we get:

Pr[A] ≥ 1

2 · 2tt2
·
(
|X ′|

3

)
·
(

1

32
d · p

)3

≥ 1

2 · 2tt2
· |X

′|3

33
·
(

1

32
d · p

)3

(4.4)

(Recall that
(
a
b

)
≥ (a

b
)b for any integers a, b.) To lower-bound eq. (4.4), we recall that

|X ′| ≥ 1
4
|X|, that |X| = 2

d
|Y | (by eq. (4.1)) and that |Y | ≥ 1

9
· 2tqd2 (by the assumption of

the current case). Putting these together, we get |X ′| ≥ 1
18
·2tqd, and plugging into eq. (4.4):

Pr[A] ≥ 1

2 · (3 · 32 · 18)3
· 22t

t2
· (qd2 · p)3

Next we recall that 1 ≤ t < 2 log d and q = γpkd2k−1 = Ω(1/polylog (d)) · pkd2k−1. Plugging
these into the above, we get:

Pr[A] ≥ (pk+1d2k+1)3

Ω(polylog (d))

We need this bound to be at least M · p. Suppressing the constant M into the Ω notation,
we need the following to hold:

p3k+2d6k+3 ≥ Ω(polylog (d))

Recalling that p = d−(2−ε), the latter is rewritten as:

d(3k+2)ε−1 ≥ Ω(polylog (d))

For this to hold for sufficiently large d, it is enough to require:

(3k + 2)ε− 1 > 0

and this holds by the hypothesis of the lemma. Hence we have obtained: Pr[A] ≥M · p.

Case 2 - Heavy vertices: With probability 1
2
(2tt2)−1, we have at least 1

9
· 2tqd2 excited

edges, half of which are incident to heavy vertices.
Let L be the subset of heavy vertices. Each such vertex is incident to at most d excited

edges (as there are only d vertices in N(v)), so we have |L| ≥ 1
18
· 2tqd.

Again we let A denote the event that the second phase turns three vertices in X into
(k + 1)-roots. A heavy vertex is the source of at least three excited edges, so it is adjacent
to three k-excited vertices in N(v). Hence, marking any heavy vertex in the second phase is
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Figure 2: u1, u2, u3 were k-excited after the first phase. In the second phase, marking a
light vertex (in double circle) for each turns them into a (k + 1)-roots.

enough for A to occur. See fig. 3 for illustration. The probability to mark a heavy vertex in
the second phase is (1− o(1))|L|p, and hence:

Pr[A] ≥ 1

2 · 2tt2
· (1− o(1))|L|p ≥ (1− o(1))qdp

36 · t2

Plugging t < 2 log d and q = γpkd2k−1 = Ω(1/polylog (d)) · pkd2k−1, we get

Pr[A] ≥ pk+1d2k

Ω(polylog (d))

We need this bound to be at least M · p. Suppressing the constant M into the Ω notation,
we need the following to hold:

pkd2k ≥ Ω(polylog (d))

Recalling that p = d−(2−ε), the latter is equivalent to:

dεk ≥ Ω(polylog (d))

and this clearly holds for sufficiently large d. Hence we have obtained: Pr[A] ≥M · p.

Conclusion. In both of the above cases, we have shown that with probability at least M ·p
over the two phases, there are three (k + 1)-roots in N(v). By Proposition 4.3.3, each such
root is part of an arrangement with at most k non-marked vertices, and by Lemma 4.3.2 we
can unite the three arrangements. In summation, we’ve shown that with probability M · p,
the graph G−{v} has an arrangement H ′v that contains three neighbours of v, say u1, u2, u3,
and has at most 3k non-marked vertices.

The claim now follows easily: All the above was shown to hold for G − {v}, and hence
holds also for G with the guarantee that v /∈ H ′v. We therefore can construct an arrangement
Hv as required in the claim, by adding v to H ′v, and orienting towards it the three edges
connecting it to u1, u2, u3. The proof of the claim is complete.
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Figure 3: u1, u2, u3 were k-excited after the first phase. In the second phase, marking a
single heavy vertex (in double circle) turns all of them into (k + 1)-roots.

4.3.3 Proof of Theorem 4.2.7

We restate the theorem to ease reading.

Theorem 4.2.7 (restated). Let k ≥ 1 be an integer and ε > 1/(3k + 2). There is a
constant C = C(k, ε) such that for sufficiently large d the following holds: If G is a graph
with n ≥ Ω(d2) vertices and minimum degree d, and G is (k, p, γ)-good with p = 1/d2−ε

and γ = Ω(1/polylog (d)), then G contains a subgraph of average degree 4 and size at most
C · n/d2−ε. (The power of the polylog (d) term in the bound on γ may depend on k.)

Proof. Consider a sample from G(V,E, 2p). Let A denote the subset of marked vertices, so
E[|A|] = 2np. Let O be a random orientation of the edges in G, sampled as follows: Each
edge is oriented with independent probability 1

2
towards each of its two ends. We define B

to be the random subset that contains each vertex v if,

• v satisfies the conclusion of Lemma 4.3.4. That is, v is part of an arrangement Hv with
at most 3k + 1 non-marked vertices, and has three edges oriented towards it in Hv.

• The orientation of Hv coincides with the orientation O.

By Lemma 4.3.4, for sufficiently large d, each vertex v has probability ≥M · p to satisfy the
first item, for a constant M that we will set right away. As for the second item, Hv has at
most 3k + 1 non-marked vertices that each of whom has two edges oriented towards it (by
definition of arrangement), plus one additional edge oriented towards v (by the assertion of
Lemma 4.3.4). Hence Hv has at most 6k+3 edges, and therefore, O has probability ≥ (1

2
)6k+3

to coincide with the orientation of Hv. In conclusion, v has probability ≥ (1
2
)6k+3Mp to be

in B, over the choices of both O and the sample of G(V,E, 2p). We set M = 16 · 26k+3 and
obtain that E[|B|] ≥ 16np.

By applying the Chernoff bound Lemma 2.3 to |A| and plugging n ≥ Ω(d2), we get:

Pr [|A| < 2E|A|] ≥ 1− (0.25e)2np = 1− (0.25e)2ndε−2 ≥ 1− (0.25e)Ω(dε)
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On the other hand, by Lemma 2.1, |B| attains half its expected value with probability at

least E|B|
2n

= 8p = 8d−(2−ε). Summing the bounds yields:

Pr [|A| ≤ 2E|A|] + Pr

[
|B| ≥ 1

2
E|B|

]
≥ 1− (0.25e)Ω(dε) + 8d−(2−ε)

Since (0.25e)Ω(dε) � 8d−(2−ε) for sufficiently large d, the above RHS is strictly larger than 1.
Therefore, there is a positive probability that both the events |A| ≤ 2E|A| and |B| ≥ 1

2
E|B|

occur. These imply |A| ≤ 4np and |B| ≥ 8np, respectively. We fix this event from now
on (note that this also fixes an orientation O), and arbitrarily remove vertices from B until
|B| = 8np. We take our target subgraph H to be the one induced by the union of A and the
arrangements Hv for all v ∈ B.

Size of H. For each v ∈ B, Hv has at most 3k + 1 non-marked vertices. Hence:

|H| ≤ |A|+ (3k + 1)|B| ≤ (2 + 4(3k + 1))np = (12k + 6)n/d2−ε

which is as required, if we set C(k) = 12k + 6.

Average degree of H. To show that H has average degree at least 4, we need to count
two edges per vertex. We use the orientation O to assign edges to vertices, to ensure that
each edge is counted in favour of only one vertex.

Consider a non-marked vertex u in H. It is part of an arrangement Hv for some v ∈ B,
and being an arrangement, u has two edges oriented towards it in Hv. Since the orientation
of Hv coincides with O, we see that u has two edges oriented towards it in O.

Additionally, each v ∈ B has a third edge oriented towards it in Hv, and hence in O.
Together, we have |B| edges that we have not yet used, and we now count them to cover
for the marked vertices. Since the number of marked vertices is |A| ≤ 4np, and the number
of remaining edges is |B| = 8np, we can indeed count two edges per marked vertex. In
conclusion, we see that H has average degree ≥ 4, and the proof is complete.

4.4 Tighter Bounds for Lower Densities

We now prove Item 2 of Theorem 4.1.2, that shows that as the density of the input graph
lowers, we can get a gradual improvement of the value of ε in the size bound of the target
subgraph. The next theorem restates the result formally.

Theorem 4.4.1. Let ε > 0. There is a constant C = C(ε) such that every graph with n
vertices and average degree d satisfying 4 ≤ d ≤ O(n1/t) for t = blog(8

3
(1
ε
− 2))c, contains a

subgraph of average degree 4 and size at most C · n/d2−ε.

The idea underlying the proof is that either some vertex neighbourhood is dense enough
to constitute our target subgraph, or all neighbourhoods are sparse enough to be considered
as trees, which be handled as in Claim 4.2.5.
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Lemma 4.4.2. Let t ≥ 1 be a fixed integer, 0 < α < 1, and r > 0 sufficiently large. Let T
be an r-ary tree with all leaves in level t.10 Suppose we remove all but at least an α-fraction
of the leaves from T . The remaining tree contains an r′-ary tree with r′ = (1

2
)t−1αr, with the

same root as T and with all leaves in level t.

Proof. By induction on t. In the base case t = 1 there is nothing to show, as the root itself
is the only leaf and α > 0, so we cannot remove any leaves. Suppose now t > 1. Let L be
the subset of remaining leaves after the removal, and let M be the subset of vertices in the
(t− 1)th level of T . In the bipartite graph with sides L and M , side M has maximum degree

r and average degree |L|
|M | = α·rt−1

rt−2 = αr. Hence by Lemma 2.7, there is a subset M ′ ⊂ M

with size |M ′| ≥ α
2
|M | such that each vertex in M ′ has 1

2
αr neighbours in L.

