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Abstract. We consider graphs obtained by placing n points at random
on a unit sphere in Rd, and connecting two points by an edge if they are
close to each other (e.g., the angle at the origin that their corresponding
unit vectors make is at most π/3). We refer to these graphs as geometric
graphs. We also consider a complement family of graphs in which two
points are connected by an edge if they are far away from each other (e.g.,
the angle is at least 2π/3). We refer to these graphs as anti-geometric
graphs. The families of graphs that we consider come up naturally in the
context of semidefinite relaxations of graph optimization problems such
as graph coloring.
For both distributions, we show that the largest dimension for which a
random graph is likely to be connected is the same (up to an additive
constant) as the largest dimension for which a random graph is likely not
to have isolated vertices. The phenomenon that connectivity of random
graphs is tightly related to nonexistence of isolated vertices is not new,
and appeared in earlier work both on nongeometric models and on other
geometric models. The fact that in our model the dimension d is allowed
to grow as a function of n distinguishes our results from earlier results
on connectivity of random geometric graphs.

1 Introduction

For natural numbers n and d and an angle 0 < θ < 2π, an (n, θ, d)-graph is
a collection of n points on the unit sphere in Rd (equivalently, n unit vectors),
with two points (vertices) connected by an edge iff the angle between their
corresponding unit vectors is at most θ. For example, when d = 2, we have
points placed on a circle of radius 1, and two points are neighbors if the angular
distance between them is at most θ. Equivalently, each point can be viewed
as representing an interval of angular length θ centered at the point, and two
intervals are neighbors if they intersect. When d ≥ 3 the points can be thought
of as equal size discs placed on the unit sphere, and two points are neighbors
if their discs intersect. In this work we shall be interested in the case when
the dimension d is relatively large and scales roughly like logn. We call such
graphs high dimensional geometric graphs. Our interest in high dimensional
geometric graphs (and their complements that we call anti-geometric graphs,
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with an edge iff the angle is at least θ) stems from the fact that they come
up naturally as solutions for various semidefinite relaxations of combinatorial
optimization problems (see [13, 10], for example). The question that we address in
the current work is that of connectivity of these graphs. Specifically, we consider
the distribution Gn,d,θ in which the locations on the sphere of the n vertices of
the (n, θ, d)-graph are chosen uniformly independently at random, and ask for
which range of parameters of (n, θ, d) is the graph likely to be connected. This
question comes up naturally in the study of algorithms for coloring of random
high dimensional anti-geometric graphs [4], and turns out to be more subtle than
one might first imagine.

1.1 Definitions and Notation

We use Sd to denote the unit sphere centered at the origin in Rd, namely, the
set of vectors in Rd of Euclidean norm 1. (Note that in other literature this
is sometimes denoted by Sd−1, due to the fact that it is a (d − 1)-dimensional
object.) We measure the distance between two points in Sd by the angle at the
origin between the unit vectors that represent these points. Namely, for unit
vectors u and v, their angular distance is arccos(vu), where uv denotes their
inner product. An (n, θ, d)-graph G(V,E) has as its vertex set V a collection of n
points in Sd, and for u, v ∈ V there is an edge (u, v) ∈ E iff their angular distance
is at most θ, namely, arccos(vu) ≤ θ. We refer to these graphs as geometric
graphs, and to θ as the neighborhood radius. Observe that as we measure angular
distance, a geometric graph remains unchanged if we scale the radius of Sd to be
different than 1. We shall also be interested in complements of (n, θ, d)-graphs,
in which (u, v) ∈ E iff arccos(vu) ≥ θ. We refer to these graphs as anti-geometric
graphs, and to π − θ as the neighborhood radius. (We note that once we fix θ,
in our graphs it will not happen that arccos(vu) = θ, and hence geometric and
anti-geometric graphs are indeed complements of each other.)

Related work studied other families of geometric graphs in Rd (not necessarily
on Sd), with geometric distances induced either by the Euclidean norm or by
other norms. We shall use the term neighborhood radius, typically denoted by
r, to denote the geometric distance up to which two points are declared to be
neighbors in these models as well.

For given (n, θ, d), we shall be interested in the distribution Gn,θ,d over
(n, θ, d)-graphs, in which the n vertices are placed independently uniformly
at random in Sd. Likewise, Ḡn,θ,d denotes the distribution over anti-geometric
graphs (the complements of (n, θ, d)-graphs) when the n vertices are placed in-
dependently uniformly at random in Sd.

Given a graph G(V,E) and two (not necessarily disjoint) sets A and B of
vertices, EG(A,B) denotes the set of edges with one endpoint in A and the other
endpoint in B, and eG(A,B) = |EG(A,B)| denotes the number of such edges.

Definition 1. A graph G(V,E) is called an (n, h)-expander if |V | = n and for
every set of vertices S ⊂ V with |S| ≤ n/2 it holds that e(S, V \ S) ≥ h|S|.
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1.2 Our Results

We shall assume that θ is a fixed constant (specifically, θ = π/3), and consider
increasing values of d.

