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Abstract

We introduce a sealed bid auction of a single item in which
the winner is chosen at random among the highest k bidders
according to a fixed probability distribution, and the price for
the chosen winner is the Vickrey-Clarke-Groves price. We
call such an auction a cascade auction. Our analysis suggests
that this type of auction may give higher revenues compared
to second price auction in cases of collusion.

Introduction
Consider a sealed bid auction of a single item. Cascade auc-
tions are auctions described by the following rule: the win-
ner is chosen at random among the highest k bidders accord-
ing to a fixed probability distribution and the price for the
chosen winner is the Vickrey-Clarke-Groves (VCG) price.
We will mainly consider the case k = 2, namely the high-
est bidder wins with probability p (where p ≥ 1/2) and the
second highest bidder wins with probability 1− p.

A well known problem with second price auctions is col-
lusion. If two or more bidders collude they have a dominant
strategy of dropping all their bids except for the highest bid.
This might substantially lower the revenue for the seller. We
demonstrate that in realistic scenarios of collusion by ratio-
nal bidders, the revenue in cascade auctions is higher than
that in second price auctions.

The problem of collusion in auctions is classic. The for-
mal literature on collusion in second-price auctions goes
back to Graham and Marshall (Graham and Marshall 1987),
while the literature of collusion in first-price auctions goes
back to McAfree and McMillan (McAfee and McMillan
1987). There have been extensive literature extending upon
the above.

A main motivation to our work is the use of second-
price auctions for selling impressions through mediators
(aka agents) in electronic exchanges (e.g., the Google
double-click ad-exchange,Yahoo RightMedia ad-exchange,
or ADECN/Appnexus ad-exchanges used by Microsoft). A
typical situation is of an agent (or mediator) who repre-
sents several bidders in a second price auction, a situa-
tion in which collusion is inherent. Indeed, recently, the
computer science literature has put much attention to collu-
sion in second-price auctions (and in Vickrey-Clarke-Groves
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mechanisms (Conitzer and Sandholm 2006; Bachrach 2010;
Mansour, Muthukrishnan, and Nisan 2012)). This is mainly
due to the popularity of variants of second price auctions in
electronic markets. The problem considered in this paper,
tackling the issue of second price auctions through media-
tors, is central to the above-mentioned billions of dollars ad-
exchange market – see Problem 1 in the survey by Muthukr-
ishnan (Muthukrishnan 2009). In this problem an agent who
represents the two highest bidders can lead to very small rev-
enue (even 0, assuming no floor price, and only two bidders
in the system, which is not a rare event), by submitting a
bid of 0 on behalf of the bidder with the lower valuation;
the question is how to allow and even advocate such me-
diators but remove the possibility of such low revenues. We
introduce cascade auctions and show they mitigate the above
central issue.

The use of cascade auctions may have consequences be-
yond those considered in the current work. For example, the
prospect of winning the auction even with a bid that is not
highest among all bids may encourage participation of bid-
ders that might otherwise have chosen to avoid the auction.
Here we just remark that such consequences may affect the
desirability of using the cascade auction, but the analysis of
the effect is left for future work.

This work is concerned with the revenue of the seller
(specifically, in face of collusion). An aspect of auctions
that partly addresses revenue concerns is the use of a floor
price (a.k.a. reserve price), and in certain situations (that do
not involve collusion) it is known how to set a floor price
in a way that maximizes expected revenue (Myerson 1981).
Though cascade auctions may involve a floor price as well,
their resistance to collusion is not a consequence of the floor
price, and we shall not be concerned with the value of floor
price (which we often simply assume to be 0).

The model
Notation and conventions
A seller has one item for sale. There are multiple buyers.
The value of the item to buyer i is vi. Buyers may submit
bids (i, bi), specifying which buyer made the bid and a pos-
itive bid value, also referred to as the offer. A buyer may
submit more than one bid. The collection of bids is called
the bid profile.