Consider the r-ary tree T ′ given by the top t − 1 levels of T . The subset of its leaves
is M , and suppose we remove all leaves but those in M ′. This removes all but at least a
1
2
α-fraction of the leaves, so by the inductive hypothesis, T ′ contains an r′-ary tree T” with
r′ = (1

2
)t−2 · 1

2
α · r = (1

2
)t−1αr, which has the same root as T and all leaves in M ′. We extend

T” by one more level, by picking for each leaf in M ′ an arbitrary subset of r′ neighbours in
L, which it is guaranteed to have by the choice of M ′ (as explained above). T” constitutes
the required subtree of T .

Proposition 4.4.3 (main towards proving Theorem 4.4.1). Let t ≥ 1 be an integer. There
is a constant γt > 0 such that for every graph G with minimum degree d sufficiently large
and an arbitrary vertex v in G, at least one of the following holds:

• G contains a subgraph of size at most γtd
t−2 and average degree ≥ 4.

• G contains a (γtd)-ary tree rooted by v, with all leaves in level t.

Proof. For each vertex u in G we restrict our attention to an arbitrary subset of exactly d of
its neighbours, and refer only to them as its neighbours. This approach has been taken in our
proofs before; as usual, it may happen that for an adjacent pair or vertices u, u′ we consider
u′ to be a neighbour of u but not vice-versa, and this would not interfere with our reasoning.
Moreover, keep in mind that we will assume d is sufficiently large wherever necessary.

We go by induction on t. The base case t = 1 is trivial, since v alone is a tree with one
level (of any arity). Now fix t > 1. By induction, G either contains a subgraph of size dt−3

and average degree ≥ 4, or a (γt−1d)-ary tree T rooted by v with all leaves in level t−1. The
former immediately implies the proposition, so we now focus on the latter. Let L denote the
set of leaves in T . Note that |L| = (γt−1d)t−2 and,

|T | = (γt−1d)t−1 − 1

γt−1d− 1
≤ 2(γt−1d)t−2.

Let EL be the subset of edges incident to vertices in L. Since G has minimum degree d,
we have |EL| ≥ d|L|. We write EL as a disjoint union EL = Ein

L ∪ Eout
L , where Ein

L are the
edges going back into T (i.e. have both endpoints in T ), and Eout

L are all the other edges. If

10Recall that as in Claim 4.2.5, we consider the root to be in level 1.
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|Ein
L | ≥ 2|T | then T is a subgraph with average degree 4 and size ≤ 2(γt−1d)t−2, which meets

the requirement of the proposition if we set γt = 2γt−2
t−1 . Otherwise,

|Eout
L | > |EL| − 2|T | ≥ γt−2

t−1d
t−1 − 4(γt−1d)t−2 ≥ 1

2
γt−2
t−1 · dt−1 ≥ 1

2
d|L| (4.5)

for sufficiently large d.
Let NL be the set of all endpoints of edges in Eout

L which are not in T . (Note that each
edge in Eout

L has exactly one endpoint not in T .) We say a vertex in NL is light if it is a
neighbour of at most two vertices in L, and heavy otherwise. Now, either half the edges in
Eout
L are incident to light vertices, or half are incident to heavy vertices. We handle the two

cases separately.

• Case I - Light vertices: Half the edges in Eout
L are incident to light vertices in NL.

Let Nl ⊂ NL denote the set of light vertices. Since each light vertex is incident to at
most 2 edges in Eout

L , we have |Nl| ≥ 1
4
|Eout

L |. Hence in the bipartite graph with sides
L and Nl, side L has maximum degree d and average degree (using eq. (4.5)):

|Nl|
|L|
≥

1
4
|Eout

L |
|L|

≥
1
8
d|L|
|L|

= 1
8
d

Now by Lemma 2.7, there is a subset L′ ⊂ L of size at least 1
16
|L| such that each

vertex in L′ has 1
16
d neighbours in Nl. Remove from T all leaves except those in

L′. By Lemma 4.4.2 (with α = 1
16

and r = γt−1d), T contains a ((1
2
)t+2γt−1d)-ary

subtree T ′ with all leaves in level t− 1, that is in L′. We extend T by one more level
using Lemma 2.5: Recall that in the bipartite graph with sides L′ and Nl, side L has
minimum degree 1

16
d and side Nl has maximum degree 2. Hence, Lemma 2.5 picks a

subset of edges such that each vertex in Nl is adjacent to at most one vertex in L′,
and each vertex in L′ has at least 1

32
d neighbours in Nl, thus adding a tth level to T ′

while keeping it r-ary with r = min{(1
2
)t+2γt−1d,

1
32
d}. This meets the requirement of

the proposition.

• Case II - Heavy vertices: Half the edges in Eout
L are incident to heavy vertices in NL.

Let Nh ⊂ NL be the subset of heavy vertices.

– If |Nh| < 2|L|, consider the subgraph H induced by L ∪Nh. It has at most 3|L|
vertices, and it contains all the edges in Eout

L which are incident to heavy vertices.
By the assumption of the current case there are at least 1

2
|Eout

L | such edges, and
by eq. (4.5), this is at least 1

2
d|L|. Hence for d ≥ 12, H has average degree ≥ 4.

– If |Nh| ≥ 2|L|, pick an arbitrary subset N ′h ⊂ Nh of size exactly 2|L|, and consider
the subgraph H induced by L∪N ′h. It has 3|L| vertices and at least 3|N ′h| = 6|L|
edges, as each vertex in N ′h is incident to at least 3 edges in Eout

L . Hence H has
average degree ≥ 4.

In both cases the size of H is bounded by 3|L| = 3(γt−1d)t−2, and hence satisfies the
requirement of the proposition if we set γt = 3γt−2

t−1 .

Conclusion. Considering all the cases that have arisen, the claim is proven with γt =
min{ 1

16
, (1

2
)t+1γt−1, 3γ

t−2
t−1}.
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Proof of Theorem 4.4.1

As usual (for example in the proofs of Corollaries 4.2.9 and 4.2.10), we suppose that d is
the minimum degree and that it is sufficiently large. Set k = 2t−2 (and note this adheres to
Claim 4.2.5). The motivation for the choice t in the statement is that in order to apply the
Reduction Theorem 4.2.7, we need to pick t such that ε > 1/(3k + 2). As already remarked
in the proof of Corollary 4.2.10, one may verify by rearranging that the value set for t is the
smallest integer that meets this requirement.

We apply Proposition 4.4.3 to each vertex in G, and handle two cases:

• Case I: For some vertex v, the first option of Proposition 4.4.3 is met. This means G
contains a subgraph of size at most γtd

t−2 and average degree 4.

• Case II: For each vertex v, the second option of Proposition 4.4.3 is met. This means
v is the root of a (γtd)-ary tree with all leaves in level t, so by Claim 4.2.5, v has
probability Ω(1) · d2k−1pk to be k-excited with p = 1/d2−ε. This holds for each vertex,
hence G is (k, p,Ω(1))-tree-like, and this holds even if we remove any single vertex from
the graph, hence G is (k, p,Ω(1))-good. By the Reduction Theorem 4.2.7, there is a
constant C = C(k, ε) such that G contains a subgraph of size C · n/d2−ε and average
degree 4.

Combining the two cases, we obtain that G contains a subgraph of average degree 4 and size
at most max{γtdt−2, Cn/d2−ε}. We will finish the proof by showing,

γtd
t−2 ≤ Cn/d2−ε (4.6)

for which it is enough to show:
γtd

t−2 ≤ βn/d2 (4.7)

for an arbitrary constant β > 0, as then eq. (4.6) follows for sufficiently large d. And Indeed,
by hypothesis we have d ≤ O(n1/t), hence γtd

t ≤ O(n), so eq. (4.7) is satisfied.

4.5 Improved Bound for Square-Free Graphs

We now prove Item 4 of Theorem 4.1.2, formally stated next. The analysis allowing this
proof is patterned by that of Coja-Oghlan et al. [COFKR13, Lemma 24]. Note that we
exclude squares (length-4 cycles) but allow triangles (length-3 cycles). However even if we
didn’t, i.e. in the girth ≥ 5 case, Item 4 would still improve over Item 3 as the former handles
ε > 1/11 whereas the latter only handles ε > 1/8.

Theorem 4.5.1. Let ε > 1/11. There is a constant C = C(ε) such that every graph with n
vertices, average degree d (satisfying 4 ≤ d ≤ O(

√
n)) and no cycles of length 4, contains a

subgraph of average degree 4 and size at most C · n/d2−ε.

Proof. As usual we suppose that d is the minimum degree and that it is sufficiently large
(see the proofs of Corollaries 4.2.9 and 4.2.10 for details). Moreover for each vertex in G we
restrict attention to exactly d of its neighbours. We use o(1) for a term that tends to 0 as d
grows, and o(f) for o(1) · f .

Set p = d−21/11. We will show that G is (3, p,Ω(1))-good, and the theorem would then
follow from the Reduction Theorem 4.2.7.
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Proposition 4.5.2. Each vertex in G is 2-excited w.p. ≥ (1− o(1))d
(
d−2

2

)
p2.

Proof. Let v be any vertex and let N(v) be its subset of neighbours. A vertex u ∈ N(v)
may have at most one neighbour in N(v), as otherwise it would form a square with its two
neighbours in N(v) and with v. Hence u has at least d− 2 neighbours not in {v} ∪N(v).

Let L denote the subset of all vertices that are neighbours of vertices in N(v), and that
are not in {v} ∪ N(v). By the above, each vertex in N(v) has at least d − 2 neighbours in
L. On the other hand, a vertex w ∈ L has a unique neighbour in N(v), since if it had two
neighbours u′, u” it would form a square v−u′−w−u”. Furthermore, w is not a neighbour
of v since L was defined to exclude all neighbours of v.

We conclude that v is the root of a tree with all leaves in level 3, such that v (which is
level 1) has d children and each vertex in level 2 has d− 2 children. To make v 2-excited, we
need to pick one of its children, and for that child, pick two children and mark them. The
total probability is (1− o(1))d

(
d−2

2

)
p2.

(We remark that (1 − o(1))d
(
d−2

2

)
p2 = Ω(d3p2), and hence the above proposition essen-

tially proves Theorem 4.5.1 for ε > 1/8.)
Fix a vertex v for the rest of the proof, with neighbours v1, . . . , vd. Let Xi be an indicator

random variable for the event that vi is 2-excited, and let X =
∑

iXi.