Given d, scale the sphere Sd so that its total surface area is 1. Let µ(θ, d)
denote the area of a spherical cap of angular radius θ. Given a vertex in Sd, its
expected number of neighbors in Gn,θ,d is precisely (n− 1)µ(θ, d). Hence if n <
1/µ(θ, d) we expect a constant fraction of the vertices to be isolated (implying
that the graph is not connected). It is not difficult to show (see Section 5) that
a value of nIV ≃ 1

µ(θ,d) ln(1/µ(θ, d)) serves as a threshold value for isolated

vertices: for every ϵ > 0, if n ≥ (1 + ϵ)nIV there are unlikely to be isolated
vertices, whereas if n ≤ (1 − ϵ)nIV there are likely to be isolated vertices. The
same applies to Ḡn,θ,d by setting nIV ≃ 1

µ(π−θ,d) ln(1/µ(π − θ, d)).

Theorem 1. Let θ < π/2 be a fixed constant (e.g., θ = π/3) and let d be
sufficiently large. There is some universal constant c ≥ 1 such that if n ≥ cnIV

then both Gn,θ,d and Ḡn,π−θ,d are connected with probability 1− o(1) (where the
o(1) term tends to 0 as d grows).

Our proof of Theorem 1 shows that a value of c ≃ π/θ suffices. One may conjec-
ture that Theorem 1 is true also for some absolute constant c independent of θ,
and moreover, that this constant is not much larger than 1.

We are mostly interested in the case that θ is constant, d is a parameter that
may grow, and n is exponential in d. Given θ and d, Theorem 1 determines up
to a constant multiplicative factor the smallest value of n for which the graph is
likely to be connected. Had we fixed θ and n, the same proof would determine up
to a constant additive term the largest value of d for which the graph is likely to
be connected. For example, if θ = π/3 and one is given a value of n, our results
establish that there is a constant c1 ≃ 6.95212 (see Section 5) and a constant
c2 > 0 such that if d ≤ c1 log n the graph is connected with probability 1− o(1),
and if d ≥ c1 log n + c2 the graph is connected with probability at most o(1).
Finally, had we fixed d and n (exponential in d), the proof of Theorem 1 would
determine up to an additive term of order O(1/d) the smallest value of θ for
which the graph is likely to be connected.

Our proof of Theorem 1 involves two aspects. One is that of establishing
various expansion properties of a random (N, θ, d) graph G′ when θ is a fixed
constant (e.g., θ = π/3), d is a parameter that can grow, and N tends to infin-
ity. Establishing these properties involves symmetrization arguments of the type
used in [6, 7]. Thereafter, we view the random (n, θ, d) graph G as a random sub-
graph of G′ induced on n random vertices. We wish to show that the expansion
properties of G′ imply that G is likely to be connected. This is done using the
following theorem which is applied in a situation in which the expansion h is of
the order of the maximum degree in G, and this maximum degree is so large
(e.g., it might be N

logN ) so that log(N/h) is much smaller than logN .

Theorem 2. Let G(V,E) be an (N,h)-expander of maximum degree ∆. Con-
sider a vertex induced subgraph H that contains qN vertices chosen randomly
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and independently. If q > 1+o(1)
h ln(Nh ) + O

(
1
h log(∆h )

)
then the probability that

H is connected is at least 1 − o(1), where the o(1) term tends to 0 as N
h tends

to infinity.

1.3 Related Work

Connectivity in uniform random graphs (non-geometric) is well understood.
Given n vertices which initially have no edges, if one inserts random and inde-
pendent edges to the graph, with high probability the graph becomes connected
exactly at the point where every vertex has degree at least one [5]. Theorem 1 is
an approximate version of this tight connection between connectivity and having
no isolated vertices. Theorem 1 has several precursors in work on connectivity
of various models of geometric graphs [16]. In the most general setting, a ”nice”
(in particular, connected) domain D ∈ Rd is given together with a measure on
the domain and a norm. (In our setting the domain is the unit sphere Sd, the
measure is uniform, and the norm can be taken to be Euclidean.) One places
n points at random in D, and two points are neighbors if the distance between
them (according to the given norm) is at most r. The question typically asked is
what is the minimum value of r (as a function of n) for which the graph is likely
to be connected. We denote the expectation of this value by RC(n). Equivalently,
given the n points one considers a minimum spanning tree (with edge lengths
being the distance between the points according to the given norm), and asks
what is the length of the longest edge in this spanning tree. It is not hard to see
that this is exactly the value RC(n) that would ensure connectivity. A different
question is what is the minimum value of r for which there are not likely to
be any isolated vertices. We call the expectation of this value RIV (n). Clearly,
RC(n) ≥ RIV (n) for every n. A very general result of Penrose [19] shows that

as n tends to infinity, the ratio RC(n)
RIV (n) tends to 1. There were previous results

of this nature in special cases. See [8, 2, 12, 18], for example.
It might appear that the result of Penrose (or other related previous work)

implies our Theorem 1 as a special case. However, this overlooks the issue that
in previous results that we are aware of, one first fixes the dimension d and then
lets n tend to infinity (we refer to this as asymptotic n), whereas in our results
n is fixed as a function of d (we refer to this as bounded n). As a consequence,
the statement of previous results only implies that if θ is sufficiently small as a
function of d, a theorem such as Theorem 1 holds. In contrast, we prove Theo-
rem 1 when θ is a fixed constant. Once θ is sufficiently small the corresponding
graphs acquire geometric properties that are different than those involved in the
case when θ is large (when θ is small graph distances approximate well geomet-
ric distances on the sphere, whereas when θ is large this is no longer true), and
hence proofs of connectivity that apply in one setting might not apply in the
other. This aspect is discussed further in the full version of our paper.