A (pure) auction mechanism is a function that maps the
tuple of bids to a winner (the buyer who gets the item) and a
price c. For the winner i, the payoff of the outcome is vi− c.
For all other buyers, the payoff is 0. A mixed auction mech-
anism is a probability distribution over pure auction mecha-
nisms.

The cascade auction
We suggest here a new mixed auction mechanism that we
shall call a cascade single item auction with fixed proba-
bilities, or cascade auction for brevity. It involves a pa-
rameter k ≥ 1 and a vector of non-increasing probabilities
p1, . . . , pk (satisfying pj ≥ 0,

∑
pj = 1, and pj ≥ pj+1

for all j < k). It also involves a floor price (a.k.a. reserve
price) c0 – bids not higher than the floor price are rejected.
Given the bids, their values are sorted in nonincreasing or-
der in k+1 slots (with ties resolved as in the following sub-
section). Let a1 ≥ . . . ≥ ak+1 be the values in these slots.
If there are insufficiently many bids above c0, the remaining
values are c0. For 1 ≤ j ≤ k, the bidder of bid aj wins
the auction with probability pj . (If aj corresponds to a floor
price rather than an actual bid, the item is not allocated.)

Convention: throughout this manuscript the parameter k
will be used only with meaning as in the above paragraph,
namely, denoting the number of slots from which the winner
in a cascade auction is chosen.

When the winner is the jth highest bidder the payment
made by the winner is the Vickrey-Clarke-Groves (VCG)
payment p−1

j

∑k+1
l>j al(pl−1 − pl). In other words, the ex-

pected payment of the jth highest bidder is
∑k+1

l>j al(pl−1−
pl).

A special case of cascade auctions is when the probabili-
ties for the winner are the same for the r highest bidders. For
j > 1, let a mixed jth price auction be an auction that picks
a winner uniformly at random among the j− 1 highest bids,
and charges the jth bid from the winner. (Floor prices are
handled as above, and ties as in the next sub-section.) Note
that the jth price is the VCG price in this case. Observe also
that a mixed second price auction is the same as the well
known second price auction.

Handling ties
The sorted order of bid values referred to previously is not
well defined when there are ties in values of bids. We now
explain how the order among tied bids is chosen. Take a
permutation over all tied bids, chosen uniformly at random
among all permutations that satisfy the following “consecu-
tive slots” requirement: if several of the tied bids come from
the same buyer, then in the permutation these bids are re-
quired to occupy consecutive slots. Hence if for example we
have for some bid value b and two buyers 1 and 2 the bids
(1, b), (1, b) and (2, b) then we choose uniformly at random
among the following two permutations: (1, b); (1, b); (2, b)
and (2, b); (1, b); (1, b). The permutation (1, b); (2, b); (1, b)
is not allowed. The reason for introducing the consecutive
slots requirement is that under this rule a buyer has nothing
to gain by submitting more than k bids (including multiplic-
ities). In contrast, without the consecutive slots requirement,

the probability of being first in a random permutation would
be strictly increasing in the number of (tied) bids that a buyer
supplies, even if this number exceeds k.

Three equivalent views of the cascade auction
We have presented one view of the cascade auction, using a
vector of non-increasing probabilities p1, . . . , pk. We now
present two other equivalent ways of viewing the cascade
auction.

Combinations of mixed jth price auctions. In a mixed
jth price auction, one of the j − 1 highest bidders is cho-
sen uniformly at random as the winner, and it pays the jth
highest bid. The cascade auction of general form is equiv-
alent to a distribution over mixed jth price auctions for
2 ≤ j ≤ k + 1, where a jth price auction is chosen with
probability (j − 1)(pj−1 − pj). The equivalence is in the
sense that for every buyer, its probability of receiving the
item is identical in both types of auctions, and in case of
winning, its expected payment in the distribution over mixed
jth price auctions is the same as the (deterministic) payment
in the cascade auction.