Proposition 4.5.3. Pr[X ≥ 1
2
γp2d4)] > 1

2
for some constant γ > 0.

Proof. By Proposition 4.5.2 we have Pr[Xi] = Ω(p2d3), and hence E[X] ≥ γp2d4 for some
γ > 0. We now wish to show that X behaves roughly as its expectation using the second
moment method, so we turn to bounding E[X2]. To this end we take i 6= j and upper-bound
Pr[Xi ∧Xj]. Since G is square-free, vi and vj have v as a unique mutual neighbour. Hence
one possibility to make both vi and vj 2-excited is that v is a 2-root, which happens with
probability 1

2
(1− o(1))d2p2 (as is easily verified).

The other possibility is that vi and vj are neighbours of distinct 2-roots, and this is the
event we analyse now. Let Ni and Nj denote the subset of neighbours of vi, vj respectively,
excluding v. Then Ni, Nj are disjoint and of size d− 1 each, and every u ∈ Ni, w ∈ Nj have
at most one mutual neighbour. Dependency between Xi, Xj is maximized when each such
pair u,w has exactly one mutual neighbour, so this is the case we consider. We visualize this
as a (d− 1)× (d− 1) matrix with rows corresponding to Ni, columns corresponding to Nj,
and entries corresponding to (some of the) vertices in G, such that u ∈ Ni is adjacent to the
entries in its row, and w ∈ Ni is adjacent to the entries in its column.

We are concerned with the event that some u ∈ Ni, w ∈ Nj are each a 2-root, which
corresponds to having a row and a column, each with two marked entries. This can occur
in either of two constellations, as illustrated in fig. 4:

• Four marked entries. We need to choose a row r and a column c ((d − 1)2) options),
then two columns c′, c” of the remaining columns excluding c (so

(
d−2

2

)
options) and

two rows r′, r” of the remaining rows exlucing r (so again
(
d−2

2

)
options), and finally,

to mark the four entries (r, c′), (r, c”), (r′, c), (r”, c). See fig. 4 to make this clearer (the
row and column marked with arrows are r and c). The total probability is hence:
(1− o(1))((d− 1)

(
d−2

2

)
p2)2.
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• Three marked entries. The total probability is (1 − o(1))((d − 1)(d − 2))2p3, for con-
siderations similar to the above; details are omitted.

Adding everything together, we have:

Pr[Xi∧Xj] =
1

2
(1− o(1))p2d2 + (1− o(1))((d− 1)(d− 2))2p3 + (1− o(1))((d− 1)

(
d− 2

2

)
p2)2

The first term behaves roughly like d2p2, the second like d2p3, and the third like d6p4. Since
pd2 � 1, the third term is asymptotically dominant and hence:

Pr[Xi ∧Xj] = (1 + o(1))

(
(d− 1)

(
d− 2

2

)
p2

)2

By Proposition 4.5.2 we have Pr[Xi] ≥ (1 − o(1))d
(
d−2

2

)
p2, and a similar bound holds for

Pr[Xj]. Hence,

Pr[Xi∧Xj] ≤ (1+o(1))

(
d

(
d− 2

2

)
p2

)2

≤ 1 + o(1)

1− o(1)
Pr[Xi] Pr[Xj] ≤ (1+o(1)) Pr[Xi] Pr[Xj]

Consequently:

E[X2] =
∑
i,j

E[XiXj] =
∑
i,j

Pr[Xi ∧Xj] =
∑
i

Pr[Xi] +
∑
i 6=j

Pr[Xi ∧Xj] ≤

E[X]+(1+o(1))
∑
i 6=j

Pr[Xi] Pr[Xj] = E[X]+(1+o(1))
∑
i 6=j

E[Xi]E[Xj] ≤ E[X]+(1+o(1)) (E[X])2

and therefore, Var(X) = E[X2] − (E[X])2 ≤ EX + o(1) (EX)2. Since EX � 1 we have
EX = o((EX)2) so we can write Var(X) = o((EX)2). Now by Chebyshev’s inequality:

Pr[|X − EX| > 0.5EX] <
4Var(X)

(EX)2
−−−→
d→∞

0

In particular, for sufficiently large d, the probability that X is less than half its expected
value is less than 1

2
. Since EX ≥ γp2d4, the proposition is proven.

Now we can prove the theorem. In G(V,E, p), we suppose the vertices are marked in two
independent phases, each with probability 1

2
p. This approach has already been taken in the

proof of Lemma 4.3.4, and as explained there, this indeed simulates G(V,E, p) up to a small
variation to the constants involved.

By Proposition 4.5.3, after the first phase there is probability 1
2

for v to have 1
2
p2d4

neighbours that are 2-excited. Let Y denote their subset. For w ∈ Y , let A(w) be the event
that the second phase marks a neighbour of w which is neither v nor the neighbour that made
2-excited in the first phase. Since w has d−2 such neighbours, A(w) occurs with probability
(roughly) (d − 2)p. Furthermore, the events {A(w) : w ∈ Y } are independent because all
vertices in Y have v as a mutual neighbour, and cannot share additional mutual neighbours
without forming a square. Therefore, the probability for at least one of the events A(w) to
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Figure 4: Two possible constellations for having a row and column with two marked
entries each: On the left with a total of three marked entries, and on the right with a total
of four marked entries.

occur is (again, roughly) |Y | · (d − 2)p = Ω(p3d5). This occurrence renders w a 3-root, and
hence makes v 3-excited.

We have proven this for an arbitrary v, so G is (3, p,Ω(1))-tree-like. All properties
used remain intact even if we remove any single vertex from G (up to a small variation of
constants), hence G is (3, p,Ω(1))-good. Theorem 4.5.1 now follows from Theorem 4.2.7.

31



5 Negative Results

In this section we provide lower bounds on S`(n, d), by establishing the existence of arbitrarily
large graphs that exclude all `-subgraphs up to a certain size.

We note that a graph may have an `-subgraph of a certain size but not of any larger size,
so in a sense the property is non-monotone. (To illustrate this, consider a (2` + 1)-clique
joined with arbitrarily many isolated vertices.) Therefore in order to prove S`(n, d) ≥ s, we
need explicitly to rule out `-subgraph of all sizes up to s, and not just s.

5.1 A Random Graph Model

Definition 5.1. The distribution Gmin(n, d) over simple graphs on the vertex set [n] =
{1, . . . , n} is defined by the following sampling process:

• In the first stage, each vertex chooses uniformly at random a subset of size d of the
remaining n − 1 vertices, and connects to them with an (undirected) edge. Parallel
edges are allowed.

• In the second stage, parallel edges are unified into a single edge. The resulting (simple)
graph is the output sample.

Proposition 5.2. Let G be sampled from Gmin(n, d). Then,

1. G has minimum degree at least d.

2. G has average degree between d and 2d.

3. Any subset F of possible edges on the vertex set [n] occurs in G w.p. ≤ (4d
n

)|F |.

Proof. (1 ) In the first stage of the sampling process, each vertex chooses d neighbours, and
remains connected to all of them after the second stage.

(2 ) The first stage places exactly dn edges inG. Then, as each pair of vertices is connected
with at most two parallel edges, the second stage removes at most half the edges.

(3 ) Each edge occurs in G with probability:

p = 1−

((
n−2
d

)(
n−1
d

))2

= 1−
(
n− 1− d
n− 1

)2

=
2d

n− 1
− d2

(n− 1)2
≤ 4d

n

and concurrent appearance of edges is either independent (if they are vertex-disjoint) or
negatively correlated (otherwise).

Our reason for preferring Gmin(n, d) over the more standard G(n, p) model is the firm
bound on the minimum degree, that automatically strengthens our results. We could carry
out the upcoming proofs of Theorems 5.3 and 5.4 with G(n, p = d

n
), and get similar but

slightly weaker results, with d being the average degree rather than the minimum degree.11

11In some of the cases, we could then transfer to minimum degree with additional effort.

32



5.2 Negative Result for All Densities

The next theorem states that S`(n, d) = Ω(n/d`/(`−1)), for all densities d.

Theorem 5.3. Let ` > 1. There is a constant c` > 0 such that for all sufficiently large
n and d = O(n(`−1)/`), there is a graph on n vertices with minimum degree d, without any
`-subgraphs of size ≤ c` · n/d`/(`−1).

Proof. Let G be a sample of Gmin(n, d). For each subset U of [n], let AU denote the event
that G contains an `-subgraph on the vertex set U . We recall this means that there is a
subset F of edges with size d`|U |e and with all endpoints in U . We assume for simplicity
that `|U | is an integer (even though this is not necessary), so |F | = `|U |. By Proposition 5.2,

each such F occurs in G w.p. ≤
(

4d
n

)`|U |
, so a union bound over the possible choices of F

out of the edges that may be induced by U , implies:

Pr[AU ] ≤
(
|U |2

`|U |

)
·
(

4d

n

)`|U |
≤
(

4ed|U |
`n

)`|U |
(5.1)

where we have applied the known bound
(
m
k

)
≤
(
em
k

)k
. For s > 0, we apply another union

bound to bound the probability ps that G contains an `-subgraph of size at most s:

ps ≤
∑

U⊂[n],|U |≤s

Pr[AU ] =
s∑
t=1

∑
U⊂[n],|U |=t

Pr[AU ] ≤
s∑
t=1

(
n

t

)(
4edt

`n

)`t
≤

s∑
t=1

(en
t

)t(4edt

`n

)`t

=
s∑
t=1

(
e

(
4e

`

)`
· d`

n`−1
· t`−1

)t

≤
s∑
t=1

(
e

(
4e

`

)`
· d`

n`−1
· s`−1

)t

(5.2)

Plugging s = c` · n/d`/(`−1) with c` =
(

1
3e

( `
4e

)`
)1/(`−1)

, we find that ps ≤
∑s

t=1(1
3
)t <∑∞

t=1(1
3
)t = 1

2
< 1. Hence there is a sample G without `-subgraphs of size at most s.

5.3 Strong Negative Result for High Density

The next theorem states that S`(n, d) = ω(n/d`/(`−1)) for the highest density case, d =
Θ(n(`−1)/`). This amounts to finding arbitrarily large graphs of such density without any
constant-sized `-subgraphs.