Another line of work related to the questions studied in this work is that of
percolation (see [11] or [17], for example), and specifically, the process referred
to as continuum percolation. Typically, in the continuum percolation process
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one is given a domain D such as a box in Rd that is symmetric around the
origin. One places a point in the origin and additional points at random in the
domain, and two points are connected if their distance from each is at most r.
The question asked is not that of complete connectivity of the graph, but rather
questions such as whether there is a path from the origin to the boundary of
the domain, or what is the size of the connected component that contains the
origin. A typical situation is that for large enough n there is a given threshold
distance Rp such that if r > Rp the origin is likely to be connected to the
boundary, whereas if r < Rp the origin is likely to be in a very small component,
or even isolated. Obviously, the connectivity threshold is at least as large as
the percolation threshold, namely RC ≥ Rp. Some of the work on connectivity
builds on results from percolation (e.g.,[12] explicitly refers to results in [15],
and [19] makes use of proof techniques, a Peierls argument, that is commonly
used in percolation). We remark that in percolation theory one typically deals
with the regime of asymptotic n rather than bounded n.

The results of [9] may serve to illustrate a difference between our setting
of fixed n and the setting that n tends to infinity. Their result is that every
monotone graph property (any property that is preserved by adding edges, con-
nectivity being one such example) in random geometric graphs (in their case,
the domain is [0, 1]d and the measure is uniform) has a sharp threshold. More
specifically, for every n and for every monotone graph property, there is a cor-
responding threshold distance R (that depends on n and on the property), such
that if r > R+ ϵ the property holds almost surely, and if r < R− ϵ, the property
almost surely does not hold. Moreover, the value of ϵ tends to 0 as n grows,
specifically at a rate ϵ ≤ O(( log n

n )1/d). In our case of constant θ, the values of
n that we consider are only exponential in d, and consequently the results only
imply that ϵ ≤ O(1). Moreover, if one inspects the proof technique of [9], it nec-
essarily results in ϵ = Ω(1) when θ is constant. As we consider the unit sphere
rather than unit cube, this value of ϵ is of the same order of magnitude as the
diameter of the whole domain, and hence completely useless. (We do not claim
that monotone graph properties do not have sharp thresholds when n ≤ 2O(d).
We just point out that if they do, establishing this will require proofs that are
different than those that apply when n tends to infinity.)

Theorem 2 considers connectivity of random vertex induced subgraphs of
expanders. There have been previous studies of connectivity properties of random
subgraphs of expanders. However, all previous work that we are aware of either
addressed edge induced subgraphs (see for example [1]), or addressed vertex
induced subgraphs at a range of parameters that is very different from that of
Theorem 2 (see for example [3]).

Low dimensional geometric graphs are sometimes used as models for wireless
communication networks (e.g., in [12]), or for physical medium (see for example
Chapter 1 in [11]). Random high dimensional geometric graphs such as the ones
studied in this paper are not commonly used as a model for physical reality.
However, high dimensional geometric graphs come up naturally as solutions to
semidefinite programming relaxation to various optimization problems. In par-
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ticular, the solution to semidefinite relaxations of graph coloring problems are
high dimensional anti-geometric graphs (see [13], though note that the termi-
nology anti-geometric graphs is not used there). Random anti-geometric graphs
are used in order to construct negative examples showing a large (tight, in some
cases) integrality gap for these semidefinite relaxations [6, 7]. The issue of con-
nectivity of these graphs did not come up in these earlier works, but did come
up and was left open in more recent study of these negative examples [4].

2 On the Expansion of the Infinite Graph

In this section we define an infinite graph Gθ,d, with the property that an induced
graph on a random sample of n vertices from Gθ,d is distributed as G ∈R Gn,θ,d.
We will show (under a natural definition of expansion of infinite graphs) that
Gθ,d is an expander.

Given v ∈ Sd the set
{
u ∈ Sd| arccos(vu) ≤ θ

}
is a sphere cap and it is

denoted by Ccos(θ) (v). For example, a cap of angular radius π/3 centered at v is
denoted by C 1

2
(v) and a cap of radius π/2 (a half sphere) is denoted by C0 (v).

We omit v from the above notation if the location of the center of the cap is
not needed. (The subscript denotes cos θ rather than simply θ for compatibility
with notation in previous work.)

Definition 2. (The infinite graph Gθ,d). The vertices of Gθ,d are all the points
in Sd and the edge set of Gθ,d is all the pairs u,v ∈ Sd s.t. u ∈ Ccos θ (v).

Every vertex in Gθ,d has an infinite number of neighbors, therefore the no-
tion of the “degree” of a vertex is represented by the measure of the set of its
neighbors. We normalize the uniform measure on the sphere so that the total
measure of the (surface area of the) sphere is 1. Given a measurable set S, its
measure (the ratio between the surface area of S to the surface area of Sd) is
denoted by |S|. This measure corresponds to the number of vertices in S. The
edge boundary of S (the set of edges with exactly one endpoint in S) is denoted
by ∂(S) and its measure is denoted by |∂(S)|. This measure corresponds to the
number of edges leaving S. (The measure of ∂(S) is the integral over all points
in S of the measures of the sets of their neighbors outside S.)