Second price auctions with random masks. We define a
mask in an auction to be a binary vector that indicates a
pattern by which some of the bids are masked (dropped).
For example, the mask 1 drops the highest bid, the mask 01
drops the second highest bid, and the mask 101 drops the
first and third highest bids. In a masked second price auc-
tion, the highest bid that remains after applying the mask
wins, and pays the second highest remaining bid. Observe
that for every j, a mask with j ones can be assumed to have
all the one locations among the j + 1 highest bids (as oth-
erwise the tail of the ones is irrelevant). Such masks are
called plausible for j. A second price auction with random
masks is a distribution over second price auctions, where the
distribution is taken over choice of masks.

Second price auctions with random masks are more gen-
eral than the cascade auction (e.g., one may completely
mask out the highest bidder). We shall say that a second
price auction with random masks is uniform if for every j,
the probability of choosing any particular mask that is plau-
sible for j is identical (say, to qj). Uniform second price
auctions with masks are equivalent to cascade auctions. This
is easily seen by an obvious bijection with combinations of
mixed jth price auctions: qj−1 is 1/(j − 1) times the prob-
ability of taking the jth price auction.

Multiple bids
In a cascade auction it is sometimes advantageous for a
buyer to submit multiple bids, as then it can occupy multiple
slots. In this paper the auction mechanism allows multiple
bids by the same buyer, an aspect that is used in order to
increase revenue of the seller. If we allow multiple bids, in
the mixed jth price auction the highest bidder can guarantee
winning the item with probability 1 and paying the second
highest bid by making j − 1 identical bids. In fact, it is easy
to see that for the mixed j-price auction, and for every prior
that buyers might have on the values of the item to the other
buyers, it is a Nash equilibrium point for each buyer to make



j − 1 identical bids. For uniformity of notation, we may as-
sume that each buyer submits exactly k non-negative bids,
where a bid of the form (i, 0) is interpreted as no bid.

Collusion and agents
A collusion is a set of buyers that coordinate their bids.
We model collusion by a notion of an agent, which we
also call mediator. An agent is a bidding algorithm, and
the algorithm of the agent is effectively a contract that
the agent offers to buyers. The contract in essence says
that the buyers may provide their inputs to the bidding al-
gorithm, and the agent will bid on their behalf the out-
put of the algorithm. Formally, following the literature
of mediators (see e.g. (Monderer and Tennenholtz 2006;
Rozenfeld and Tennenholtz 2007)) we have m agents, in ad-
dition to the n buyers. For uniformity of notation, we may
assume that each buyer submits k bids to each of the media-
tors, in addition to its own bids. Each mediator is a function
for its incoming bids to k non-negative bids on behalf of
each of the buyers. Again, a zero bid (as an input to the
agent, or as its output) will represent no bid.

Notice that buyers may submit bids either directly to the
seller, or through one or more mediators. We refer to a buyer
submitting bids only directly to the seller as being indepen-
dent. An agent may represent several buyers. In this case
these buyers are colluding, and are referred to as siblings of
each other. Recall that bids are associated with particular
buyers. In particular, if an agent submits a bid (i, bi) and the
bid wins, the item goes to buyer i. The agent is not allowed
to instead give the item to a sibling of i.

The cascade auction as a multi-player game
Given the set of buyers and their valuations, and the set of
agents, we get a game in strategic form, where the play-
ers are the buyers N = {1, 2, . . . , n}, and the set of pos-
sible actions of each player is the set of possible pairs A =
(AI , AC) where AI is a k-tuple of bids it submits directly to
the seller, and AC = (AC1 , . . . , ACm) is the corresponding
k-tuples of bids it submits to the agents M = {1, 2, . . . ,m},
respectively. Notice that for each action profile of the buy-
ers, the payoff of each player is well defined, as described
above. We can therefore appeal to standard game-theoretic
concepts, such as the Nash equilibrium and un-dominated
actions.

