
1 Lectures on January 2 and 9, 2002

We describe Edmond’s algorithm for finding matchings of maximum cardinality in a graph.
For bipartite graphs with edge weights, we also show how to find matchings of maximum
weight. It is recommended that the reader draws pictures of the various constructs that we
use (such as alternating trees). I was too lazy to incorporate pictures in these lecture notes.

We recall that bipartite matchings are intersections of two matroids. Some algorithms
presented here can serve as examples for the more general case of optimizing over intersec-
tions of two matroids.

To a large extent, these lecture notes are based on lecture notes that Laci Lovasz dis-
tributed in a course on Combinatorial Optimization in Princeton, 1990.

1.1 Matchings in bipartite graphs

A matching in a graph is a set of edges, no two of which share an endpoint. In this section
we show how to find maximum matchings in bipartite graphs. The algorithm presented is
perhaps not the simplest one possible, but incorporates ideas that will be useful for finding
maximum matchings in general graphs.

Recall that a vertex cover is a set of vertices that touches all edges. The rest of the
vertices in a graph form an independent set. Finding a vertex cover of minimum cardinality
is NP-hard. Clearly, in any graph the size of the minimum vertex cover is at least as large
as the size of the maximum matching, because the vertex cover must contain at least one
vertex from every matched edge. The size of the minimum vertex cover is at most twice
as large as the size of any maximal matching (a matching that cannot be extended by any
other edge), because taking all vertices involved in a maximal matching is a vertex cover.
We note that for complete graphs on an odd number of vertices indeed the size of the
minimum vertex cover is twice the size of the maximum matching.

For bipartite graphs, our algorithm will find a matching together with a vertex cover
of the same cardinality. This will simultaneously certify the maximality of the matching
and the minimality of the vertex cover. This also implies that the size of the minimum
vertex cover is equal to the size of the maximum matching in bipartite graphs, and that in
bipartite graphs one can find a minimum vertex cover in polynomial time.

Our algorithm will build the matching in phases. Each phase ends when the size of
the matching is increased by one. Unlike greedy algorithms, this increase is not simply the
consequence of adding an edge to the existing matching, but rather to the addition of a
group of edges and the removal of a smaller group of edges. Hence edges that are in the
matching at initial phases of the algorithm may end up not being in the final matching.

The mechanism for adding edges is through the use of alternating paths.

Definition 1 Given a matching in a graph, a vertex is exposed if it does not participate is
the matching. An alternating path is a simple path connecting two exposed vertices, such
that edges along the path alternate in being out or in the matching. In particular, an edge
connecting two exposed vertices is an alternating path.

A phase ends in our algorithm when an alternating path is found. Then we can flip the
edges along the path, removing those that where in the matching from the matching, and
putting in the matching the other edges. The size of the matching increases by 1.
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To search for alternating paths, we construct alternating forests.

Definition 2 A rooted tree in a graph G is an alternating tree with respect to a matching
M if the root vertex is an exposed vertex, and the edges of every root to leaf path alternate
as being out or in M , ending with an edge in M . Vertices at even distance from the root
(which in particular include the root itself and all leaves) will be called outer vertices, and
the other vertices will be called inner vertices. An alternating forest is a set of disjoint
alternating trees that contains all exposed vertices (as the roots of the trees). In particular,
the set of all exposed vertices is an alternating forest.

The algorithm for finding maximum bipartite matchings will have phases. Each phase
will have steps. In every step, the algorithm maintains a matching and an alternating forest.
A phase ends when an alternating path is found and the size of the matching increases by 1.
A step within a phase ends when the number of vertices in the forest increases by 2. In
between phases, the size of the alternating forest decreases. Now we are ready to describe
the algorithm.

1. Initially, the matching M is the empty matching and the alternating forest contains
all vertices (they are exposed) as roots of n alternating trees.

2. Repeat as long as possible:

(a) If there is an edge connecting two outer nodes u and v of the alternating forest,
then its endpoints must lie in two different alternating trees (because bipartite
graphs have no odd cycles). Let r1 and r2 be the roots of these trees. Then the
path connecting r1 to u in the first tree, then following the edge (u, v), and then
connecting v to r2 in the second tree is an alternating path. Use it to increase
the size of the matching by 1, and restart a new phase with the set of remaining
exposed vertices as the new alternating forest.

(b) Else, if there is an edge e connecting an outer node u with a node v not in
the alternating forest, then there must be a matching edge connected to v, say
the edge (v, w). Add the edges (u, v) and (v, w) to the alternating forest. Its
cardinality increased by 2.

3. Output the current matching.

The algorithm ends in polynomial time, because the number of phases is at most n/2,
and the number of steps within a phase is at most n/2. Clearly, the output of the algorithm
is a matching. It remains to show that this matching is of maximum cardinality. We shall
do this by exhibiting a vertex cover of the same cardinality.