The following definition for edge expansion is given, for simplicity, specificity
for Gθ,d. An equivalent definition to a general infinite graph can be stated in a
straightforward manner.

Definition 3. (Edge expansion for the infinite graph). The edge expansion h(Gθ,d)
of a graph Gθ,d is defined as

h(G) = inf
0<|S|≤ 1

2

|∂(S)|
|S|

where the minimum is over all measurable sets S ⊂ Sd with nonzero measure.
For a given set S we call the quantity h (G,S) := |∂(S)|

|S| the edge expansion of S.
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An expander graph is a graph with high edge expansion. To lower bound
h (Gθ,d) it suffices to show that the sets with the lowest edge expansion are sphere
caps (Lemma 1) and to analyze the expansion of spherical caps (Lemma 2).

Lemma 1. For all S ⊂ Sd s.t. |S| = m (0 ≤ m ≤ 1
2) it holds that |∂(S)| ≥

|∂(Ca)| for the unique a satisfying |Ca| = m.

Proof. The proof is a direct consequence of Theorem 5 in [7]. The theorem shows
that the complement of the graph Gθ,d (u,v are neighbors in the complement
graph iff they are not neighbors in the original graph) has the following property:
for all S ⊂ Sd s.t. |S| = m (0 ≤ m ≤ 1

2 ) it holds that |∂(S)| ≤ |∂(Ca)| for the
unique a satisfying |Ca| = m (here ∂(S) is the edge boundary of the complement
graph of Gθ,d). ⊓⊔

In the rest of this section we deal with θ = π/3 for geometric graphs and θ = 2π/3
for anti-geometric graphs, though the results generalize for any θ.

Lemma 2. h
(
Gπ/3,d

)
≥ (1/3− ϵ)

∣∣∣C 1
2

∣∣∣ for ϵ that tends to 0 as d grows.

Proof. By Lemma 1, the minimum expansion of Gπ/3,d is attained at a sphere
cap. It is not difficult to see that the expansion of sphere caps decreases as
their radius increases. Hence among sets of measure at most 1/2, the minimum
expansion is attained for the half sphere C0. Hence h

(
Gπ/3,d

)
= h

(
Gπ/3,d, C0

)
.

Estimating h
(
Gπ/3,d, C0

)
is fairly simple once d is sufficiently large, as we show

below.
Fix ϵ′ > 0 to be a small constant. For every vertex v of Gπ/3,d remove those

edges to neighbors of v with angle smaller than π/3− ϵ′, thus obtaining a new

graph G′
π/3,d. The ratio

Ccos(π/3−ϵ′)
Ccos(π/3)

tends to zero as d grows. (See Theorem 6.)

This implies that we have removed only a small fraction (that tends to zero) of
the graph edges.

Consider y drawn uniformly from Sd. Any edge e of G′
π/3,d has probability

π/3−ϵ′

π = 1/3 − ϵ′/π to be in ∂ (C0 (y)) (the analysis is similar to that of the
random hyperplane rounding technique of [10]). Hence roughly one third of the
edges of the graph are in the edge boundary of C0. As for the remaining edges, by
symmetry half of them are in the half sphere C0 and half are in its complement.
Hence there are essentially as many edges in the edge boundary of C0 as there
are inside C0, implying that the expansion of C0 is nearly one third of (the
measure of) the degree of its vertices, establishing that that h

(
Gπ/3,d, C0

)
=

(1/3− ϵ)
∣∣∣C 1

2

∣∣∣, as desired.
⊓⊔

2.1 The Expansion of the Infinite Anti-Geometric Graph

The infinite anti-geometric graph Ḡπ/3,d is defined as follows: its vertices are

all the points in Sd and the edge set of Ḡπ/3,d is all the pairs u,v ∈ Sd s.t.
u ∈ Ca (−v), (as opposed to u ∈ Ca (v) in the case ofGπ/3,d). The graph induced
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on a random sample of n vertices from Ḡπ/3,d is distributed as G ∈R Ḡn,π/3,d.

The edge expansion of Ḡπ/3,d, h
(
Ḡπ/3,d

)
, is defined similarly as in Definition 3.

Lemma 3. h
(
Ḡπ/3,d

)
≥ h

(
Gπ/3,d

)
Proof. In this proof we shall switch between several graphs. Given a graph H
and sets A,B of vertices, the set edges of H with one endpoint in A and the
other in B will be denoted by E (H,A,B). Given A ⊂ Sd let Ā := Sd \A, i.e the
complement set, and let A−1 :=

{
x ∈ Sd| − x ∈ A

}
.