Solution concepts
Dominant actions. An action A of a buyer B is dominant
if for every other action A′ of buyer B and for every set
of actions of the other buyers, the expected payoff for B
under action A is at least as large as his expected payoff
under action A′. The action A is strictly dominant if it is
the unique dominant action. (Equivalently, in addition to
being dominant, for every A′ there is a set of actions for the
other buyers under which the expected payoff of A is strictly
higher than the expected payoff of A′.)

In second price auctions, bidding one’s value is a strictly
dominant action. However, in the cascade auction, buyers
who submit multiple bids do not have a dominant action.
Hence we consider a relaxed concept.

Undominated actions. An action A of a buyer B is un-
dominated if for every other action A′ of buyer B, either
there is a set of actions for the other buyers under which
the expected payoff of A is strictly higher than the expected
payoff of A′, or the payoff of A is always the same as the
payoff of A′.

The use of undominated actions in the context of mecha-
nism design is discussed also in (Babaioff, Lavi, and Pavlov
2009). The other two solution concepts that we consider are
based on the notion of a best response action.

Best response action. Given the set of actions by all other
buyers, an action A by buyer B is a best response if no other
action offers B higher expected payoff.

A standard solution concept based on best responses is the
following.

Nash profile. The set of actions performed by the buyers
forms a Nash profile if the performed action of every buyer is
a best response to the performed actions of all other buyers.

While the above concepts are standard, given the notion of
agents as mediation devices, we may wish our results (that
relate to the expected revenue of the seller) to hold when the
output behavior of agents remain fixed. To do so, we refine
the notion of a best response.

Semi-best response. For an action A by buyer B, recall
we partition it into A = (AI , AC), where AI is the inde-
pendent action, namely, the bids provided by B directly to
the seller (if there are any), and AC is the colluding action,
namely, the contracts B has with the agents who bid on B’s
behalf (if there are any). Given the set of actions of all other
buyers, A is a semi-best response if no independent action
A′

I ̸= AI results in an action A′ = (A′
I , AC) that offers B

higher expected payoff than A does.
The semi-best response concept distinguishes between in-

dependent bids and bids that go through an agent. A change
from AI to A′

I leads to a replacing AI by A′
I in the set of

bids received by the seller. In contrast, a change from AC

to A′
C would in general change the set of bids received by

the seller in a way that depends not only on AC and A′
C ,

but also on actions of agents to which this change applies.
These actions may further depend on the set of bids these
agents receive from other buyers, and may affect the bids
that the agents submit on behalf of other buyers.

Semi-Nash profile. The set of actions performed by the
buyers forms a semi-Nash profile if the performed action of
every buyer is a semi-best response to the performed actions
of all other buyers.

Every Nash profile is also a semi-Nash profile, but there
might be semi-Nash profiles that are not Nash profiles. This
aspect does not weaken our results but rather strengthens
them, because it only enlarges the set of behaviors of buy-
ers with respect to which our lower bounds on the expected
revenue for the seller hold.

As is well known, every (finite) multi-player game has a
mixed Nash equilibrium, but some multi-player games do
not have a pure Nash equilibrium. Our Nash profiles re-
late to pure Nash, rather than mixed Nash. In the absence
of agents, the cascade auction game does have pure Nash
equilibria (as implied by our analysis). This is also true in
the presence of agents, because a pure Nash equilibrium in



which no buyer uses the services of agents remains a pure
Nash equilibrium even in the presence of agents. Given that
pure Nash equilibria always exist in our game, in this work
we do not attempt to analyze mixed Nash equilibria for the
cascade auction game.

Naive buyers
A buyer is naive if he is independent and he submits a single
bid. A formal model for a naive buyer is simply as a buyer
that does not have the full set of actions available to him, but
only the actions that involve submitting a single independent
bid (i.e. all other bids he submits are zero).

The following Proposition follows directly from proper-
ties of the VCG-price.

Proposition 1 There is a strictly dominant action for naive
buyers, and this action is to simply bid his value.

