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1 Computing the Lovasz theta function

Recall that the following was an upper bound on the size ω(G) of the maximum clique in
graph G(V,E) (based on the ϑ2 formulation of the Lovasz theta function).

minimize λ1(M) subject to:

• M is a symmetric matrix of order n.

• Mii = 1 for all 1 ≤ i ≤ n.

• Mij = 1 for all (i, j) ∈ E.

The number of variables in this program is
(n
2

)
− |E|.

The program can be solved (up to arbitrary precision) using the ellipsoid algorithm. As
no variable Mij needs to be larger than n − 1 (by a Rayleigh quotient argument with an
indicator vector for the set {i, j}), we have a bounding ball. Seeking a solution of value at
most k, a matrix M violates it if λ(M) > k. The corresponding unit norm eigenvector v
gives a violated constraint vTMv ≤ k.

2 An alternative formulation of the Lovasz theta function

Here is another upper bound on the size of the maximum clique in graph G(V,E), this time
based on the ϑ3 formulation of the Lovasz theta function.

maximize
∑
i,j≤nBi,j (equivalently, maximize Tr(BJ)) subject to:

• B is symmetric positive semidefinite (PSD).

• Tr(B) = 1 (namely,
∑
iBii = 1).

• Bij = 0 for every i 6= j with (i, j) 6∈ E.

If G has a clique K of size k, then having m composed of a k by k block of values of 1
k in

the intersection of the rows and columns of K (and 0 elsewhere) shows that ϑ3(G) ≥ ω(G).
In fact, for every graph it holds that ϑ3(G) = ϑ2(G). Let us show the easier direction

of the inequality, namely, ϑ3(G) ≤ ϑ2(G), as this is the direction more relevant to planted
clique applications.
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Let M and B be optimal solutions for ϑ2 and ϑ3, respectively. Observe that C =
ϑ2I−M is symmetric PSD. Consider Tr(BC) = Tr(Bϑ2I)−Tr(BM) = ϑ2−ϑ3 (note that
BM = BJ). The fact that B and C are symmetric PSD implies that Tr(BC) ≥ 0. Hence
ϑ2 ≥ ϑ3.

(Sketch of proof that Tr(BC) ≥ 0. For n by r and r by n matrices X and Y , term by
term comparison shows that Tr(XY ) = Tr(Y X). Represent C as QQT where Q is n by r.
Then Tr(BC) = Tr(BQQT ) = Tr(QTBQ). Let qi denote the ith column of Q. Then the
r terms on the diagonal of (QTB)Q can be seen to be the r values (qTi B)qi. As B is PSD,
each of these values is nonnegative.)

ϑ2 can be approximated arbitrarily well using the ellipsoid algorithm. We refer to this
as semidefinite programming (SDP) as the only nonlinear constraint is that B is PSD.

For the Gn, 1
2
,k model, the advantage of the ϑ2 formulation is that being a minimization

problem, we could prove that w.o.p. we have ϑ2(G) = k (when k is sufficiently large).
However, for actually finding the hidden clique, using the maximization version ϑ3 is more
elegant. We use the following two facts, that hold with w.o.p..

1. Removing any vertex v ∈ K decreases ϑ3 to k − 1.

2. Removing and vertex v 6∈ K, the value of ϑ3 remains k.

Let B∗ be an optimal solution for ϑ3. Being PSD, the diagonal of B∗ is nonnegative (if
B∗ii < 0 then the vector 1i has a negative Rayleigh quotient). No vertex i can have negative
row sum in B∗. This is because zeroing its row and column would keep the matrix PSD
but with higher sum of entries. The diagonal entries contribute exactly 1. For a vertex
i ∈ K, let di be its diagonal value, and let si be its total off-diagonal row sum. Then

1
1−di (k − di − 2si) ≤ k − 1 (because by removing v we can scale the remaining entries by
1

1−di , but still will not pass n − 1). Consequently, 2si ≥ 1 + di(k − 2). For i 6∈ K we have
1

1−di (k− di− 2si) ≤ k, and consequently 2si ≥ di(k− 2) + di. Summing over all vertices we
have that 2

∑
i si ≥ k+(k−2)+

∑
i 6∈K di. (We used the fact that

∑
di = 1.) As

∑
si = k−1

we infer that
∑
i 6∈K di = 0. By nonnegativity of the diagonal, di = 0 for all i 6∈ K. As B∗

is PSD, all rows and columns of vertices not in K are all 0.
Consider now the k by k block of K in B∗, which we will now refer to as the submatrix

K (the rest of B∗ is 0). K is PSD, and can be decomposed into QQT . Let qi be the ith
row of Q. Then 0 ≤

∑
1≤i<j≤k(qi− qj)2 = (k− 1)

∑
i≤kKii−

∑
i 6=kKij = 0. Hence the first

inequality must be an equality, implying that qi = qj for all i and j. Hence all entries in K
are 1

k .
We can recognize the vertices of the planted clique by inspecting the diagonal of B∗.

The vertices of K have value 1/k, and the other vertices have value 0.
Clearly, it suffices to compute B∗ within entrywise error smaller than 1

2k to exactly
recover the planted clique.

It is somewhat surprising that ϑ2 only gives the size of the planted clique whereas ϑ3
also gives us the vertices. (In [2], ϑ4 was used for this last purpose.)

2



3 Stronger model for hidden independent set

For p ≤ nδ−1 with 0 < δ < 1, the value of the ϑ function for random Gn,p graphs is known to

be Θ(
√

n
p ) w.o.p. This suggests that we can find planted independent sets of size k ≥ c

√
n
p

in Gn,p,k, where c is a sufficiently large constant (here the trick of guessing a few vertices
from the independent set does not help in reducing the constant). The algorithms described
in class indeed work for these parameters, and extend to the semirandom model in which
an adversary is allowed to add edges outside the planted independent set.

An interesting case is that of a planted independent set K of size k = αn, for a constant
0 < α < 1. For this regime Feige and Kilian [1] considered a stronger semi-random model,
where only edges in (K,V \K) are included with probability p, and then an adversary can
add arbitrary edges (but not within K). In this model K is not necessarily the largest
independent set. The goal might be to find any independent set of size k, or alternatively,
to output K as part of a list of independent sets. It is shown that this can be done if
p ≥ (1+ε) lnn

αn , and NP hard (under randomized reductions) if p ≤ (1−ε) lnn
αn . We will show

the hardness result in class (the algorithmic result is much more complicated).
For smaller values of k the tradoffs between k and p are only partly understood for the

stronger semi-random model [3].
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