To prove the lemma we need to show that

min
|A|=a

∣∣E (Ḡπ/3,d, A, Ā
)∣∣ ≥ min

|A|=a

∣∣E (Gπ/3,d, A, Ā
)∣∣

for every 0 < a ≤ 1
2 . Consider an arbitrary 0 < a ≤ 1

2 .

min
|A|=a

∣∣E (Ḡπ/3,d, A, Ā
)∣∣ ≥ min

|A| = a
|B| = 1− a

∣∣E (Ḡπ/3,d, A,B
)∣∣

= min
|A| = a

|B| = 1− a

∣∣E (Gπ/3,d, A,B
−1
)∣∣ = min

|A| = a
|B| = 1− a

∣∣E (Gπ/3,d, A,B
)∣∣

To finish the proof it suffices to show that:

min
|A| = a

|B| = 1− a

∣∣E (Gπ/3,d, A,B
)∣∣ = min

|A|=a

∣∣E (Gπ/3,d, A, Ā
)∣∣

We claim that this last equality is a consequence of Theorem 3.5 in [6], which
shows the following:

Consider the infinite anti-geometric graph defined on Sd with parameter θ.
Let 0 < a ≤ 1 and let A and B be two (not necessarily disjoint) measurable
sets in Sd of measure |Ca|. Let x be an arbitrary vertex of Sd. The minimum of
|E(A,B)| is obtained when A = B = Ca (x) where Ca is a cap of measure |Ca|.

By the above theorem A = B = Ca (x) minimizes

min
|A| = a
|B| = a

∣∣E (Ḡπ−π/3,d, A,B
)∣∣ .

Since Gπ/3,d and Ḡπ−π/3,d are complement graphs of each other, A = B = Ca (x)
maximizes

max
|A| = a
|B| = a

∣∣E (Gπ/3,d, A,B
)∣∣ =
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Equivalently, A = Ca (x) and B = Ā maximize

max
|A| = a

|B| = 1− a

∣∣E (Gπ/3,d, A, B̄
)∣∣ .

By regularity of the graphGπ/3,d, it follows thatA = Ca (x) andB = Āminimize

min
|A| = a

|B| = 1− a

∣∣E (Gπ/3,d, A,B
)∣∣

proving the claim. ⊓⊔

3 Connectivity of Random Geometric and
Anti-geometric Graphs

Having established expansion properties for the infinite graph, we present two
proofs of Theorem 1. One proof first “discretizes” the infinite graph, thus obtain-
ing a nearly regular very dense finite graph with expansion properties similar
to that of the infinite graph (expansion roughly one third of the degree, for our
choice of θ = π/3). This dense graph can be thought of as being obtained by
taking a finite though extremely large number N of sample points from Gπ/3,d.
The formal details of such a discretization are similar to those in [7, 6], and are
omitted here. Thereafter, noting the relation h ≥ 0.3∆ between the expansion
and maximum degree, one can use Theorem 2, whose proof appears in Section 4.

The other way to prove the main theorem is via a direct proof of sampling
from the infinite graph, without performing the discretization first. This may
appear in the full version of the paper.

We note that there are alternative approaches that can be used in order
to try to prove connectivity of geometric graphs. Specifically, one may try to
establish that the graph enjoys a property called geometric routing. Essentially,
this property means that between every two vertices u and v of the graph there
is a path that respects the geometry of the sphere – advancing from u to v along
this path decreases the geometric distance to v in every step. However, for our
graphs, geometric routing will not work. In fact, the number n of vertices that
are required in order to have geometric routing in G ∈R Gn,π/3,d is such that
the average degree of the graph is as high as roughly n0.29, rather than only
O(logn) which (as Theorem 1 shows) suffices for connectivity. See more details
in the full version of this paper.

4 Connectivity of Subgraphs of Expanders

In this section we prove Theorem 2. We were tempted to try some simpler proof
techniques than the ones used in this section, but encountered difficulties in
employing them. This issue is discussed further in the full version of this paper.
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We shall be concerned with a graph G that is an (n, h)-expander of maximum
degree ∆, and a random vertex induced subgraph of G that we denote by H.
We use the notation V,E, n,N (S) for set of vertices, set of edges, number of
vertices, set of neighbors of S not including S, respectively, all in relation to the
graph G.

Our proof of Theorem 2 involves two steps.

1. The first step is similar in nature to percolation. We pick an arbitrarily sam-
pled vertex v ∈ VH and then show that with high probability it belongs to
a fairly large connected component CCv in H. The size of the connected
component is not measured in terms of the number of vertices that it con-
tains, but rather in terms of the fraction of vertices of the original expander
graph G that are neighbors of this connected component. We show that this
fraction to be at least half. Namely, |NG(CCv)

∪
CCv| ≥ nG/2.

2. The second step shows that with high probability every vertex u ∈ VH has
a path consisting only of vertices from H that connects it to CCv. This step
uses the fact that NG(CCv) is large, and hence is easy to reach.

In our analysis of Step 1 we shall use the following lemma.

Lemma 4. For arbitrary 0 < µ ≤ ∆ ≤ M , let xi, x2, . . . be a sequence of
nonnegative random variables satisfying xi ≤ ∆ for all i, E[x1] ≥ µ, and
E[xi|x1, . . . , xi−1] ≥ µ for i ≥ 2. Let t be a stopping time, giving the small-
est index such that

∑t
i=1 xi ≥ M . Then the following hold:

1. E[t] ≤ M+∆
µ .

2. Pr[t > 2M
µ ] ≤ 2∆

M .

Proof. Change every random variable xi to a nonnegative random variable x′
i

of expectation exactly µ by reducing its value, if needed. Consider the sequence
y1, y2, . . . of random variables in which yi = x′

i − µ for all i. The sequence

Yi =
∑i

j=1 yj is a Martingale. Let t be a stopping time for the Martingale
sequence, giving the smallest index such that Yt ≥ M − tµ. The random variable
t has bounded moments, and hence by the optional stopping time theorem for
martingales, E[Yt] = 0. Moreover, by the fact that yi ≤ ∆−µ and the minimality
of t, we have Yt ≤ Yt−1 +(∆−µ) < M − (t− 1)µ+∆−µ = M +∆− tµ. Hence
E[M +∆− tµ] > 0 implying E[t] ≤ M+∆

µ , proving item 1 of the lemma.