Consider the alternating forest that remains at the time that the algorithm ends. Let t
denote the number of trees in this forest, i the number of inner vertices, o the number of
outer vertices, and m the number of other vertices. Then the size of the matching found is
exactly i + m/2.

Consider only the subgraph induces on the other vertices. It is a bipartite graph, and
hence has a vertex cover of size at most m/2 (by taking the smaller side of the bipartite
graph). Adding to this vertex cover all the inner vertices we get a set of i + m/2 vertices
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that form a vertex cover of the whole graph. This is a consequence of the fact that when
the algorithm stops, there are no edges connecting outer vertices to each other, nor to the
set of other vertices.

1.2 General graphs

Using an algorithm similar to that of bipartite graphs, there is one more case to consider
when the graph may have odd cycles.

• There is an edge (u, v) connecting two outer notes in the same alternating tree. This
edge closes an odd cycle in this tree, say of length 2k +1. Contract all vertices of this
cycle to a single vertex w, within the alternating tree and within the original graph,
to obtain a new tree T ′, a new graph G′, and a new matching M ′. It can be verified
that M ′ is indeed a matching, that |M ′| = |M | − k, that T ′ is an alternating tree in
G′ with respect to the matching M ′, and that w is an outer vertex in T ′.

Due to the above case, we need to change also case 2(a) of the bipartite matching
algorithm. When an alternating path is found, we increase by 1 the size of the maximum
matching in a graph G′, but G′ might not be our original graph. We lift this matching to a
matching in G by reopening vertices w of G′ to the odd cycle (of length 2k +1) from which
they were contracted, in reverse order. When doing so, we note that as w was connected
to at most one matching edge in the matching for G′, we can add k additional edges from
the cycle to the matching. As a consequence, we see that also the size of the matching in
G increases by 1. We restart a phase on the original graph G (forgetting all contractions),
with the set of remaining exposed vertices as the alternating forest.

We now show that the algorithm produces a maximum cardinality matching. Consider
the alternating forest that remains when the algorithm stops. Each inner vertex is an
original vertex of the graph G. The outer vertices may either be original vertices, or
contracted vertices. But in any case, they represent connected components of G with an
odd number of vertices.

Let S denote the set of inner vertices. Let C1, C2 . . . Cc denotes the outer vertices, where
each outer vertex may correspond to a set of vertices in G. (The number of alternating
trees must be c − |S|.) Observe that by our stopping condition, if we remove S from G,
then each set Ci becomes a connected component of odd cardinality that is disconnected
from the rest of the graph. Every matching in the graph must loose at least one vertex
from an odd component Ci, unless it connects a vertex from Ci with a vertex of S. As
such a connection can be done at most |S| times, every matching misses c − |S| vertices.
Observe that the matching we found matches all vertices, except for one exposed vertex in
each alternating tree, meaning that it misses only c− |S| vertices, and hence it is optimal.

1.3 Gallai-Edmonds decomposition

The algorithm for maximum matching ends with an alternating forest. Let S (for Separator)
denote the set of inner vertices in this forest, let C (for odd Components) denote the set of
outer vertices, where if an outer vertex is a contracted vertex, then all vertices from which
it is derived are in C, and let R denote the set of other vertices (the Rest). The arguments
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of the previous section establish that no vertex from either S or R can be exposed in any
maximum matching of G. On the other hand, every vertex from C is exposed in some
maximum matching. This can be seen by flipping the edges along the path from the root to
this vertex in its alternating tree. If the vertex is lies within a contracted vertex, a similar
flipping process may be performed when lifting the contracted vertex to the odd cycle from
which it was made.

As a consequence, we can characterize C as the set of all vertices exposed in some
matching, S as the neighbor set of C, and R as the rest of the vertices of the graph. Hence
in every maximum matching, the vertices of R are matched to each other, and the vertices
of S are matched to C. The decomposition of the graph into these sets S, C and R is known
as the Gallai-Edmonds decomposition of a graph.

We have also implicitly proved Berge’s formula which says that the number of exposed
vertices in a maximum matching is equal to the maximum of c− |S| over all sets of vertices
S, where c is the number of odd components in the graph that remains when S is removed
from G.

1.4 Weighted bipartite graphs

Consider a bipartite graph in which edges have arbitrary real weights. Let wuv denote the
weight of edge (u, v). We shall show an algorithm for finding a matching M of maximum
weight. That is, M is a matching that maximizes

∑
(u,v)∈M wu,v.

In fact, we shall show an algorithm for a related problem. A perfect matching is a
matching that touches all vertices. Let G(U ∪ V,E) be a complete bipartite graph with
equal sides |U | = |V | = n and with edge weights. We shall show an algorithm for finding a
perfect matching of minimum weight. As the problem of finding a matching of maximum
weight is easily reducible to the problem of finding perfect matchings of minimum weight,
and the reduction can be made to preserve bipartiteness, this also gives an algorithm for
finding maximum weight matchings in bipartite graphs. (The reduction itself is left as
homework.)