Theorem 5.4. Let ` > 1 and c, s > 0 be arbitrary constants. For all sufficiently large n,
there is a graph on n vertices with minimum degree d = c · n(`−1)/`, without any `-subgraphs
of size ≤ s.

Proof. Our proof parallels that of Hoory [Hoo02, Theorem A.4], which addresses the closely
related problem of showing there are graphs with large girth. Let G be a sample of Gmin(n, d).
We use the notation of events {AU : U ⊂ [n]} as in the above proof of Theorem 5.3. For U
with size |U | = t ≤ s, we have:

Pr[AU ] ≤
(

4edt

`n

)`t
≤ α

nt
(5.3)
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for a sufficiently large constant α. (The first inequality was established as eq. (5.1) in the
proof of Theorem 5.3.) We need to show that with positive probability, none of the events
{AU : |U | ≤ s} occurs. To this end we invoke the Local Lemma, stated next. For a proof
see [AS11, Lemma 5.1.1].

Lemma 5.5 (Local Lemma). Let A be a finite set of events in an arbitrary probability
space. For A ∈ A, let Γ(A) ⊂ A be such that A is independent of the collection of events
A \ (A ∪ Γ(A)). If there is an assignment of reals x : A → (0, 1) such that for all A ∈ A,

Pr[A] ≤ x(A) ·
∏

B∈Γ(A)

(1− x(B)) (5.4)

then with positive probability, none of the events in A occurs.

Observe that in Gmin(n, d), the event AU is determined solely by the choices of the vertices
in U , and hence is independent of AU ′ for all U ′ ⊂ [n] such that U ∩U ′ = ∅. In other words,
AU may be dependent only of events AU ′ for which U,U ′ have mutual vertices. Therefore,
applying Lemma 5.5 with x(AU) = 2 Pr[AU ], the condition eq. (5.4) becomes:

Pr[AU ] ≤ 2 Pr[AU ] ·
s∏
r=1

∏
|U ′|=r
U∩U ′ 6=∅

(1− 2 Pr[AU ′ ]) (5.5)

The number of subsets U ′ of size r that share any vertices with U is:(
n

r

)
−
(
n− |U |

r

)
≤ nr

r!
− (n− r − |U |+ 1)r

r!
≤ βnr−1

for a sufficiently large constant β. Using this and eq. (5.3) we get,

s∏
r=1

∏
|U ′|=r
U∩U ′ 6=∅

(1− 2 Pr[AU ′ ]) ≥
s∏
r=1

(
1− 2α

nr

)βnr−1

≥ exp

(
−

s∑
r=1

4αβ

n

)
≥ 1

2

for sufficiently large n. (The middle inequality is because 1−z ≥ exp(−2z) holds for all, say,
0 < z < 1

2
.) Consequently eq. (5.5) is satisfied, so by Lemma 5.5 we get positive probability

that none of the events occurs, and the theorem follows.

5.4 Negative Result for Regular Graphs

Next we give a result specialized to regular graphs. It essentially shows that for high densities,
the bound S`(n, d) = Ω(n/d`/(`−1)) from Theorem 5.3 holds even under this restriction. More
precisely, let Sreg

` (n, d) be the optimal upper bound S such that every d-regular graph on n
vertices contains an `-subgraph of size at most S. Clearly, S`(n, d) ≥ Sreg

` (n, d). Theorem 5.6
states that Sreg

` (n, d) = ω(f(n, d)) for all functions f(n, d) that can be made constant w.r.t.
n by plugging some d = o(n(`−1)/`).
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Theorem 5.6. Let ` > 1 and s > 0 be arbitrary constants. For all sufficiently large n and
d = d(n) such that d = o(n(`−1)/`) and d = ω(1), there is a d-regular graph without any
`-subgraph of size ≤ s.

The proof relies on the interesting main lemma of Kim, Sudakov and Vu [KSV07], that
essentially states that in a uniformly random d-regular graph, any fixed constant-sized sub-
graph occurs with roughly the same probability as in G(n, p) with p = d/n (and also as in
Gmin(n, d), by Proposition 5.2). In particular, the probability is determined (up to low order
terms) solely by the number of edges in the subgraph.

Lemma 5.7 (Lemma 2.1 in [KSV07]12). For integer n, suppose d = d(n) satisfies d = ω(1)
and d = o(n). Let G be a uniformly random d-regular graph on the vertex set [n]. Let F be
a fixed collection of edges on this vertex set, of constant size t. Then,

Pr[F ⊂ G] = (1 + o(1))(d/n)t

Proof of Theorem 5.6. Let G be a uniformly random d-regular graph on the vertex set [n].
We repeat the proof of Theorem 5.3, taking two union bounds to derive eq. (5.2), but with
the use of Proposition 5.2 replaced by Lemma 5.7. We obtain ps ≤

∑s
t=1 q

t, where ps is
the probability that G contains an `-subgraph of size at most s, and q = C · d`/n`−1 for a
constant C that depends on ` and s. Since d = o(n(`−1)/`), we have q ≤ 1

3
for sufficiently

large n, in which case ps <
∑∞

t=1(1
3
)t < 1. This implies that there is a sample G without any

`-subgraphs of size up to s.

12The statement in [KSV07] is slightly more general, to also apply to nearly-regular random graphs.
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6 Bounds on `-Girth

Our bounds on g`(n, d) follow as immediate consequences of the results of Sections 4 and 5.

Upper Bounds.

Corollary 6.1 (upper bound on g`(n, d)). Let ` > 1 be an integer and ε > 0. There is
a constant C = C(`, ε) such that every graph G on n vertices with average degree13 d has

`-girth at most C · n/d1+ 1
`−2
− 1
`3−3`2+`+2

−ε
.

Proof. Applying Theorem 4.1.3 with `− 1, we get subgraph with average degree 2`− 2 and
size as in the corollary. By Lemma 2.4 it contains a subgraph with minimum degree `.

Corollary 6.2 (improved upper bounds on 3-girth). For every ε > 0 there is a constant
C = C(ε) such that the following holds: Let G be a graph on n vertices with average degree
d. If one of the following is satisfied:

• ε > 1
5
, or

• d = O(n1/t) where t = blog(8
3
(1
ε
− 2))c, or

• G has girth ≥ 2t− 1 where t = blog(8
3
(1
ε
− 2))c, or

• ε > 1
11

and G is square-free,

then G has 3-girth at most C · n/d2−ε.

Proof. Similar to Corollary 6.1, but with Theorem 4.1.2 instead of Theorem 4.1.3.

Lower Bounds.

Corollary 6.3. Let ` > 1. There is a constant c` > 0 such that for all sufficiently large n
and d = O(n(`−2)/(`−1)), there is a graph on n vertices with minimum degree d, with `-girth

≥ c` · n/d1+ 2
`−2 .

Corollary 6.4. Let ` > 1 and c, s > 0 be arbitrary constants. For all sufficiently large n,
there is a graph on n vertices with minimum degree d = c · n(`−2)/(`−1), with `-girth ≥ s.

Corollary 6.5. Let ` > 1 and s > 0 be arbitrary constants. For all sufficiently large n and
d = d(n) such that d = o(n(`−2)/(`−1)) and d = ω(1), there is a d-regular graph with `-girth
≥ s.

Proof of Corollaries 6.3, 6.4 and 6.5. Apply Theorems 5.3, 5.4 and 5.6, respectively, with
`/2. This gives a graph that has no subgraphs with average degree ≥ ` and size up to the
bound in the corollaries. In particular, it has no such subgraphs with minimum degree `.

Similarly to Section 5, we remark that for high densities, Corollary 6.4 states that

g`(n, d) = ω(n/d1+ 2
`−2 ) and Corollary 6.5 shows that the bound g`(n, d) = Ω(n/d1+ 2

`−2 )
holds even for regular graphs.

13To ease the statement, trivially required upper and lower bounds on d are omitted.
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7 Hypergraphs and Multigraphs

In this section we give upper bounds on the size of `-subgraphs in hypergraphs, using the
results of Sections 3 and 4. The starting point of this work was in fact the following conjecture
of Feige [Fei08].

Conjecture 7.1 (Conjecture 1.7 from [Fei08]). Let c be sufficiently large. Every 3-uniform
hypergraph on n vertices and m = c · dn hyperedges (with 1 < d ≤ O(

√
n)) has a set of

n′ ≤ Õ(n/d2) vertices that induce at least 2n′/3 hyperedges. (The Õ notation may suppress
a polylog (n) multiplicative factor.)

Put otherwise, Conjecture 7.1 states that a 3-hypergraph must contain a 2
3
-subgraph of

size Õ(n/d2). Note that it is a close analogue of Conjecture 4.1.1, up to a tighter bound on
the size of the subgraph: the multiplicative deviation from n/d2 is allowed to be polylog (n)
in the former and nε in the latter.

We will show how our positive results extend to hypergraphs. This brings us short
of proving Conjecture 7.1, but we obtain the following variants, which are analogues of
Theorems 3.1 and 4.1.2 respectively.

Theorem 7.2 (degree compromise). Let ε > 0. There is a constant C = C(ε) such that
every 3-uniform hypergraph with n vertices and dn edges (where 2

3
≤ d ≤ O(

√
n)) contains

a sub-hypergraph of size at most C · n/d2 with at least 2
3
− ε edges per vertex.

Theorem 7.3 (size compromise). Let ε > 0. There is a constant C = C(ε) such that
the following holds: Let H be a 3-uniform hypergraph with n vertices and dn edges (where
2
3
≤ d ≤ O(

√
n)). If one of the following holds:

1. ε > 1
5
, or

2. d = O(n1/t) for t = blog(8
3
(1
ε
− 2))c, or

3. ε > 1
11

and H contains no loose cycles14 of length 2, 3 and 4,

then H contains a sub-hypergraph of size at most C · n/d2−ε with at least 2
3

edges per vertex.

Our approach is simply to replace each hyperedge with a clique of pair-wise edges, and
apply the results from Sections 3 and 4 on the resulting multigraph. We indeed have to
consider the latter as a multigraph (rather than a simple graph) in order to avoid a fatal
loss in the number of edges. Hence an intermediate step towards handling hypergraphs is to
handle multigraphs.

