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1 Introduction

We recall some bounds from spectral graph theory that apply to random
graphs. Let p ≤ 1

2
satisfy p ≥ nε

n
for some ε > 0 (we think of ε as fixed as

n grows). Then for the adjacency matrix of a random G ∈R Gn,p graph, the
following bounds hold with overwhelming probability. (The probability is
over the choice of G. We abbreviate the term with overwhelming probability
to w.o.p., and interpret it to mean that the probability is at least 1−O(2n−δ

),
for some δ > 0.)

1. λ1(G) ' pn, with the corresponding eigenvector being roughly the all 1
vector.

2. max[λ2(G), |λn(G)|] ≤ c
√
pn, where c > 0 is some universal constant

independent of n and p.

Let Gn, 1
2
,k be the distribution over random Gn, 1

2
graphs with a randomly

planted cliqueK of size k. Our goal is to design an algorithm that w.o.p. finds
a clique of size k in a graph G ∈R Gn, 1

2
,k. We have seen that if k ≥ c1

√
n log n

for a sufficiently large constant c1, then almost surely (with probability tend-
ing to 1 as n grows) K is composed of the k vertices of highest degree in
G. We also noted that if k ≥ c1

√
n then w.o.p. λ2(G) > c

√
n
2
, and hence

we can distinguish between the distribution Gn, 1
2

and the distribution Gn, 1
2
,k.

We noted that [1] showed how to use this fact in order to actually find K in
polynomial time (w.o.p.). In this lecture we will show a different algorithm
for finding K, based on [2]. This algorithm has the advantage of being more
robust compared to the algorithm of [1], an issue that will be discussed in
Section 3.
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2 The algorithm

Let A denote the adjacency matrix of G, let I denote the identity matrix,
and let J denote the all 1 matrix. Consider the matrix B = 2(A + I) − J .
It has 1 along the diagonal and in entries Bij for which (i, j) ∈ E, and −1
elsewhere.

To intuitively understand the spectrum of B, consider G ∈R Gn, 1
2
, and

suppose that the all 1 vector 1V is an eigenvector of A (indeed, it is a good
approximation for the eigenvector corresponding to λ1(A)). Then 1V is also
an eigenvector of B, with eigenvalue 2(λ1(A) + 1)− n, which is smaller than√
n. Every other eigenvalue of A is orthogonal to 1V , and consequently is also

an eigenvalue of B, with eigenvalue 2λi + 2 ≤ c
√

2n. Indeed, this intuition
is correct, and w.o.p., max[λ1(B), |λn(B)|] ≤ c

√
n, for some sufficiently large

constant c. See [3] for more details on bounds on eigenvalues of random
symmetric matrices.

Observe that if G ∈R Gn, 1
2
,k, then λ1(B) ≥ k, as can be seen by consider-

ing a Raleigh quotient for the vector 1K (entries corresponding to the planted
clique are 1, the remaining entries are 0). Hence if k is sufficiently large, the
planted clique might be found by inspecting the eigenvector corresponding
to λ1(B). Indeed, this is the approach followed by [1]. We will instead follow
the approach of [2], based on the theta function of Lovasz [4].

Given a graph G ∈R Gn, 1
2
,k, consider the following optimization problem,

that we refer to as ϑ̄(G):
Minimize λ1(M) subject to:

1. Matrix M is a symmetric matrix of order n.

2. Mij = 1 whenever Bij = 1. Namely, Mii = 1 for every i, and Mij = 1
for every edge (i, j) ∈ E.

The optimal value for ϑ̄(G) is at least k (as the Raleigh quotient argument
holds for M). The key to our algorithm is the following theorem proved in [2].

Theorem 1 If k ≥ c2

√
n (for a sufficiently large constant c2 > 0) then

w.o.p., ϑ̄(G) = k.