The technique that we shall use for solving the minimum weight perfect matching prob-
lem in bipartite graphs is that of weight shifting. This technique will be relatively easy to
employ because all perfect matchings have the same cardinality. An important observation
that we shall use is that if all edge weights are nonnegative, and there is a perfect matching
that uses only 0-weight edges, then this is necessarily a minimum weight matching.

Given an input graph G(U∪V,E) and edge weights w : E −→ R, our algorithm proceeds
as follows.

Step 1: Let wmin = mine∈E we. Subtract wmin from the weight of every edge. Now
all edge weights are nonnegative. The weight of every perfect matching changed by exactly
−nwmin. Hence a minimum weight perfect matching in the new graph is also a minimum
weight perfect matching in the original graph.

Step 2: As long as there is a vertex v ∈ U ∪ V such that all edges incident to it have
positive weight, do the following. Let εv denote the minimum of these weights. Subtract εv

from the weight of every edge incident with v. All edge weights remain nonnegative, and
at least one edge incident with v now has 0-weight. The weight of every perfect matching
decreased by exactly ε.

When step 2 ends, every vertex has an edge of weight 0 incident with it.
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Step 3: Let G′ be an unweighted bipartite graph on U and V that contains only the
0-weight edges. Find a maximum cardinality matching in G′. If it is a perfect matching,
output this matching as the minimum weight matching and stop.

Step 4: If there is no perfect matching in G′, consider its Gallai-Edmonds decompo-
sition into C,S,R as explained in the previous section. Note that for bipartite graphs, all
components of C are individual vertices (because there are no odd cycles to contract). Let
ε denote the minimum of weight of edges (in G) from C to R ∪ C, or half the minimum
weight of edges from C to C, whichever is smaller. We note that ε > 0, because G′ does not
contain edges from C to R∪C. For every endpoint of an edge incident with C, decrease by
ε the weight of the respective edge. For every endpoint of an edge incident with S, increase
by ε the weight of the respective edge. We note that the weight of edges between C and S
does not change, that no edge weight becomes negative, and that at least one edge between
C and C ∪R or between C and C now has 0 weight. The weight of every perfect matching
changed by exactly ε(|S| − |C|). Go back to step 3.

This completes the description of the algorithm. All weight shifts that we did had
exactly the same effect on the total weight of every perfect matching in G. It follows that
when the algorithm stops, the matching that is output is necessarily a perfect matching of
minimum weight in the original graph.

It remains to show that the algorithm does indeed stop, and in polynomial time. For this
we need to show that step 4 cannot be repeated forever. First we note that the cardinality
of the matching found in two consecutive applications of step 4 does not decrease. The
reason is that in the first of these applications, all vertices of S were matched to vertices
in C. As the weight of these matched edges does not change in the second application,
they can be taken also as part of the second matching. All other matched edges in the first
application were within R, and they too can be taken in the second application because
their weight did not change either. This argument also shows that if the cardinality of the
maximum matching did not grow, then the set C of the second application (that of vertices
that are exposed in some maximum matching) contains the set C of the first application.
And as now C has a fresh neighbor, the size of the set S grows by at least one. As |S| < n,
it takes at most n invocations of step 4 until the cardinality of the matching grows, showing
that altogether step 4 is repeated at most n2 times.

1.5 A dual problem

Given a complete bipartite graph G(U∪V, E) with edge weights w : E −→ R, a cost function
on the vertices c : U ∪ V −→ R is feasible if for every edge (u, v), c(u) + c(v) ≤ wu,v. We
are interested in finding a feasible cost function that maximizes

∑
v∈U∪V c(v).

Let M be an arbitrary perfect matching in G. By summing the feasibility condition
c(u) + c(v) ≤ wu,v over all edges of M , we obtain that

∑

v∈U∪V

c(v) ≤
∑

e∈M

we.

Hence the maximum over all feasible cost functions of the sum of costs of vertices is at most
the weight of the minimum weight perfect matching.

We exhibit a cost function c with sum of costs equal to the weight of the minimum
weight matching. Initially, all vertex costs are set to 0. Follow the steps of the algorithm
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of the previous section, and in each step update the costs of vertices as follows. In step 1,
give every vertex cost wmin/2. In step 2, add εv to the cost of vertex v. In step 4, add ε to
the cost of every vertex of C, and subtract ε from the cost of every vertex of S.

In every step, the weight decrease of an edge is equal to the sum of increase in cost of
its two endpoints. As the minimum perfect matching has final weight 0, it follows that the
costs we added to the vertices exactly equal the original weight of this matching. Moreover,
as every edge has final nonnegative weight, the cost function is feasible.

Given a complete bipartite graph G(U ∪ V,E) with edge weights w : E −→ R, we
established that for feasible cost functions c and perfect matchings M ,

max
c

∑

v∈U∪V

c(v) = min
M

∑

e∈M

we.

This was first proved by Egervary in 1931.
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