Lower bound. The bound in Theorem 7.3 cannot be improved further thanO(n/d2). That
is, for some constant c > 0, there are 3-hypergraphs of size n with dn hyperedges excluding
all 2

3
-subgraphs of size up to cn/d2. The proof is very similar to that of Theorem 5.3, by

a union bound in a random hypergraph model in which each hyperedge is present with
independent probability p = d/n2. Details are omitted.

14A loose cycle of length k in a hypergraph H(V,E) is a sequence of vertices v0, v1 . . . , v2k with v0 = v2k,
such that each hyperedge {v2i, v2i+1, v2i+2} is present in E. (This definition is standard.)

37



7.1 From Graphs to Multigraphs

Recall that a multigraph, as opposed to a simple graph, may have self-loops and parallel
edges. Our upper bounds in Sections 3 and 4 were proven for simple graphs, but the following
simple observation extends them to multigraphs as well.

Proposition 7.4. Each of Theorems 3.1, 4.1.2 and 4.1.3 holds for multigraphs, with only a
change to the constant C in the statement.

Remark. Even Item 3 of Theorem 4.1.2 extends if we define the girth of a multigraph
to be the length of the shortest cycle that does not contain any parallel edges. This clearly
coincides with the usual definition for simple graphs.

Proof. We prove for ` = 2 for simplicity; the generalization is straight-forward. Let G be a
multigraph with n vertices and average degree d, so 1

2
dn edges. If any two vertices in G are

connected with 4 parallel edges, they induce a 2-subgraph of size 2. If any vertex in G has
2 self-loops, it induces a 2-subgraph of size 1. In both cases the proposition holds.

Otherwise, we move to the simple subgraph G′ of G obtained by eliminating all self-
loops and unifying parallel edges into a single edge. We claim that their average degrees
are roughly the same. To see this, first remove the self-loops, of which there are at most n
(one per vertex). We are left with ≥ (1

2
d− 1)n edges. Then unify the parallel edges: Since

each adjacent pair in G is connected with at most 3 edges, this removes at most two-thirds
of them, and we are left with at least 1

3
(1

2
d− 1)n edges. This means G′ has average degree

≥ 1
3
(d− 2), which is similar to d up to a multiplicative constant. We can now apply either

of Theorems 3.1, 4.1.2 and 4.1.3 on G′ to get the proposition, suppressing the loss in the
average degree into the constant C in their statements.

7.2 From Multigraphs to Hypergraphs

We now present the reduction from 3-uniform hypergraphs to graphs.

Definition 7.5 (skeleton multigraph of a hypergraph). Let H(V,E) be a hypergraph. The
skeleton multigraph GH of H has vertex set V , and for each u, v ∈ V , the number of parallel
edges connecting u, v in GH is the number of hyperedges in E covering both u and v.

(Equivalently, each hyperedge in H induces an edge in GH between each pair it covers.)

Lemma 7.6 (main for Section 7). Let H(V,E) be a 3-uniform hypergraph with skeleton
multigraph GH . Suppose GH has a (2− ε)-subgraph G′ of size k, for some 0 ≤ ε < 2. Then
H has a sub-hypergraph of size at most 3k with at least 2

3
− 1

3
ε edges per vertex.

Proof. We may assume w.l.o.g. that G′ is an induced subgraph. Let E ′ the subset of hy-
peredges in H that induce any edges in G′. We can partition E ′ to disjoint subsets A,B as
follows:

• A - hyperedges that induce exactly one edge in G′. Let a = |A|.

• B - hyperedges that induce exactly three edge in G′. Let b = |B|.
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(Note that since we have assumed G′ is an induced subgraph, there are no hyperedges that
induce two edges.) With this notation G′ has exactly a+ 3b edges, and hence:

a+ 3b ≥ (2− ε)k (7.1)

We now arbitrarily remove edges from A (and thus from E ′) either until A is empty, or until
a+ 3b ≤ 2k (whichever happens first). Note that in both cases, eq. (7.1) remains satisfied.

Let V ′ be the subset of vertices in H that are covered by any edges in E ′, and consider
the subgraph H ′(V ′, E ′) of H. Let U ⊂ V ′ the subset of vertices in H ′ that are not in
G′. Observe that each hyperedge in A contributes one vertex to U , and a hyperedge in B
contributes no vertices to U . Hence |U | ≤ a (note that a vertex in U may contributed by
more than one hyperedge in A), and we conclude:

|V ′| = k + |U | ≤ k + a (7.2)

We bound the size of H ′. Recall that by the above, one of two cases must hold: Either
A = ∅, in which case U = ∅ and hence |V ′| = k, or a + 3b ≤ 2k, in which case a ≤ 2k and
hence |V ′| = k + |U | ≤ k + a ≤ 3k. In both cases we have |V ′| ≤ 3k.

We turn to bounding the hyperedge-to-vertex ratio of H ′. Using eq. (7.2) and then
eq. (7.1), we get:

|V ′| ≤ k + a ≤ a+ 3b

2− ε
+ a =

3a+ 3b− εa
2− ε

=
3|E ′| − εa

2− ε

(recalling that |E ′| = a+ b), and hence:

|E ′|
|V ′|
≥ (2− ε)|E ′|

3|E ′| − εa
=

2− ε
3− εa

|E′|
≥ 2− ε

3

as required.

7.3 Proof of Theorems 7.2 and 7.3

Proof of Theorem 7.2. Let ε > 0. Let H be a 3-uniform hypergraph with n vertices and
dn hyperedges, and let GH be its skeleton multigraph. By Definition 7.5 we see that GH

has 3dn edges, hence average degree 6d. By Theorem 3.1 (combined with Proposition 7.4)
applied with 3ε, GH contains a (2− 3ε)-subgraph of size k ≤ O(n/d2). Now by Lemma 7.6
applied with 3ε, H contains a (2

3
− ε)-subgraph of size at most 3k.

Proof of Theorem 7.3. Similar to the previous proof, only we use Theorem 4.1.2 instead of
Theorem 3.1, and apply Lemma 7.6 with ε = 0. The only point that requires attention is
Item 3 of Theorem 7.3, that relies on the absence of small loose cycles from the hypergraph.
It can be easily seen that if a H excludes any loose cycles of lengths 2, 3 and 4, then GH is
square-free (even though it clearly contains many triangles). Hence, Item 3 of Theorem 7.3
follows from Item 4 of Theorem 4.1.2.
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[Kez91] André E. Kezdy, Studies in connectivity, University of Illinois at Urbana-
Champaign, 1991.
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A Appendix: Computational Hardness

From a Complexity Theory standpoint, Question 1.1 naturally raises the following compu-
tational problem.

Definition A.1. Let ∆ > 0. The computational problem Minimum Subgraph of Average
Degree ≥ ∆, denoted MSAD∆, is defined as:

• Input: A simple graph G.

• Output: A smallest subgraph of G with average degree at least ∆, or a report that no
such subgraph exists.

We are not aware of a previous treatment of this problem, but some close variants have
been studied, as detailed below. It seems natural to postulate that MSAD∆ is NP-hard
for ∆ > 2, but despite some effort we were not able to prove this. (The ∆ ≤ 2 case is
polynomial-time solvable, see below.) It is left here as an open problem.

Problem A.2. Prove or disprove that MSAD∆ is NP-hard for every ∆ > 2.

In this appendix we review some related work to this problem, then sketch an (obvious)
polynomial-time algorithm for ∆ ≤ 2, and finally we show that when considering the hardness
of MSAD∆, it is sufficient to look at an arbitrarily small range of ∆ values above 2.

Related work. First observe that if we let ∆ be part of the input to MSAD∆, then the
problem is NP-hard since we can use it to solve k-Clique by setting ∆ = k− 1. Problem A.2
is different in that ∆ is a fixed constant, say 4.

As mentioned in Section 1.1, Amini et al. [ASS12, APP+12] obtained some hardness
results for MSMD∆, which is a problem similar to MSAD∆ except that the output subgraph
is required to have minimal degree ≥ ∆, rather than average degree.

Some close variants of MSAD∆ have been shown to be NP-hard, particularly by Asahiro,
Hassin and Iwama [AHI02] and Feige and Seltser [FS97]: Let (k, f(k))-DSP be the problem
of deciding whether an input graph has a subgraph of size k with at least f(k) edges. The
case f(k) = 1

2
∆k is the decision version of MSAD∆. The aforementioned works show that

for 0 < ε < 1, (k, f(k))-DSP is NP-complete for f(k) = Θ(k1+ε) [AHI02, Theorem 1], and
for f(k) = k+ kε [FS97, Corollary 3.1]. Note that setting either ε = 0 in the former or ε = 1
in the latter would show that MSAD∆ is NP-hard for a single value of ∆,15 however these
results do not handle the respective ε value.

The ∆ ≤ 2 case. MSAD∆ is easily seen to be polynomial-time solvable for ∆ ≤ 2: If
∆ = 2, the problem reduces to finding a smallest cycle, which can be done by performing
a BFS from each vertex. If ∆ < 2, the output subgraph could be either a cycle or a tree.
A tree of size t has t − 1 edges and hence average degree 2 − 1

t
, so we need one with size

t = d 1
2−∆
e, which can again be found by a BFS from each vertex. We then return either the

tree (if it exists) or a smallest cycle (if it exists), depending on which is smaller.

15This ∆ value would be 4 in [FS97, Corollary 3.1], or twice the constant hidden in the Θ notation of
[AHI02, Theorem 1].
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Low densities above 2 are as hard as any. We prove the following:

Proposition A.3. Let β > 0. For every ∆ > 2, there is ∆′ ∈ (2, 2 + β), such that there is
a polynomial-time reduction of MSAD∆ to MSAD∆′.

Corollary A.4. Let β > 0. If all the problems {MSAD∆ : 2 < ∆ < 2 + β} are polynomial-
time solvable, then all the problems {MSAD∆ : ∆ > 2} are polynomial-time solvable.

The proof is by sparsifying the input graph as follows: We split each edge to two edges
by adding a new “dummy” vertex, which is in fact equivalent to constructing a bipartite
graph that describes the edge-vertex incidences in the original graph. We then repeat the
process sufficiently many times.