Buyers who are not naive do not in general have dominant
strategies. The strategy of bidding their value might not be
dominant for several reasons. One is that they might benefit
from submitting additional bids below their value. Another
is that they might benefit from going through an agent in-
stead of submitting an independent bit. Yet another is that
when bidding through an agent there are realistic scenarios
in which they may benefit from biding above their value.

Analysis
In the rest of the paper we focus on the case where k = 2, the
first instance of cascade auctions that goes beyond 2nd price
auction. Our results hold for any number of buyers or agents.
Since our results are mainly positive, showing the strength
of cascade auctions, the case k = 2 is the most interesting
(and applicable) one. In this case p2 = 1 − p1, and we
denote p1 by p. Recall that p ≥ 1/2. Let b1 ≥ b2 ≥ b3
be the three highest bids (some of which may be the reserve
price). Then the highest bidder wins with probability p and
his payment when he wins is 1

p ((2p−1)b2+(1−p)b3), and
the second highest bidder will win with probability 1−p and
his payment when he wins is b3. The expected payment for
the highest bidder is (2p−1)b2+(1−p)b3, and for the second
highest bidder it is (1 − p)b3. The expected revenue for the
seller is (2p− 1)b2 + (2− 2p)b3 = b2 − (2− 2p)(b2 − b3).
This revenue approaches the one from the standard second
price auction (under the same bidding) as p tends to 1, or
alternatively, as b3 tends to b2.

As we have previously discussed, this cascade auction is
equivalent to having a second price auction with probability
q = 2p − 1, and mixed third price auction with probability
1 − q = 2 − 2p. We shall use these two representations of
the same auction interchangeably.

Multiple bids as a best response
As noted in Proposition 1, a dominant strategy for a naive
buyer who submits only one bid is to bid his value. Here we
consider a buyer who submits multiple bids. We assume that
the buyer is informed in the sense that he sees all remaining
bids. Let v be his value, and let b1 ≥ b2 be the two top bids
by other buyers (other remaining bids will not matter). We

assume for simplicity that there are no ties (v ̸= b1, v ̸= b2,
b1 ̸= b2). What should the buyer do?

If v < b2 the informed buyer has no reason to bid at all,
hence he might either not participate, or he may simply bid
v (his dominant naive action) out of precaution (e.g., just in
case it turns out that he was mistaken about the values of the
other bids).

If b2 < v < b1 the informed buyer has incentive to submit
one bid of value between b1 and b2, and it makes sense to
submit a bid of v. Submitting multiple bids might actually
hurt the buyer (if he wins with his highest bid and needs to
pay his own second highest bid).

The interesting case is when v > b1. The buyer can cer-
tainly submit one bid of v. However, it may be desirable to
submit a second bid as well. If at all submitted, the value of
the second bid should be marginally higher than b1, and we
denote its value by b+1 . To see when the buyer gains from
the second bid, it is convenient to consider the combination
of mixed auctions view. We have a combination of a second
price auction and a mixed third price auction. The second
price auction is only marginally affected by the additional
bid (the payment only changes from b1 to b+1 ). However,
the mixed third price auction does change. Now the buyer
occupies both top slots and hence wins for sure rather than
only with probability 1/2, gaining v/2 in expectation. On
the other hand, upon winning he pays b1 rather than only b2.
Hence the payment of the buyer increased by b1 − b2/2. It
follows that a second bid can increase the expected payoff of
a buyer if and only if (v+ b2)/2 > b1. Thus we established:

Proposition 2 In a cascade auction with k = 2, if a buyer
has value v and the two top bids by other buyers are b1 ≥ b2,
then submitting two bids is a best response for the buyer if
and only if (v + b2)/2 > b1.

Two remarks on Proposition 2. One is that when the buyer
does submit a second bid b+1 , and assuming that b1 was the
true value for the buyer who bid b1 (his dominant strategy),
the revenue of the cascade auction becomes equal to the sec-
ond highest value held by the buyers, which is precisely the
revenue in a second price auction (when bidders are truth-
ful). The other is that a buyer may possibly choose to submit
a second bid even if (v + b2)/2 < b1. This may happen for
example if the buyer is not concerned only with the expected
payoff, but also with the variance. By submitting a second
bid the buyer achieves certainty about winning the auction.

