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Abstract

We consider the problem of dividing a homogeneous divisible good
among n players. Each player holds a private non-negative utility function
that depends only on the amount of the good that he receives. We define
the fair share of a player P to be the average utility that a player could
receive if all players had the same utility function as P . We present a
randomized allocation mechanism in which every player has a dominant
strategy for maximizing his expected utility. Every player that follows
his dominant strategy is guaranteed to receive an expected utility of at
least n/(2n − 1) of his fair share. This is best possible in the sense that
there is a collection of utility functions with respect to which no allocation
mechanism can guarantee a larger fraction of the fair share. In interesting
special cases our allocation mechanism does offer a larger fraction of the
fair share.

1 Introduction

We consider the problem of dividing a homogeneous good of size n among n
players. That is, each player gets some part of the good (some parts might be
empty), and the total size of allocated parts does not exceed n. The good is
homogeneous in the sense that the utility of a part to a player depends only on
the size of the part – any two parts of the same size have the same value. Here
are some examples of situations in which there is a homogeneous divisible good.
The reader may note that in these examples the utility functions of the players
are not linear, and in some cases, not even monotone.

• Storage space. Each player has a file to store, and needs storage space
exactly equal to the size of the file. Smaller space has no value, and larger
space does not offer additional value.

• Transmission bandwidth. Each player has a video stream to transmit.
Some minimum amount of bandwidth is required to make the transmission
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feasible. Quality of service can improve with more bandwidth, up to some
point beyond which additional bandwidth is not useful.

• Processing time. Each player holds a job and desires this job to be finished
before some common deadline. The good is the total processing time
available on some server. This version was considered in [4]. We note
that in this interpretation one may also consider (though we shall not do
so in this paper) multiple stage allocation processes, in which a player is
allocated some running time, and if his job happens to finish in less time,
the remaining time can be given to other jobs.

• Grant money. The good may be a certain amount of money that a funding
agency wishes to hand out as research grants. Each player submits a
research proposal, and the extent of funding (if any) for the proposal will
determine which aspects of the proposal will be carried out. Receiving
more funding than asked for might be detrimental for the corresponding
researcher, as inability to spend the funds within the grant regulations
may cause unwanted administrative overhead.

1.1 Overview of our contributions

Consider the special case in which there are two players, P1 and P2, that each
has a file to store. The homogeneous divisible good is storage space, and the
total amount of storage available is 2 gigabytes. How should one divide the
storage space among the two players? The balanced allocation gives each player 1
gigabyte. It is satisfactory if each player has a file no larger than 1 gigabyte.
However, what if each player has a file of size 2 gigabytes? In this case no player
gets any utility from 1 gigabyte, and the balanced allocation may be fair, but
useless. A more useful allocation would be the dictator allocation: give one of
the players the full 2 gigabytes and give the remaining player nothing. To make
this allocation fair, one can revert to the random dictator allocation: choose the
player who gets 2 gigabytes at random.

Consider now the case that P1 has a file of size 1 gigabyte, whereas player
P2 has a file of size 2 gigabytes. In this case P1 prefers the balanced alloca-
tion, whereas P2 prefers the random dictator allocation. What would be a fair
solution? A possible answer is to give equal weight to the preferences of the
players: choose the balanced allocation with probability 1/2, and the random
dictator allocation with probability 1/2. However, the notion of fairness that
we propose in the current work will lead to a different solution: choose the bal-
anced allocation with probability 1/3, and the random dictator allocation with
probability 2/3. What is the logic behind such a solution? Observe that the
balanced allocation is useless for P2, whereas the random dictator allocation
is partly useful for P1 (with probability 1/2 P1 gets sufficient storage space).
Hence it makes sense to choose the random dictator allocation (P2’s preference,
which also has some utility for P1) with higher probability than the balanced
allocation (P1’s preference, that has no utility for P2). The probability 2/3 is
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chosen to reach an exact balance in this consideration: P2 gets his preferred al-
location rule (random dictatorship) with probability 2/3, whereas P1 effectively
gets his preferred allocation rule (balanced allocation) with probability 2/3 as
well (1/3 comes from the balanced allocation rule, and another 1/3 comes from
the case in which the random dictator rule made P1 the dictator).