Definition A.5. Let G(V,E) be a simple graph. The incidence graph BG of G is the bipartite
graph with sides V and E, such that every v ∈ V and e ∈ E are connected with an edge in
BG iff v is an endpoint of e in G.

For a graph G, let us denote by f∆(G) the size of its smallest subgraph with average
degree exactly ∆. (If no such subgraph exists, set f∆(G) =∞.)

Lemma A.6. Let G(V,E) be a simple graph with incidence graph BG, let ∆ > 2, and k > 0.
Denote ∆′ = 4− 8

∆+2
. Then, f∆(G) ≤ k if and only if f∆′(G) ≤ k + 1

2
∆k.

Proof. Suppose f∆(G) ≤ k. Let H(U, F ) be a subgraph of G with size |U | ≤ k and average
degree ∆. Let H ′ be the subgraph of BG induced by U ∪ F . Then H ′ has |U |+ |F | vertices
and 2|F | edges, as each edge in F is incident in G to two vertices in U , and hence is adjacent
in BG to two vertices in U . Since H has average degree ∆ we have |F | = 1

2
∆|U |, and since

|U | ≤ k, we see that H ′ has size:

|H ′| = |U |+ |F | = |U |+ 1
2
∆|U | ≤ k + 1

2
∆k

Calculating the average degree of H ′, we get:

avgdeg(H ′) = 2 · 2|F |
|F |+ |U |

= 4− 4|U |
|F |+ |U |

= 4− 4
|F |
|U | + 1

= 4− 8

∆ + 2
= ∆′

and this proves one direction.
Conversely, suppose f∆′(G) ≤ k+ 1

2
∆k. Let H ′ be a minimum-sized subgraph of BG with

average degree exactly ∆′. By hypothesis we have ∆ > 2, and this is easily seen to imply
∆′ > 2. Hence by the minimality of the size of H ′ and Lemma 2.4, we may assume that H ′

has minimum degree 2.
Recall that BG is bipartite with sides V and E. Hence we can partition the vertices of

H ′ into two disjoins subsets, U ⊂ V and F ⊂ E. Since H ′ has minimum degree 2, and
each e ∈ F has degree exactly 2 in BG, we infer that e has degree 2 in H ′. This means e is
adjacent in H ′ to two vertices in U , so in G, the edge e has both its endpoints in U . In other
words, each edge in F is spanned by the vertices in U , so (U, F ) is a subgraph H of G.
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To calculate the average degree of H, observe that H ′ has |U | + |F | vertices and 2|F |
edges, and by hypothesis its average degree is ∆′ = 4− 8

∆+2
. Hence:

2 · 2|F |
|U |+ |F |

= 4− 8

∆ + 2

Rearranging gives ∆ = 2|F |
|U | , and this is the average degree of H.

To calculate the size of H, note that the above equality ∆ = 2|F |
|U | is equivalent to |F | =

1
2
∆|U |, and recall that by assumption we have |U | + |F | ≤ k + 1

2
∆k (since |U | + |F | is the

size of H ′). Putting these together and rearranging, we get:

|U |+ 1

2
∆|U | ≤ k +

1

2
∆k

and hence |U | ≤ k, so H has size at most k. The proof is complete.

Proof of Proposition A.3. Let ∆ > 2. By Lemma A.6, we can reduce MSAD∆ to MSAD∆1

with ∆1 = 4 − 8
∆+2

. Then we use Lemma A.6 again to reduce MSAD∆1 to MSAD∆2 , with

∆2 = 4 − 8
∆1+2

. We repeat this sufficiently many times. The sequence ∆m+1 = 4 − 8
∆m+2

converges to 2, so eventually we get to ∆m < 2+β. The number of repetitions needed depends
only on the initial ∆, which is constant, and hence this is a polynomial-time reduction of
MSAD∆ to MSAD∆m , for some ∆m < 2 + β.

45



B Appendix: Proof of Theorem 3.1

Theorem B.1 (restatement of Theorem 3.1). Let ∆ > 1 be an integer and c, ε > 0. There
is a constant C = C(∆, ε, c), such that every graph on n vertices with average degree d
satisfying ∆− ε ≤ d ≤ c · n(∆−2)/∆, contains a subgraph of size at most C · n/d∆/(∆−2) with
average degree ≥ ∆− ε.

Proof. Let G(V,E) be a graph as in the statement of the theorem. By Lemma 2.4 we may
assume, up to a slight variation of constants, that G has minimum degree d. Moreover it
is enough to prove the theorem for all sufficiently large values of d, as the lower values can
then be handled by a proper choice of constant C. We use o(1) to denote a term that tends
to 0 as d grows.

For each vertex, we fix an arbitrary subset of exactly d of its neighbours, and refer only
to them as its neighbours.

We first assume that ∆ is even, ∆ = 2` for an integer ` ≥ 2. We handle two separate
cases, according to the range of the density d.

Case I - Low density: Suppose d ≤ n(`−1)/1.99`. The proof in this case is very similar
to that of Theorem 3.2. Let α be a large constant that will be determined later. Sample
a random subset A ⊂ V by including each vertex in A with independent probability p =
α/d`/(`−1). We refer to vertices in A as marked. Note that |A| is binomially distributed with
parameters n, p, and that E|A| = αn/d`/(`−1).

For each vertex v we fix an arbitrary subset N(v) of exactly d of its neighbours. Define
B to be the random subset of vertices v that are not marked, and have exactly ` marked
neighbours in N(v). We then have,

Pr[v ∈ B] = (1− p) ·
(
d

`

)
p`(1− p)d−` ≥ (1−o(1))

``
(dp)` = (1−o(1))

``
α`d−`/(`−1)

where the inequality is by the known bound
(
a
b

)
≥ (a

b
)b and by observing that 1−p = 1−o(1).

By linearity of expectation we get E|B| = (1−o(1))
``

α`n/d`/(`−1).

By the Chernoff bound Lemma 2.3 applied to |A|, we get:

Pr [|A| < 2E|A|] ≥ 1− (0.25e)E|A| = 1− (0.25e)αn/d
`/(`−1) ≥ 1− (0.25e)αd

0.99`/(`−1)

where the final inequality is by the assumption of the current case, d ≤ n(`−1)/1.99`. On
the other hand, by Lemma 2.1, |B| attains half its expected value with probability at least
E|B|
2n

= (1−o(1))
``

α`d−`/(`−1) = Ω(d−`/(`−1)). Summing the bounds yields:

Pr [|A| ≤ 2E|A|] + Pr
[
|B| ≥ 1

2
E|B|

]
≥ 1− (0.25e)αd

0.99`/(`−1)

+ Ω(d−`/(`−1))

The second term in the above right-hand side shrinks exponentially in d, whereas the third
term shrinks polynomially. Hence for sufficiently large d the above right-hand side is strictly
more than 1, and hence there is a positive probability that both of the events |A| ≤ 2E[|A|]
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and |B| ≥ 1
2
E[|B|] occur. We fix this event from now on, and arbitrarily remove vertices

from B until |B| = 1
2
E[|B|]. The following bounds now hold:

|A|+ |B| ≤ 2E|A|+ 1

2
E|B| =

(
2α + (1−o(1))

``
α`
)
· n

d`/(`−1)
(B.1)

|B|
|A|
≥

1
2
E|B|

2E|A|
=

1− o(1)

4``
· α`−1 (B.2)

We take our target subgraph H to be that induced by A ∪ B. By eq. (B.1), its size is

bounded by C · n/d`/(`−1), which equals C · n/d∆/(∆−2), for C = 2α + (1−o(1))
``

α`. To bound
its average degree, note that each vertex in B is incident to ` edges connecting it to A, and
since A and B are disjoint (recall that vertices in B are not marked), each such edge has a
unique end in B. Hence we count at least `|B| different edges in H, and find that its average
degree is:

avgdeg(H) ≥ 2 · `|B|
|A|+ |B|

= 2`− 2`

1 + |B|
|A|

≥ 2`− 2`

1 + 1−o(1)
4``
· α`−1

using eq. (B.2) for the final inequality. The bound on the right-hand side is guaranteed to
be at least 2`− ε (which equals ∆− ε) as long as we pick α such that α`−1 > 16``+1/ε, and
the proof for this case is complete.

Case II - High density: Suppose d > n(`−1)/1.99`. In this case, we choose the subset A
uniformly at random over all subsets of V with size exactly a = αn/d`/(`−1). (Again, α > 0
is a large constant that will be set later.) Again we refer to vertices in A as marked, and
define B similarly to the previous case, as the subset of non-marked vertices with exactly `
marked neighbours. We now lower-bound the probability of a vertex v ∈ V to be in B:

Pr[v ∈ B] =

(
d
`

)(
n−d−1
a−`

)(
n
a

) ≥
(d
`
)` · (n−d−1)!

(a−`)!(n−d−1−a+`)!

n!
a!(n−a)!

=
(d
`
)` · a!

(a−`)! ·
(n−d−1)!

(n−d−1−a+`)!

n!
(n−a)!

Next we apply the inqeualities (m−k+1)k ≤ m!
(m−k)!

≤ mk that holds for all positive integers
m, k, and obtain:

Pr[v ∈ B] ≥
(d
`
)` · (a− `+ 1)` · (n− d− a+ `)a−`

na
≥

(d
`
)` · (1

2
a)` · (n− d− a+ `)a−`

na

the second inequality is because a tends to infinity with d, so for sufficiently large d we have
a − ` + 1 ≥ 1

2
a. (We remark that this is where the constant c from the statement of the

theorem comes into play: the growth rate of a depends on c.) We can now rearrange and
write:

Pr[v ∈ B] ≥
(
ad

2`n

)`
·
(
n− d− a+ `

n

)a−`
=

(
ad

2`n

)`
·
(

1− d+ a− `
n

)a−`

47



We claim that the term
(
1− d+a−`

n

)a−`
is 1 − o(1). For this it is sufficient to show that

d+a−`
n
·(a−`) = o(1), and since ` is constant, this is equivalent to showing that d+a

n
·a = o(1).