To use Theorem 1, we need to efficiently compute ϑ̄(G). This can be done
using semi-definite programming (SDP). We defer the details to Section 4.
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Given Theorem 1, finding K is straightforward. W.o.p., for every vertex
v ∈ V , we have that if v ∈ K then ϑ̄(G−v) = ϑ̄(G) − 1, and if v 6∈ K then
ϑ̄(G−v) = ϑ̄(G) (here G−v denotes the subgraph of G induced on all vertices
but v). These statements follow from the fact that G−v is distributed either
likeGn−1, 1

2
,k−1 orGn−1, 1

2
,k (depending on whether v ∈ K), and from (applying

a union bound on) Theorem 1. Hence K can be found by computing the
function ϑ̄ on n subgraphs of G. In fact, O(n

k
) computatons of ϑ̄ suffice

in expectation, because for every vertex v that is detected to be in K, all
its non-neighbors can be simultaneously marked as not belonging to K. A
further improvement is to define G−v as the subgraph of G induced only on
the neighbors of v. In this case we have that if v ∈ K then ϑ̄(G−v) = ϑ̄(G)−1,

and if v 6∈ K then ϑ̄(G−v) ' ϑ̄(G)
2

(if c2 is sufficiently large).
One might hope that a single computation of ϑ̄(G) suffices in order to

find K, using the matrix M returned by this computation. For this matrix
M we have that λ1(M) = ϑ̄(G) = k. Moreover, the indicator vector 1K for
K has Raleigh quotient equal to k = λ1(M), and hence 1K is an eigenvector
for M , corresponding to λ1. Hence if λ2(M) is smaller than k (better still,
smaller than k − 1, so that we do not need very high precision in our com-
putations), then K can be recovered from M by computing the eigenvector
that corresponds to λ1(M). Indeed, the proof of Theorem 1 shows that such
a matrix M with λ1(M) = k and λ2(M) < k − 1 exists. However, the opti-
mization problem for ϑ̄(G) is likely to have multimple solutions. For other
matrices M that solve it optimally (giving value k) λ1 may have multiplicity
larger than 1. This is exemplified in the homework assignment. For such
matrices, there is a supspace of dimension larger than 1 for the eigenvectors
corresponding to λ1, and it might not be as easy to extract K from vectors in
this subspace. Without adding more constraints to the formulation of ϑ̄(G),
we are not guaranteed to obtain a matrix M with λ2 ≤ k− 1. (Interestingly,
for matrix B it does hold w.o.p. that λ1(B) ≥ k and λ2(B) ≤ k − 1.)

The Lovasz theta function has several alternative formulations. Our ϑ̄
is based on a formulation referred to as ϑ2. Using a different formulation,
referred to as ϑ4, it is shown in [2] that a single computation of ϑ̄4(G) suffices
w.o.p. in order to extract all vertices of K.

3



3 A semi-random model

Consider a semirandom model AGn,p,k (here A stands for adversarial) in
which one first generates at random a graph G′ ∈R Gn,p,k, and then an
adversary can remove from G′ edges of its choice, provided that K remains a
clique. In a sense, this only makes the task of the algorithm easier, as there
are fewer non-clique edges to be confused with clique edges. However, it is
not difficult to see that both the algorithm listing vertices by their degrees
and the algorithm of [1] are fooled by such an adversary. (The adversary
can easily increase the second eigenvalue of the adjacency matrix of G. For
example, by removing edges, the subgraph induced on V \K can be broken
into t connected components, each of size roughly n/t, giving t eigenvalues
each of size rounghly n

2t
.)

In contrast, such an adversary cannot increase the value of ϑ̄(G) (as
the adversary only removes constraints from the corresponding optimization
problem), and cannot decrease its value (as the clique of size k remains).
Hence the adversary has no effect at all on Theorem 1, and on algorithms
that are based on it.

4 Solving SDPs

To be written.

5 Notes on the proof of Theorem 1

By permuting the order of vertices (this does not effect the eigenvalues, and
only permutes coordinates in its eigenvectors), we may assume that the ver-
tices of K are numbered 1 to k. We can partiton B (and later M) into four
blocks C, DT , D, F . The top-left corner C is an order k all 1 matrix. The
bottom-right corner F is an order n − k symmetric matrix with ±1 values.
D (bottom-left) is an n− k by k matrix with ±1 values.