Proposition 2 plays an important role in our study of var-
ious scenarios of collusion.

Perfect Collusion
We continue to address the case k = 2 (highest bid wins
with probability 1/2 ≤ p < 1, second highest bid wins with
probability 1 − p). The worst possible collusion from the
point of view of the revenue of the seller appears to be when
all buyers collude, for example, by disclosing their value to
one common agent that bids on behalf of all of them. We
call such a situation a perfect collusion. With perfect col-
lusion, the revenue for the seller in a second price auction
is the floor price. We show that the cascade auction of-
fers higher revenue, assuming buyers are rational (in a game



theoretic sense), and furthermore, assuming nontransferable
utility among buyers (even if represented by the same agent).
Our results are apply in the general setting defined in the pre-
vious section, as well as in the restricted setting of perfect
collusion.

Since we consider the case k = 2 it will suffice to consider
in our analysis the three highest values that buyers have, de-
noted here by v1 > v2 > v3 (for simplicity we assume that
there are no ties). Without loss of generality, these values are
held by buyers 1, 2 and 3 respectively. To simplify notation,
we assume that the floor price is 0.

Nash profiles
Recall that a Nash profile is a profile of bids in which no
buyer has an incentive to unilaterally deviate (replace his
bids in the profile by other bids). This is a reasonable so-
lution concept for a situation in which buyers have full in-
formation regarding the bids of other buyers, and it has nice
fit to the ad exchanges setting discussed in the introduction
where bidding is repetitive and bidding logs are accessible
(in a delay) to the participants.

Observe that there may be multiple different Nash pro-
files. For example, in a second price auction, there is a Nash
profile in which the buyer with highest value bids his value,
and all other buyers bid 0. The revenue for the seller in this
Nash profile is 0.

The fact that there may be multiple Nash profiles serves
as a connection between Nash profiles and collusion. The
nature of collusion might be that among all Nash profiles,
the buyers choose the profile in which the revenue of the
seller is the smallest. This outcome may come about if one
agent represents all buyers, and buyers are truthful (report
their true values to the agent).

Here we analyze the revenue of the seller in Nash profiles
of the cascade auction. Proposition 3 presents a lower bound
that always holds, and then Theorem 4 characterizes cases in
which the revenue of the seller exceeds the lower bound of
Proposition 3.

Proposition 3 In every Nash profile, the expected revenue
of the seller is at least (2p− 1)v3.

Proof. In a cascade auction with k = 2 and 1/2 ≤ p < 1,
the combined event that the highest bid wins and pays the
value of the second highest bid has probability (2p − 1).
To prove the proposition it suffices to show that the second
highest bid is at least v3.

Consider an arbitrary Nash profile, and let b2 be the sec-
ond highest bid. For the sake of contradiction, suppose that
b2 < v3. Of the three buyers who hold the highest val-
ues, consider a buyer not giving any of the two highest bids
(breaking ties among buyers arbitrarily). This buyer strictly
gains by replacing his current bid by v3 > b2, contradicting
the assumption that we had a Nash profile. �

In some sense, Proposition 3 is best possible. Consider
the case that v3 ≥ v1/2, buyer 1 (with value v1) bids v1 and
buyer 2 (with value v2) bids v3. This is a Nash profile as no
other buyer has any incentive to bid, and the two top buyers
do not have any incentive to change their bids.

As v3 becomes smaller the lower bound provided in
Proposition 3 deteriorates. Luckily, as soon as v3 drops be-
low v1/2, a new lower bound kicks in. Consider first the
case that v2 ≥ v1/2 > v3. If buyer 2 drops his bid b2
to a value lower than v1/2, then Proposition 2 implies that
buyer 1 would provide two bids, the lowest of which is just
above b2. But then this is not a Nash profile, because buyer 2
never wins, despite having a value larger than the second bid.
Hence b2 will not drop below v1/2, ensuring an expected
revenue of (2p− 1)v1/2 for the seller (when v2 ≥ v1/2).