Indeed, recalling that a = αn/d`/(`−1),

d+ a

n
· a =

da

n
+
a2

n
=

α

d1/(`−1)
+

α2n

d2`/(`−1)
= o(1) + o(1) = o(1)

where we have used the assumption of the current case, that n < d1.99`/(`−1). We conclude,

Pr[v ∈ B] ≥ (1− o(1))

(
ad

2`n

)`
=

1− o(1)

(2`)`
· α` · 1

d`/(`−1)

and from this point the proof proceeds as in the low density case. This concludes the proof
for the case ∆ is even.

Odd values of ∆. The proof in this case is a close variant of the above proof for even
values of ∆, so we only sketch the differences. Suppose ∆ = 2` + 1. Again we mark each
vertex with independent probability p = α/d∆/(∆−2), so the subset A of marked vertices has
the “correct” expected size, E|A| = αn/d∆/(∆−2).

The difference is that we define B to be the subset of edges that each of their two
endpoints is non-marked, and has exactly ` marked neighbours. As in the even-∆ case,
the probability for a vertex to be non-marked and to have ` marked neighbours is roughly
q = (dp)`. We claim that in the current setting, each edge has probability roughly q2 to be
in B.

This is a subtle but technical point. Fix an edge e = uv, let Xu denote the event that
u is non-marked and has ` marked neighbours, and similarly define Xv for v. As stated
above, each of Xu and Xv occurs with probability q, and we wish to show that both occur
(which means e is included in B) with probability Ω(q2). In the low density case random
model, where the vertices are marked independently, the events Xu, Xv are either positively
correlated (if u, v have any mutual neighbours) or independent (otherwise), so the probability
for both to occur is indeed at least q2. In the high density case random model, where we
pick a random subset of marked vertices with fixed size, the events Xu, Xv may in fact be
negatively correlated, but it is a technicality to calculate the probability for both Xu, Xv to
occur and to see that it remains approximately q2.

Having established that each edge in included in B with probability about q2, we recall
that there are 1

2
nd edges in G, and hence the expected size of B is roughly (recall that

p = α/d∆/(∆−2) = α/d(2`+1)/(2`−1)):

E|B| = nd · q2 = nd(dp)2` = α2`n/d(2`+1)/(2`−1) = α2`n/d∆/(∆−2)

which is also the “correct” expected size. The target subgraph H is taken to be the one
induced by A and all the endpoints of edges in B. The proof then proceeds as in the even-∆
case. Full details are omitted.
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C Appendix: Proof of Theorem 4.1.3

Theorem 4.1.3 (restated). Let ` > 1 be an integer and ε > 0. There is a constant C =
C(`, ε) such that every graph on n vertices with average degree d (satisfying 2` ≤ d ≤
O(n(`−1)/`)) contains a subgraph of size at most C · n/d

`
`−1
− 1
`3−2`+1

−ε
with average degree 2`.

Proof. Let G(V,E) be a graph as in the statement. We prove the theorem for sufficiently
large d, and the lower values can then be handled by a proper choice of constant C. We will
use o(1) to denote a term that tends to 0 as d grows.

By Lemma 2.4 we may assume that G has minimal degree ≥ 1
2
d. Now by Corollary 2.6,

we can orient the edges in G such that each vertex has at least 1
4
d edges oriented towards

it. For each vertex v, we then fix an arbitrary subset of exactly 1
4
d edges oriented towards

v, and call their other endpoints the in-neighbours of v.
Set p = 1/d`/(`−1)−ε. We mark the vertices of G in two independent phases: In the first

phase, each vertex is marked with independent probability p, and in the second phase, each
non-marked vertex is again marked with independent probability p. Let A be the subset of
marked vertices; we have E[|A|] = (2p− p2)n.

Definition C.1. Let k ≥ 1 be an integer, and consider a fixed marking of the vertices in G.
A vertex v ∈ V is a k-root if it is non-marked and has exactly k marked in-neighbours.

Proposition C.2. After the first phase of marking vertices in G, each u ∈ V has probability
≥ γ` · (dp)`−1 to be an (`− 1)-root, where γ` is a constant that depends only on `.

Proof. The number of marked in-neighbours of u is binomially distributed with parameters
1
4
d and p, so its probability to be an (`− 1)-root is at least:

(1− p) ·
(

1
4
d

`− 1

)
p`−1(1− p)

1
4
d−(`−1) ≥ γ` · (dp)`−1

for γ` ≥ 1
2
(4(` − 1))−(`−1). Note that the leading (1 − p) in the above is the probability for

u to be non-marked. For the lower bound, we have used the known bound
(
m
k

)
≥ (m

k
)k, and

(1− p)
1
4
d−(`−1)+1 ≥ 1

2
, which holds for sufficiently large d as we recall p = 1/d`/(`−1)−ε.

Lemma C.3 (main). Let c > 0 be any constant. If ε > 1/(`3−2`+1), then for d sufficiently
large, each v ∈ V has probability ≥ cp to be non-marked and to have at least ` + 1 in-
neighbours which are `-roots.

Proof. Fix v ∈ V and let N(v) be the set of in-neighbours of v. (Recall that |N(v)| = 1
4
d.)

Consider G after the first phase of marking vertices. Suppose u ∈ N(v) is an (` − 1)-root.
We call an edge e oriented towards u an excited edge, if its source vertex is a non-marked
in-neighbour of u. Recall that if u is an (` − 1)-root then it has exactly ` − 1 marked in-
neighbours, so at least 1

4
d− (`− 1) ≥ 1

8
d non-marked in-neighbours. This means u renders

at least 1
8
d edges excited, and for simplicity, we assume henceforth that it renders exactly 1

8
d

edges excited (arbitrarily chosen).
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Let X be the set of (`− 1)-roots in N(v) (after only the first phase of marking vertices),
and let Y be the set of excited edges. By Proposition C.2, each u ∈ N(v) has probability
≥ γ`(pd)`−1 to be an (`− 1)-root and hence,

E|X| ≥ 1
4
d · γ`(pd)`−1 = 1

4
γ`d

`p`−1

and since each vertex in X renders 1
8
d edges excited,

E|Y | ≥ 1
8
d · E|X| ≥ 1

32
γ`d

`+1p`−1 (C.1)

Applying Lemma 2.2 we get that for some t ≥ 1,

Pr[|Y | ≥ 2t

9·16
γ`d

`+1p`−1] ≥ (2tt2)−1 (C.2)

Proposition C.4. t < 2 log d.

Proof. Recall that p = d`/(`−1)−ε and hence,

(dp)`−1 = d1−(`−1)ε > d−1 (C.3)

Now observe that there can be at most 1
4
d excited edges per vertex in N(v), so a total of at

most 1
16
d2 excited edges. Hence, when applying Lemma 2.2 to derive eq. (C.2), we can set

M = 1
16
d2 in the statement of Lemma 2.2 and obtain:

t ≤ log

(
9M

2E|Y |

)
≤ log

(
9

γ`(dp)`−1

)
< log

(
9

γ`
· d
)
< 2 log d

where the first inequality is by the guarantee of Lemma 2.2; the second one is by plugging
eq. (C.1) for E|Y | and M = 1

16
d2; the next one is by eq. (C.3); and the final inequality holds

for sufficiently large d, since γ` is constant.

We proceed with the proof of the Main Lemma C.3. By eq. (C.2), after the first phase,
there is probability (2tt2)−1 to have 2t

9·16
d`+1p`−1 excited edges. Let W be the set of source

vertices of all the excited edges. We recall that by definition (of an excited edge), each vertex
in W is a non-marked in-neighbour of a vertex in X.

For each w ∈ W , we say w is light if it is the source of at most ` excited edges, and heavy
if it is the source of at least ` + 1 excited edges. For a fixed marking of the vertices in G
after the first phase, either half the excited edges are sourced at light vertices, or half are
sourced at heavy vertices. By an averaging argument applied to eq. (C.2), we see that one
of these cases must hold with probability 1

2
(2tt2)−1. We handle the two cases separately.

Case I - Light vertices: With probability 1
2
(2tt2)−1 we have 2tγ`

9·16
d`+1p`−1 excited edges,

and half of them are sourced at light vertices of W .
Let L be the subset of light vertices. We have 2tγ`

9·32
d`+1p`−1 excited edges incident to

light vertices, and each light vertex is the source of at most ` excited edges. Hence, |L| ≥
2tγ`

9·32·`d
`+1p`−1. Arbitrarily remove vertices from L until equality holds. Moreover, the number

of excited edges is 1
8
d · |X|, and hence we get |X| ≥ 2tγ`

36
d`p`−1.
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Our intention is now to uniquely assign L-vertices to X-vertices. To this end we consider
the bipartite graph with sides X and L and with the excited edges as the edge set. In fact,
X and L may intersect; in such case we make two copies of each vertex in the intersection,
putting one copy on the X-side and the other on the L-side. Note that all the edges are
oriented from L to X.

Side X has maximum degree 1
8
d and average degree:

|L|
|X|
≥

2tγ`
9·32·`d

`+1p`−1

2tγ`
36
d`p`−1

=
2t

36 · `
d ≥ 1

36 · `
d

Hence by Lemma 2.7, there is a subset X ′ ⊂ X with size |X ′| ≥ 1
4.5`
|X| such that each vertex

in X ′ is adjacent to at least 1
72`
d vertices in L. Now consider the bipartite graph with sides

X ′ and L: Side X ′ has degree (at least) 1
72`
d, and side L has degree at most ` (since a light

vertex is adjacent to at most ` vertices in X, and hence in X ′). We use following lemma:

Lemma C.5. Let G(V, U ;E) be a bipartite graph such that each v ∈ V has degree d, and
each u ∈ U has degree at most `. There is a subset of edges E ′ such that in G′(V, U ;E ′),
each v ∈ V has degree at least b1

`
dc, and each u ∈ U has degree at most 1.

Proof. Similar to the proof of Lemma 2.5, with every “2” replaced by “`”.

By Lemma C.5, there is an assignment of L-vertices to X ′-vertices such that each L-
vertex is uniquely assigned, and each X ′-vertex has at least 1

72`2
d vertices assigned to it.