Let σ2
i be the variance of yi (conditioned on y1, . . . , yi−1). Observe that σ2

i ≤
µ
∆ (∆ − µ)2 + ∆−µ

∆ µ2 ≤ µ∆. Using the fact that E[yi|yj ] = 0 for i > j we
obtain that var(Yt) ≤ µ∆t, implying by Chebychev’s inequality that Pr[Yt <
−µt/2] ≤ 4∆

µt . For t = 2M
µ this gives Pr[Yt < −M ] ≤ 2∆

M . Observe that X2M/µ ≥
Y2M/µ + 2M , implying item 2 of the lemma. ⊓⊔

The bounds we shall use for Step 1 will be presented in Theorem 4. We
first prove Theorem 3 which presents bounds that are incomparable to those of
Theorem 4, and whose proof can serve as an introduction to the proof technique
of Theorem 4.
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Theorem 3. Let G(V,E) be an n-vertex ∆-regular graph with edge expansion
at least h, and let r ∈ V be an arbitrary vertex. Then with probability at least
1/2, a random sample U of 4n

h ln n
∆ vertices contains a subset S ⊂ U ∪ {r} with

|N(S) ∪ S| ≥ n/2 such that the subgraph induced on S is connected.

Proof. We expose vertices of U one by one. For 1 ≤ i ≤ |U |, let ui be the ith
vertex exposed and let Ui = {u1, . . . ui}. At every step i of the process we shall
maintain a subset Si ⊂ Ui ∪ {r} with r ∈ Si such that the subgraph induced on
Si is connected. Specifically, S0 = {r}, and ui ∈ Si iff ui ∈ N(Si−1).

Let us track the growth of |Si ∪N(Si)|. Initially, |S0 ∪N(S0)| = 1 +∆. For
i ≥ 1 we have that |Si ∪ N(Si)| ≤ |Si−1 ∪ N(Si−1)| + ∆. By the expansion
properties of G and averaging arguments, the expected growth in step i satisfies

E[|(Si∪N(Si))\(Si−1∪N(Si−1))|] ≥ |Si−1∪N(Si−1)|
n h, as long as |S∪N(S)| ≤ n/2.

Partition the growth of Si into phases, where phase ℓ ends at the smallest
value of i for which |Si∪N(Si)| ≥ ℓ∆. Then by item 1 of Lemma 4 the expected
number of steps that phase ℓ+ 1 takes is at most 2∆n

hℓ∆ = 2n
hℓ . It takes

n
2∆ phases

to reach |S ∪ N(S)| ≥ n/2. Hence the expected number of steps required is at

most
∑ n

2∆

ℓ=2
2n
hℓ < 2n

h ln n
∆ . The Theorem follows from Markov’s inequality. ⊓⊔

In the statement of Theorem 4 and in its proof, c denotes some sufficiently
large constant independent of n,∆, h.

Theorem 4. Let G(V,E) be an n-vertex ∆-regular graph with edge expansion
at least h, and let r ∈ V be an arbitrary vertex. Then with probability at least
1/2, a random sample U of cn

h log ∆
h vertices contains a subset S ⊂ U ∪{r} with

|N(S) ∪ S| ≥ n/2 such that the subgraph induced on S is connected.

Proof. Partition U into two parts U ′ and U” of equal size (namely, |U ′| = |U”| =
|U |/2). A proof similar to that of Theorem 3 (details omitted) implies that with
overwhelming probability, U ′ suffices in order to grow S from its initial size of
|S0 ∪N(S0)| = 1+∆ by a factor of 8, reaching size |S ∪N(S)| = 8∆. It remains
to show that U” can be used in order to grow S further, eventually reaching
|S ∪N(S)| = n/2.

We expose information about vertices of U” only when needed. The exposure
algorithm will proceed in phases. Let k = log(4∆/h). Initially U” is partitioned
into k+1 sets, U0

0 , U
1
0 , . . . U

k
0 . Renaming S0 to be the outcome of the first part, we

have |S0∪N(S0)| ≥ 8∆. We shall have |U0
0 | = 2n

h , |U1
j | = 8n

h for every 1 ≤ j ≤ k.
Each phase i is composed of k subphases, where in the jth subphase one scans
U j
i−1. In such a scan some vertices are moved to Si−1 thus eventually obtaining

Si. The vertices moved to S are replaced in the respective U j
i−1 by fresh vertices

from U0
i−1. Hence the cardinalities of U j for 1 ≤ j ≤ k remain unchanged during

the exposure algorithm, and |U0| decreases exactly at the same rate by which
|S| increases.

A subphase is considered successful if the size of S ∪ N(S) increases by a
multiplicative factor of at least 2 during the subphase.

Given the current S, a vertex u that is scanned is good if u ∈ N(S) and
moreover, |N(S ∪ {u})| ≥ |N(S)| + h

4 + 1. Only good vertices are added to
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S. Observe that the total number of good vertices cannot exceed n/2
h/4 (while

maintaining |S ∪ N(S)| ≤ n/2), and hence U0 can indeed compensate for all
good vertices.