We know that for M the vector 1K will have Raleigh quotient k. Hence
we would like it to be an eigenvector of M . This dictates that in B row sums
are 0. To achieve this, do the following. Let ni denote the number of −1
entries in row i of D. Then the row sum is k − 2ni. To make it 0, add to
every −1 entry of row i the value xi = 2ni−k

ni
, obtaining a matrix D′. The
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matrix M is the same as B, but with D replaced by D′ (and DT replaced by
D′T ).

A tool useful for bounding λ2(M) is the following (simplified version) of
Weyl’s theorem.

Theorem 2 Let A and B be two symmetric matrices of order n, and let
C = A+B. Then for every 1 ≤ i ≤ n and j + k ≤ i+ 1 it holds that:

λi(C) ≤ λj(A) + λk(B)

Likewise, for every 1 ≤ i ≤ n and j + k ≥ i+ n it holds that:

λi(C) ≥ λj(A) + λk(B)

To use Theorem 2, we decompose M into a sum of three matrices.
Matrix X describes the graph G before planting of K, and has +1 entries

along the diagonal and for every edge of G, and −1 entries elsewhere. In
particular, X coincides with M in the bottom-right order n− k corner.

Matrix Y describes the planting process, and has +2 entry for every edge
added by the planting process. In particular, X + Y coincides with M both
in the bottom-right order n− k corner, and in the top-left order k corner.

Matrix Z is M − (X + Y ). If has non-zero corresponding to the changes
D′ −D (and D′T −DT ).

All matrices X, Y, Z,M are symmetric, and M = X + Y + Z.
Applying Theorem 2 (twice) we get that:

λ2(M) ≤ λ1(X) + λ2(Y ) + λ1(Z)

Being a random ±1 order n matrix (with 1 along the diagonal) we have
that w.o.p. λ1(X) ≤ c

√
n.

As Y is a random {0, 2} order k matrix (and 0 elsewhere) we have that
w.o.p. λ2(Y ) ≤ 2c

√
k.

To bound λ1(Z), note that (λ1(Z))2 is smaller than the trace of Z2. This
trace is the sum of square norms of the rows of D′ −D. Every such row i is
expected to have ni ' k

2
non-zero entries, and each such entry is expected to

have absolute value |xi| = O( 1√
k
). Hence the square norm of a row is expected

to be O(1), and the trace of Z2 is expected to be O(n). Consequently, we
expect that λ1(Z) = O(

√
n), which is smaller than k

2
when k is a sufficiently
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large constant times
√
n. Indeed, this event happens with overwhelming

probability (see Lemma 3 in [2]).
Consequently, we have w.o.p. that λ2(M) ≤ c

√
n + 2c

√
k + k

2
< k, as

desired.

6 Homework

Hand in by June 21, 2021.
Consider the Gn, 1

2
,k1,k2

model in which one first generates a random graph

G′ ∈R Gn, 1
2
, and then plants in it two random disjoint cliques, K1 of size k1,

and K2 of size k2.

1. Prove the following Analogue of Theorem 1. If k1 ≥ k2 ≥ c2

√
n (for a

sufficiently large constant c2 > 0) then w.o.p., ϑ̄(G) = k1. You may use
without proof bounds on the eigenvalues of random {0, 1} and random
±1 matrices (similar to uses made in the lecture), and need not repeat
the proof of Lemma 3 from [2] (though you may need to explain why
the constant 96 there can be changed to a different constant).

2. Using the above, give a polynomial time algorithm that actually finds
K1 and K2.

3. Getting back to the Gn, 1
2
,k model with k ≥ c2

√
n (for a sufficiently large

constant c2 > 0), show that the optimization problem underlying ϑ̄(G)
is likely to have solutions for which the multiplicity of λ1(M) is larger
than 1.
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