Fixed this assignment henceforth.
Let u ∈ X ′. Recall that u is in X, which means it is an (`−1)-roots after the first phase.

Moreover by the above it has 1
16`2

d neighbours in L assigned to it. If one of them is marked
in the second phase, then u turns into an `-root. Denote this event by Au. Its probability is
(1− o(1)) · 1

72`2
d · p, for picking an assigned neighbour and marking it.

Let A denote the event that `+1 of the events {Au : u ∈ X ′} occur concurrently after the
second phase. If A occurs, then v has `+ 1 neighbours which are `-roots, and the conclusion
of Lemma C.3 (which we are now proving) is satisfied. To lower bound its probability, we
observe that the events {Au : u ∈ X ′} are pairwise independent, by the uniqueness of the
assignment of L-vertices to X ′-vertices. Hence (recalling that the probability for the current
case is 1

2
(2tt2)−1):

Pr[A] ≥ (1− o(1))

2 · 2tt2

(
|X ′|
`+ 1

)(
1

72`2
dp

)`+1

≥ (1− o(1))

2 · 2tt2
·
(
|X ′|
`+ 1

· 1

72`2
dp

)`+1

(C.4)

where we have used the known bound
(
a
b

)
≥ (a

b
)b. We recall:

|X ′| ≥ 1

4.5`
|X| ≥ 2tγ`

162`
d`p`−1

Plugging this back into eq. (C.4), we get:

Pr[A] ≥ (1− o(1))

2 · 2tt2
·

(
2tγ`
162`

`+ 1
· 1

72`2
· d`+1p`

)`+1
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Now applying Proposition C.4 and suppressing all the constants into a constant C`, we get:

Pr[A] ≥ C`

log2 d
· d`2+2`+1p`

2+`

We need this bound to be at least cp. Rearranging and suppressing c into C`, we need:

C`

log2 d
· d`2+2`+1p`

2+`−1 ≥ 1

We recall that p = d−`/(`−1)+ε and plug this into the above, which then becomes:

C`

log2 d
· dε(`3−2`+1)−1 ≥ 1

and this is satisfied as long as ε > 1/(`3− 2`+ 1), which holds by hypothesis (of the current
Lemma C.3). The proof for this case is complete.

Case II - Heavy vertices: With probability 1
2
(2tt2)−1 we have 2tγ`

9·16
d`+1p`−1 excited edges,

and half of them are sourced at heavy vertices of W .
A heavy vertex is the source of at least ` + 1 excited edges. Each such edge is oriented

towards a vertex in X, which we recall is an (` − 1)-root. Hence marking a single heavy
vertex in the second phase turns `+ 1 neighbours of v into `-roots, as the lemma requires.

We have 2tγ`
9·32

d`+1p`−1 excited edges incident to heavy vertices. Each heavy vertex is the
source of at most 1

4
d excited edges (since an excited edge is oriented towards a vertex in

X ⊂ N(v), and |N(v)| = 1
4
d). Hence, the number of heavy vertices is at least:

2tγ`
9·32

d`+1p`−1

1
4
d

=
2tγ`
72

d`p`−1

so the probability to mark one in the second phase is at least:

1

2
(2tt2)−1 · (1− o(1))p · 2tγ`

72
d`p`−1 =

1− o(1)

2t2
· γ`

72
(dp)` ≥ 1− o(1)

16 log2 d
· γ`

72
(dp)`

using t < 2 log d by Proposition C.4 for the last inequality. To prove the lemma, we need
this lower bound on the probability to be at least cp. Rearranging, we need:

p ≥ 16 · 72 · c · log2 d

(1− o(1))γ`
· d−`/(`−1)

By recalling that p = d−`/(`−1)+ε, we see that the latter inequality indeed holds for sufficiently
large d, which proves the current case.

Concluding the proof of Lemma C.3. Having handled both the light and heavy cases,
we have proven that v has probability cp to have `+ 1 in-neighbours which are `-roots. We
further need it to be non-marked, which happens with probability (1 − p)2 (over the two
phases), independently of the marking of any other vertices. Hence the probability that v
satisfies the conclusion of the lemma is (1 − p)2cp = (1 − o(1))cp. The lemma is proven by
slightly rescaling c.
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Back to the proof of Theorem 4.1.3. Suppose ε > 1/(`3− 2`+ 1). Consider the graph
after both phases of marking vertices. Recall that A is the subset of marked vertices. Denote
by B the subset of vertices that are non-marked, and have ` + 1 in-neighbours which are
`-roots. Note that by Lemma C.3, each vertex is included in B with probability ≥ cp, for a
constant c > 0 of our choice (that will be set later).

We recall that E|A| = (2p − p2)n ≥ pn, that p = d−`/(`−1)+ε, and that n ≥ Ω(d`/(`−1))
(by hypothesis of the theorem). Together we get E|A| ≥ Ω(dε). Hence by a Chernoff bound
(Lemma 2.3) applied to |A|,

Pr [|A| < 2E|A|] ≥ 1− (0.25e)E|A| ≥ 1− (0.25e)Ω(dε)

On the other hand we have E|B| = cpn, and by Lemma 2.1:

Pr
[
|B| ≥ 1

2
E|B|

]
≥ E|B|

2n
= 1

2
cp = 1

2
cd−`/(`−1)+ε

Summing the bounds yields:

Pr [|A| ≤ 2E|A|] + Pr
[
|B| ≥ 1

2
E|B|

]
≥ 1− (0.25e)Ω(dε) + 1

2
cd−`/(`−1)+ε

The second term shrinks exponentially in d whereas the third term shrinks polynomially,
and hence for sufficiently large d, the above RHS is strictly larger than 1. Therefore, there
is a positive probability that both the events |A| ≤ 2E|A| and |B| ≥ 1

2
E|B| occur. These

imply |A| ≤ 4np (as we recall E|A| ≤ 2np) and |B| ≥ 1
2
cnp, respectively. We fix this event

from now on, and arbitrarily remove vertices from B until |B| = 1
2
cnp.

Recall that each vertex in B has ` + 1 in-neighbours which are `-roots. Let Z be the
subset of all the `-roots in-neighbours of vertices in B. Note that B and Z may intersect,
and that |Z| ≤ (`+ 1)|B|. We take our target subgraph H to be one induced by A∪B ∪Z.
Its size is bounded by,

|H| ≤ |A|+ |B|+ |Z| ≤ |A|+ (`+ 2)|B| ≤ (4 + (`+ 2)1
2
c)np = (4 + (`+ 2)1

2
c) · n/d`/(`−1)−ε

which is as required if we set C = 4 + (`+ 2)1
2
c. We move on to establish that H has ` edges

per vertex. Each v ∈ Z is an `-root, i.e. has ` marked in-neighbours. Those in-neighbours
are in A and hence in H, so the edges oriented from them to v are present in H, and we
count them in its favour. Each v ∈ B has `+ 1 in-neighbours in Z, so the edges going from
those neighbours into v are present in H. We count ` of them in favour of v. Note that so
far, each edge was counted in favour of its destination endpoint, and hence was counted only
once. We are left to handle vertices in A. Note that for each vertex in B, there is one edge
oriented towards it (from a vertex in Z) that we have not yet counted. Together we have |B|
edges yet unused, and we now count them in favour of the vertices in A. We now only need
|B| ≥ `|A| to hold; by recalling that |A| ≤ 4np and |B| = 1

2
cnp, we achieve this by choosing

c = 8`.
The proof is complete with graph size at most C · n/d`/(`−1)−ε, under the assumption

ε > 1/(`3 − 2` + 1). This is equivalent to the statement of the theorem, by rescaling
ε′ = ε− 1/(`3 − 2`+ 1).
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D Appendix: Logarithmic Girth Bounds

We provide known proofs that show S1(n, d) = Θ(logd−1 n).
Remark : In Section 1.1 we discussed the open problem of determining the optimal leading

constant c to the logd−1 n term in the bound, and mentioned that the best currently known
bounds are 4

3
≤ c ≤ 2. The bounds proven here are weaker, 1 ≤ c ≤ 4.

Theorem D.1. Every graph of size n with average degree d, contains a cycle of length at
most 4 logd−1(n+ 1).

Proof. Denote t = logd−1(n + 1). First suppose that d is the minimum degree. Fix an
arbitrary vertex v and consider all paths of length t starting at v. If any two paths intersect
at a vertex other than v, then their union contains a cycle of length at most 2t. Otherwise,
all the paths form a tree with t+ 1 levels such that every vertex has at least d− 1 children,

so the tree has (d−1)t+1−1
(d−1)−1

> n vertices, a contradiction.
Now suppose d is the average degree. By Lemma 2.4, the graph contains a subgraph with

minimum degree 1
2
d or more. By the above, the subgraph contains a cycle of size at most

2 logd/2−1(n+ 1) ≤ 4t.

Theorem D.2. For every n and d, there is a graph with n vertices and average degree ≥ d,
with girth > logd+2 n.

Proof. Consider the following process for sampling a random graph G with girth > logd+2 n:

1. Sample a G(n, p) graph G′ with p = d+2
n−1

.

2. Remove from G′ one (arbitrary) edge from each cycle of length ≤ logd+2 n, to get G.

For k = 3, . . . , logd+2 n, let Ck denote the number of length-k cycles in G′. There are(
n
k

)
(k − 1)! = n!

(n−k)!k
possible such cycles, and each occurs with probability pk, hence:

E[Ck] =
n!

(n− k)!k
pk =

n!

(n− k)!k

(
d+ 2

n− 1

)k
≤ (d+ 2)k

k
≤ (d+ 2)logd+2 n

logd+2 n
=

n

logd+2 n

Denoting by C =
∑

k Ck the total number of short cycles, we get E[C] ≤ n. Let E denote
the number of edges in G′. Step 2 of the above sampling process removes C edges from G′

to obtain G, and hence the average degree of G is ∆ = 2(E−C)
n

. Moving to expectation,

E[∆] =
2

n
(E[E]− E[C]) ≥ 2

n

(
d+ 2

n− 1

(
n

2

)
− n

)
= d

by recalling that E[E] = p
(
n
2

)
and our choice p = d+2

n−1
. We therefore conclude there is a

sample of G with average degree ∆ ≥ d.
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