We now compute the expected contribution of a scanned vertex u, condi-
tioned on all previous subphases being successful. Let S′ be the set S at the
time u was scanned in the previous phase. Unless u is a fresh vertex from U0, we
need to condition on u ̸∈ S′ ∪N(S′). Because the previous k− 1 subphases were
successful we have |N(S) ∪ S| ≥ 2∆

h |N(S′) ∪ S′|. By the expansion properties
of G, the number of edges exiting N(S) ∪ S is at least h(N(S) ∪ S). At least
3h
4 (N(S) ∪ S) of these edges originate from vertices of N(S) that have at least

h/4 exiting edges. At most ∆ h
2∆ (N(S)∪S) = h

2 (N(S)∪S) of these edges origi-

nate from vertices of S′∪N(S′). This leaves at least h
4 (N(S)∪S) edges available

for good vertices, implying that the expected contribution of a scanned vertex
u is at least h

4n (N(S) ∪ S). Hence in expectation not more than 4n
h vertices are

needed until N(S)∪S doubles its size. As a subphase contains 8n
h vertices, item 2

of Lemma 4 implies that the probability that there is an unsuccessful phase is
at most

∑
ℓ≥1

2∆
4∆2ℓ

≤ 1/2.
⊓⊔

Our proof for Theorem 4 did not attempt to optimize the value of the leading
constant c.

Each of the bounds in Theorems 3 and 4 may be better than the other,
depending on the relative values of n,∆, h. In our intended applications ∆

h is
much smaller than n

∆ , and hence we shall use Theorem 4.
The requirement that G is regular in Theorems 3 and 4 was made because it

simplifies the proofs. This requirement can be removed by slightly adjusting the
statement of the theorem.

Theorem 5. Let G(V,E) be an n-vertex graph with edge expansion at least h,
and let ∆ denote the degree of the vertex of h

4 th highest degree (breaking ties arbi-

trarily). Then with probability at least 1/2, a random sample U of cn
h min[log n

∆ , log ∆
h ]

vertices contains a subset S ⊂ U with |N(S)∪S| ≥ n/2 whose induced subgraph
is connected.

Proof. Let H ⊂ V be the set of h/4 highest degree vertices in G. We make a
preliminary pass over all vertices of U . This pass is successful if 1 ≤ |U ∩H| ≤
5cmin[log n

∆ , log ∆
h ]. This fails with probability 2−Ω(c).

If the preliminary pass achieved its goal, we keep in S only one vertex r
chosen arbitrarily from H ∩ S, and remove from U all other vertices of H ∩ U .
The remaining size of U is at least (cn/h−5c)min[log n

∆ , log ∆
h ]. This remaining

size is still roughly cn
h min[log n

∆ , log ∆
h ]. (This would fail to hold only if h is

Ω(n). However, in that case the proofs of Theorems 3 and 4 apply, requiring
only an adjustment of the constants hidden in the c notation.) Observe that
for every set T ⊂ (V \ H) of size at most n/2 − 1, the set {r} ∪ T has edge
expansion at least 3h/4 into V \H. Replace G by the subgraph G′ induced on
V ′ = (V \H) ∪ r. Observe that in this subgraph the degree of r is at least its



Connectivity of Random High Dimensional Geometric Graphs 13

original degree (which was necessarily at least ∆) minus h/4. Hence the degree
of r in this subgraph is at least ∆/2 (it is not hard to show that h/4 ≤ ∆/2),
and moreover, no vertex in V ′ has degree larger than ∆.

It can readily seen that the proofs of Theorems 3 and 4 did not use regularity
of G, but rather the following two aspects of ∆: that r has degree at least ∆,
and no vertex has degree larger than ∆. For G′ the only difference is that the
degree of r is at least ∆/2 rather than ∆ (and the expansion is also smaller
by a constant factor). The proofs of Theorems 3 and 4 apply, requiring only an
adjustment of the constants hidden in the c notation. ⊓⊔

We now prove Theorem 2.

Proof. (Theorem 2). Recall that H has (1+o(1))n
h ln(nh ) + O

(
n
h log(∆h )

)
random

vertices. Of them, we use up O
(
n
h log(∆h )

)
random vertices in the proof of The-

orem 5, and as a consequence we conclude (with probability that can be made
arbitrarily close to 1, by changing the constant in the O notation) that H has a
connected component CCv satisfying |N(CCv)

∪
CCv| ≥ n/2. This was referred

to as Step 1 above. Now we analyze Step 2, which is based on considering the

remaining random vertices of H, whose number is at least (1+o(1))n
h ln(nh ).

Let us define a linear order on all vertices of G. The property of this linear
order is that for every vertex u ∈ V , either it precedes at least h of its neighbors
in this linear order, or u ∈ N(CCv)

∪
CCv. Such a linear order exists by the

expansion properties of G. The vertices of N(CCv)
∪

CCv can be placed last in
this linear order. As for the set R of remaining vertices, the cardinality of R is
at most n/2, and hence eG(R, VG \ R) ≥ h|R|. Hence at least one vertex in R
has h neighbors already placed later than R in the linear order, and this vertex
can be placed last among R. This argument can be continued by induction to
complete the desired linear order.