The notion of fairness that we introduce in this work is based on similar
principles. It applies in general settings with arbitrarily many players, holding
arbitrary nonnegative utility functions (in the special case considered above
utility functions were limited to be threshold functions). Basically, we define
the fair share of a player P to be the expected utility that P would get if P
could choose the allocation rule that maximizes his expected utility (conditioned
on the allocation rule treating all players symmetrically, as was the case with
the balanced allocation and the random dictator allocation). Ideally, we would
like each player to get his fair share. However, as illustrated in the example
above, if different players prefer different allocation rules, there might not be
any allocation (or distribution over allocations) that gives every player his fair
share. Hence our randomized allocation rules attempt to get as close as possible
to the ideal, giving each player expected utility that is ρ times his fair share,
with ρ as large as possible. We show that achieving a value of ρ = n

2n−1 is
always possible (indeed, in the example above we had n = 2 and ρ = 2/3), and
that larger values of ρ are achievable in interesting special cases.

Another aspect that we address in this work is that of allocation mechanisms
in which the utility functions of players are private information to the respective
players. Given the specification of the allocation mechanism, this defines a game
between the players, in which every player may provide input in a strategic
fashion to the mechanism, in hope of maximizing his expected utility from the
eventual resulting allocation. We design allocation mechanisms in which players
have dominant strategies in the resulting game, and moreover, if players play
according to their dominant strategies the value of ρ (referred to above) is at
least n

2n−1 .

1.2 Related work

Fair division problems deal with a variety of issues, ranging from divisible to
indivisible goods, as well as from dealing with the division of one good to the
division of several goods; on another dimension they deal with a variety of
users’ models, whether they have additive or other utility functions (see [2] for
an overview). This paper deals with the most basic type of setting on one side –
a single homogeneous divisible good, and with a most elaborated setting on the
agents’ utility side – private information, general (non-additive) utility. While
this type of problem is highly applicable to many central applications, especially
to the division of computational goods – time, bandwidth, storage, as illustrated
in the multi-billion cloud services industry - to the best of our knowledge it was
not addressed in the related impressive fair division literature. One somewhat
related discussion appears in [3] in which the authors deal with extension of
cake-cutting to some limited form of non-additive valuation. A major issue is
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to identify an appropriate fairness criterion for such settings. Indeed, yet again
motivated by cloud services division, we assume no impersonal comparison of
utilities; customers’ preferences create externality for which all customers are
jointly responsible (i.e. too high demand for the resources). Hence, we adopt the
following criterion of fairness: we aim to bring all agents as close as possible to
their perceived unanimity utility (see [8]): an agent’s perceived unanimity utility
is the maximal utility he can hope for if all agents were like him and the system
would have picked the highest equal utility outcome. While Moulin [8] refers
to this notion as part of an axiomatic treatment, in which one can require all
agents’ actual utility to be higher (resp. lower) than their perceived unanimity
utilities, we look at it as a way of optimizing fairness: we wish the system to
bring all agents to a certain fraction of their perceived unanimity utilities. In
the numerical example given in Section 1.1, the perceived unanimity utility of
P1 is 1, and that of P2 is 1/2. Each agent gets in expectation a 2/3-fraction of
his perceived unanimity utility.

In the classical fair division literature there are two canonical approaches for
fair division: envy-free mechanisms (studied since [5]; see [13] for a discussion),
and mechanisms leading to proportional allocation. The latter is typically ap-
plied in settings like cake cutting where the aim is that each of the n agents will
obtain at least 1

n of the cake as perceived according to his own utility. In many
cases proportional division entails by definition the envy freeness property. Our
study shares some of the goals of proportional allocation, but adapts them to a
different setting. Recall that we aim at dividing a single divisible homogeneous
good. In this case, if all agents have linear or concave utilities then split into
equal shares provides a trivial satisfactory solution, and if all agents have convex
utilities then an allocation of the whole good to a random selected agent seems
as the only reasonable option; indeed, this is the reason that with such simple
utilities discussed in the literature the case of a single divisible homogeneous
good is neglected. However, when agents may have a mixture of arbitrary util-
ity functions, approximating proportional allocation becomes a tricky question.
The approach we take attempts to approximate it in the best way possible.

The challenge we are after is basically the rationing problem, started with
the work of Banker [1], in which an infinitely divisible good is to be partitioned
based on individual claims. While the techniques used there are deterministic,
we appeal to probabilistic rationing methods; the latter have been the subject
of work in the context indivisible units [9]. While allocation of resources in
proportion to individual claims is the oldest formal rule for distributive justice,
going back to Aristotle, allocating goods in say cloud services in a “proportional”
manner might be a tricky issue, as users may have quite different preferences’
shapes for using the corresponding services. By trying to obtain the perceived
unanimity utilities for all agents we overcome this obstacle. Naturally, this
cannot be always guaranteed, and following the long tradition on fair algorithms
in computational media in other contexts (see e.g. [7]) we appeal to a notion of
approximation.