It remains to consider the case that v1/2 > v2 ≥ v3.
In this case Proposition 2 implies that buyer 1 will provide
the two highest bids. But how large would be the second
bid. Surely at least v2, because otherwise buyer 2 has an
incentive to overbid this second bid, and this cannot be a
Nash profile. But note further that the buyer 1 would like his
second highest bid to be as low as possible, as this lowers
his payment when his first bid wins. In a Nash profile, what
can prevent his second bid to go below v2? The only thing
that may prevent it is a bid of v2 by a different buyer. Hence
the top three bids in the Nash profile are no worse for the
seller than v1, v2, v2, and the revenue for the seller is at least
v2. Combining the above we get:

Theorem 4 In any Nash profile, if v2 < v1/2 the revenue
of the seller is at least v2, and if v2 ≥ v1/2 the expected
revenue of the seller is at least (2p− 1)max[v1/2, v3]].

Naive agent
The naive agent asks each buyer for his bids (a buyer may
submit any number of bids from 0 to k). The naive agent
sorts all bids that he received in order of decreasing value,
determines the value of the kth highest bid, and passes to the
seller those bids having at least this value. Hence the number
of bids that the naive agent passes to the seller may be lower
than k (if the agent received less than k bids), exactly k (if
the agent received at least k bids and the (k+1)th highest bid
was smaller than the kth highest bid), or more than k bids (if
the (k + 1)th highest bid was equal to the kth highest bid).
The advantage that the naive agent offers for the buyers is
the prospect of dropping all bids beyond the kth highest bid,
and hence potentially lowering the payment for the winner
of the cascade auction.

The above contract that the naive agent offers may be at-
tractive to buyers, as Proposition 5 shows.

Proposition 5 If in the cascade auction all agents are naive,
then for every buyer, in every undominated action,

1. The buyer does not submit an independent bid.
2. If the buyer submits multiple bids, all these bids are sub-

mitted through the same naive agent.
3. At least one bid that the buyer submits to the naive agent

is the true value for the buyer, and the other bids (if any)
are not higher.

Proof. Suppose that all agents are naive and the buyer is
playing an undominated action. We prove a sequence of
claims about his action A.

The buyer submits at most k bids in total. Assume for
the sake of contradiction that action A includes at least k +



1 bids, and consider the action A′ that contains only the k
highest bids in A, breaking ties arbitrarily. Regardless of
actions of other bidders, action A′ wins the item whenever
action A does, and does not pay more. Strict domination of
A′ over A follows from the case in which no other buyer
bids, and then the VCG prices under A are strictly larger
than those under A′, because the (k + 1)th highest bid in A
is strictly positive and hence strictly higher than that in A′.

All the buyer’s bids go through the same agent. Assume
for the sake of contradiction that action A includes at most k
bids, but not all these bids go through the same agent. Let N
be the naive agent used by the buyer for his bid that is high-
est among all bids that are not independent, and let N be an
arbitrary agent if all the bids in A are independent. Consider
the action A′ which has the same bids as A, but all these
bids are given through N . We claim that action A′ strictly
dominates action A. This follows from the fact that when all
agents are naive, the bids that the seller receives necessar-
ily include the k highest bids (no naive agent will drop any
such bid), and every bid tied with the kth highest. Hence the
probability of winning with A′ is identical to the probability
of winning with A. The difference between A′ and A can
only be in the payment, due to the (k + 1)th highest bid re-
ceived by the seller. A simple case analysis (that is omitted)
shows that with A′ the (k+ 1)th highest bid received by the
seller is never higher than with A, and it is strictly smaller if
all buyers happen to use N as an agent, and there is no tie
on the kth highest bid.