Consider now the placement of all vertices of H in this linear order. If for
every vertex u ∈ H, either u ∈ N(CCv)

∪
CCv, or there is a vertex w ∈ N(u)

that is also in H and moreover w appears later than u in the linear order, then H
is connected (because every vertex has a path to v). In our intended applications
(1+o(1))n

h ln(nh ) ≥ Ω
(
n
h log(∆h )

)
, implying that |H| = O

(
n
h ln(nh )

)
. In this case,

taking (1+o(1))n
h ln(nh ) random vertices of G in Step 2, a union bound implies that

the probability that connectivity fails is at most |H|e−(1+o(1)) ln(n/h) ≤ o(1).

Note also that even if the condition (1+o(1))n
h ln(nh ) ≥ Ω

(
n
h log(∆h )

)
does not

hold, then in Step 2 we may take Ω
(
n
h log(∆h )

)
random vertices, and the union

bound works as well. ⊓⊔

5 A Note on the Dimension Range

Recall the definition of sphere casps, see Section 2. In this section we use the
same bounds as in [7]:

Theorem 6. (Bounds on the sphere Cap measure). c√
d
(1 − a2)

d−1
2 ≤ |Ca| ≤

1
2 (1− a2)

d−1
2 , where c is some constant independent of d.
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Assume that the dimension d of our graphs Gn,π/3,d is c ln (n). It follows that
when c gets larger each vertex has fewer neighbors. We would like to determine
the values of c for which G ∈R Gn,π/3,d has isolated vertices with high probabil-

ity. Let v be a vertex in G it holds that E [|N (v)|] = (n− 1)
∣∣∣C 1

2

∣∣∣. Theorem 6

implies
∣∣∣C 1

2

∣∣∣ can be upper bounded by 1
2

(
1− 1

2

2
) d−1

2

. Therefore the expected

number of neighbors of each vertex can be upper bounded:

(n− 1)
∣∣∣C 1

2

∣∣∣ ≤ 1

2
n

(
1−

(
1

2

)2
) d−1

2

=
1

2
neln(

3
4 )

d−1
2

= O (1)neln(
3
4 )

d
2 = O (1)n1+ln( 3

4 )
c
2

Therefore if 1 + ln
(
3
4

)
c
2 < 0 ⇒ c > 2

ln( 4
3 )

= 6.95212 then (by applying the

Markov’s inequality ) the probability that v is isolated tends to one.

Now we determine the values of c for which G ∈R Gn,π/3,d has no isolated

vertices with high probability. Note that by Fact 6
∣∣∣C 1

2

∣∣∣ can be lower bounded

by O(1)√
d

(
1− 1

2

2
) d−1

2

. Therefore the expected number of neighbors of each vertex

can be lower bounded:

(n− 1)
∣∣∣C 1

2

∣∣∣ ≥ O (1)√
d

n

(
1−

(
1

2

)2
) d−1

2

=
O (1)√

d
n1+ln( 3

4 )
c
2

Choose c so that the right hand side is somewhat larger than lnn. This re-
quires 1 + ln

(
3
4

)
c
2 to be slightly larger than 0, which happens for c ≃ 2

ln( 4
3 )

=

6.95212. Then standard large deviation bounds imply each vertex has proba-
bility o( 1n ) of having no neighbors, and then by applying the union bound the
probability that there is an isolated vertex is o(1).

6 More on Vertex Percolation in Expander Graphs

We say that a graph G has amajority component if G has a connected component
containing at least half its vertices. The following corollary is not needed in order
to prove Theorem 1, but might be of independent interest.

Corollary 1. Let G(V,E) be an n-vertex ∆-regular graph with edge expansion
at least h. Consider G[U ], a subgraph of G induced on a random sample U of
cn
h log ∆

h vertices. Then with probability at least 1/2 over the choice of U , the
subgraph G[U ] contains a majority component.
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Proof. Set the value of c to be large enough so that a simple adaptation of the
proof of Theorem 4 implies that every vertex u ∈ U has probability at least
9/10 of being in a component Su with |Su ∪N(Su)| > (n+h)/2. Observe that if
|Su∪N(Su)| > (n+h)/2 and |Sv∪N(Sv)| > (n+h)/2 then |(Su∪N(Su))∩(Sv∪
N(Sv))| ≥ h. Moreover, any vertex of U that lies in (Su∪N(Su))∩ (Sv ∪N(Sv))
connects Su and Sv.

Fix one arbitrary vertex u ∈ U and analyse |Su|. With probability at least
9/10 we have |Su ∪ N(Su)| > (n + h)/2. For every v ̸= u, v ∈ U , we also
have probability at least 9/10 to have |Sv ∪N(Sv)| > (n+ h)/2. If both events
hold, then with overwhelming probability v is in the same component as u (one
can reserve a small fraction of the vertices of U specifically for the purpose of
checking whether they land in (Su ∪N(Su)) ∩ (Sv ∪N(Sv))). Hence given that
|Su ∪N(Su)| > (n+ h)/2, the expected number of vertices not in Su is at most
roughly |U |/10, implying that with probability at most roughly 1/5 it exceeds
|U |/2. Hence the probability that |Su| < |U |/2 is at most 1

5 +
1
10 + ϵ < 1

2 , where
the ϵ term accounts for low probability events ignored n the computation. ⊓⊔
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