Our work fits the setting of direct revelation mechanisms in mechanism de-
sign (starting from Gibbard [6]). In our mechanisms, the dominant strategies of
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the players is to reveal upfront (a deterministic function of) their utility func-
tions. Notice that in quite a few fair division contexts, and in particular in
ones that fit the single divisible good setup, more specialized action languages
are typically used, as they fit metaphors such as cake cutting, in which for ex-
ample the algorithm may query the agents for various values (see [11]). Our
treatment is more in the spirit of mechanism design, and in particular in the
spirit of mechanism design without payment [12], and the related approximation
approach [10].

A similar approach to fair division in the particular context of scheduling
appears in [4]. While less general that the approach taken in this paper, that
earlier work considers some additional features that can be associated with
the scheduling domain; for example, in that setting each agent is allocated a
probability distribution over time slots, and if it finishes earlier than expected,
the remaining time can be exploited by others.

2 Terminology and conventions

There are n players 1, . . . n and one divisible homogeneous good G. For simplic-
ity of future notation, the scale in which the amount of good G is measured is
normalized so that the total amount of good available is n. An allocation A is
a partition of the total amount of good available (namely, of n) into n+1 parts
A(0), A(1), . . . , A(n), with

∑n
i=0 A(i) = n and A(i) ≥ 0 for every 1 ≤ i ≤ n.

As A(0) = n −
∑n

i=1 A(i), an allocation can be represented more concisely by
the vector A(1), . . . , A(n). For each 1 ≤ i ≤ n, part A(i) is allocated to player
i. Part A(0) remains unallocated. Every player i has his own utility function
ui which is a mapping from the domain [0, n] to R+, where R+ denotes here
nonnegative reals. Hence ui associates a nonnegative utility ui(A(i)) ≥ 0 with
the amount A(i) of good that player i receives. A player is indifferent as to how
the rest of the good is divided among the remaining players.

An allocation rule takes as input a tuple (u1, . . . , un) of utility functions,
and outputs an allocation. A randomized allocation rule takes as input a tuple
(u1, . . . , un) of utility functions, and outputs a probability distribution D over
allocations, namely, D is a list of allocations A1, A2 . . . (by the conventions below
this list will be finite) and associated probabilities p1, p2 . . ., with

∑
pi = 1 and

pi ≥ 0 for every i. Thereafter, one particular allocation is selected from D,
where the probability of selecting allocation Ai is pi. We shall use the notation
A← D to denote an allocation selected at random according to distribution D.

In our work we choose to distinguish between two aspects of utility functions.
One is the value that a player associates with the size of the part that he receives.
The other is the attitude of the player towards lotteries. The combination of
both aspects gives the value that a player associates with a lottery over different
sizes of parts. We shall use the term utility function so as to capture only the
first of these two aspects, and the term full utility function so as to capture
both aspects (utilities of lotteries). A special case of central importance to our
paper is when the value of a lottery is defined as the expected value over all
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outcomes of the lottery. This corresponds to the notion of utility functions as
axiomatized by von-Neumann and Morgenstern. In this case the utility function
completely describes the full utility function, and then the term utility function
will be used for short also when lotteries are involved. However, some results
in our paper hold even if the full utility function does not satisfy that axioms
of von-Neumann and Morgenstern, and for them the distinction between utility
functions and full utility functions is helpful. See Section 6.4 for more details.

The following definition establishes some terminology associated with utility
functions.

Definition 1 A utility function is a function u : [0, n] −→ R+ satisfying u(0) =
0, but which is not identically 0. We say that a utility function is monotone if
for all 0 ≤ x < y ≤ n we have u(x) ≤ u(y). We say that a utility function
is concave if for all 0 ≤ x < y ≤ n and 0 < λ < 1 we have u(λx + (1 −
λ)y) ≥ λu(x) + (1 − λ)u(y). We say that a utility function is convex if for all
0 ≤ x < y ≤ n and 0 < λ < 1 we have u(λx+(1−λ)y) ≤ λu(x)+(1−λ)u(y). We
say that a utility function is strictly monotone (concave, convex, respectively) if
the inequalities that need to hold in the respective definitions are strict. A utility
function is linear if it is of the form u(x) = cx for some c > 0. Linear utility
functions are strictly monotone, and non-strictly both concave and convex.