The highest bid of a buyer equals his value. Here we may
already assume that action A includes at most k bids and
they all go through the same agent. Let v be the value of the
item for the buyer, and let b be the highest among his bids.
Assume for the sake of contradiction that b ̸= v. There are
two cases to consider.
b < v. Then A′ in which the buyer’s highest bid is raised

to v dominates A (wins at least as often, and pays more only
in cases that A could not have won). This is a strict domi-
nation due to the possibility that there was only one bid by
other buyers, and this bid was of value between v and b.
b > v. Then A′ in which all bids of the buyer which

were higher than v are lowered to v dominates A. (This
is perhaps easiest to see when viewing the cascade auction
as a combination of mixed jth price auctions, as discussed
before). Details omitted.) This is a strict domination due to
the possibility that there was only one bid by other buyers,
and this bid was of value between v and b. �

The following theorem is a straightforward consequence
of Proposition 5.

Theorem 6 In the cascade auction with k = 2, if all agents
are naive and if every buyer uses an undominated action,
then the expected revenue of the seller is at least (2p− 1)v2.

Arbitrary agents
Unlike in previous sections where we had a fairly accurate
model of how the buyers collude (either by selecting a Nash
profile of minimum revenue for the seller or by using a Naive
agent), in this section we prove results that hold regardless

of the nature of the bidding algorithms of the agents. The
solution concept that we use is the semi-Nash profile.

Theorem 7 In every semi-Nash profile the expected revenue
for the seller is at least (2p− 1)min[v2,max[v1/2, v3]].

Proof. The proof is via a simple modification of the proof
of Theorem 4 for Nash profiles. The analysis for the cases
v2 ≥ v1/2 was based on the option of a buyer to provide an
additional independent bid, and hence holds for semi-Nash
profiles as well. The only difference is in the case v2 <
v1/2. Having only two bids v1 and v2 with no other bid
present was not a Nash profile. However, it might be a semi-
Nash profile, if an agent is providing these bids on behalf
of buyer 1. (Recall that in a semi-Nash we only consider
what a buyer can gain by changing his independent bids,
and here buyer 1 cannot gain by submitting an additional
independent bid.) Hence the revenue for the seller might be
only (2p − 1)v2 instead of v2 as in Theorem 4 giving the
bound claimed in Theorem 7. �

Concluding remarks
Our analysis shows that cascade auctions give an advantage
over second price auctions in case of collusion, or when me-
diators are used. The second price auction, used as a stan-
dard tool for ad exchanges, is known to suffer in revenue
in such cases (Muthukrishnan 2009), yielding potentially
0 revenue (or more generally, not more than a small floor
price). Our analysis suggests that cascade auctions will mit-
igate this problem.

While our approach is both rigorous and handles a realis-
tic issue, let us end with several disclaimers.

1. Economic efficiency. Under dominant strategies for the
buyers, a second price auction allocates the good to the
buyer who values it most. For the cascade auction there is
an inherent loss of economic efficiency due to its random-
ized allocation rule. We note however that some of the
loss is compensated for by the possibility that the buyer
with highest value will submit multiple bids (as in Propo-
sition 2).

2. Randomized strategies for agents. Our analysis for Nash
and semi-Nash profiles relate to deterministic strategies.
It could be that there are randomized bidding algorithms
for agents that will result in mixed-Nash profiles with
lower expected revenue for the seller compared to the
bounds given in the paper.

3. Other auction mechanisms. We compared the cascade
auction with the second price auction, because the second
price auction (or variants of it) are the de-facto current
standards for selling impressions in electronic exchanges.
Our goal was to cope with collusion while maintaining as
much as possible the truthfulness aspect of second price
auctions – we still offer naive buyers a dominant bidding
strategy. We remark that if one is willing to give up truth-
fulness altogether, there are other auction mechanisms,
most notably, first price auctions, for which collusion is
not considered to be a source of significant loss of rev-
enue for the seller.
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