The convention that a utility function cannot be identically 0 is not essential,
but it simplifies the statement of some future claims. For example, it ensures
that Definition 4 does not involve division by 0.

Much of the nontrivial content in our work stems from the fact that even
though the good is homogeneous and divisible (which is a relatively simple
object to handle), the utility functions are arbitrary, and hence more difficult
to handle than some standard classes of utility functions such as linear ones or
concave ones.

For convenience (see for example the Remark 3), and practically (though
not formally) without loss of generality, we assume that there is some small but
finite ϵ > 0 such that G can only be divided into parts whose sizes are multiples
of ϵ, and every such division is possible. Equivalently, the good is composed of
n/ϵ identical atoms, and an atom is not divisible. Hence there are only finitely
many ways of dividing up the good. Likewise, the distribution implied by a
randomized allocation is supported on only finitely many allocations. Utility
functions may be defined on the whole interval [0, n], but only their values on
multiples of ϵ matter. Whenever applicable, we shall assume that ϵ divides any
number that comes up in examples that we give for utility function (and in
particular, ϵ divides n, divides 1 and divides 1/2).

3 Formal definitions for ρ-fair allocation mech-
anisms

In this section we define and discuss the three aspects (fairness, economic ef-
ficiency, and dominant strategies) that are of interest to us in our allocation

6



mechanisms.

3.1 Fairness

In our notion of fairness, we wish to treat all players as equals. That is, they
all have the same entitlement to the good. Later, in Section 6.2 we shall discuss
extensions of our definitions to the case of different entitlements for different
players.

Our notion of fairness is based on two principles. The example in Section 1.1
can serve as motivation for the use of these principles.

One principle is to define fairness with respect to randomized allocation rules
rather than to deterministic ones. That is, instead of associating the notion of
fairness with a single allocation, we associate it with a probability distribution
over allocations. As such, our notion of fairness is an ex-ante one rather than
an ex-post one: it refers to expectations prior to selecting one allocation out of
the given distribution, rather than to the allocation that is actually selected.

The other principle is to have fairness refer to the expected utility that
a player derives from the randomized allocation, rather than to the expected
amount of good that the player receives. For this to make sense, we need
to normalize the utility functions of the different players so that they are all
measured in the same units. Any such normalization is arbitrary to some extent,
especially as we are assuming allocation rules without payments (and hence one
cannot measure utility by the amount of money that a player is willing to pay in
order to obtain this utility). Despite this, we propose a particular normalization.
In the context of fairness we believe that our choice of normalization is well
motivated 1

Consider a utility function u, and a distribution D over allocations to n
players. We say that D is u-fair, if every player gets exactly the same ex-
pected utility with respect to the utility function u. Namely, EA←D[u(A(i))] =
EA←D[u(A(j))] for all 1 ≤ i < j ≤ n. In this case we use uD as shorthand
notation for EA←D[u(A(i))].

Proposition 2 Given utility function u and using notation as above, let tu
denote the supremum of uD taken over all randomized allocations D that are
u-fair. Then there is a particular distribution D supported over n allocations
that attains this supremum, namely, tu = uD for this particular D.

Proof. The distribution alluded to in the proposition can be obtained as follows.
Find an allocation A maximizing

∑n
i=1 u(A(i)). Such an allocation must exist

because there are only finitely many partitions of the good G. Thereafter,
choose D to be the uniform distribution over the n allocations that can be
derived from this particular allocation by permuting the parts A(1), . . . , A(n)
in a cyclic order. �

1For a plausible proposal of a different normalization, see Section 6.1.
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Remark 3 Proposition 2 is not true if the good G is infinitely divisible (this
is one of the reasons for our convention at the end of Section 2). Consider
for example the case of n = 2 and the utility function for u(x) = 4

9x
2 for

1
2 < x ≤ 3/2, with u(x) = 0 for x ≤ 1/2 and u(x) = 1 for 3/2 ≤ x ≤ 2. This
utility function is not continuous, which is fine, because we do want to allow for
discontinuities in utility functions (see the example in Section 1.1). The value
of the supremum is tu = 5

9 , but no randomized allocation attains this supremum,
because u is not continuous (to the right) at x = 1/2.

It is not difficult to see that if the utility function u is concave then tu = u(1),
and if u is convex than tu = u(n)/n.

Given the value of tu as in Proposition 2, the normalized version of u is
û = u/tu. We call this the unanimity normalization. An expected utility of 1
is the maximum that a player P with normalized utility function û can hope to
achieve in any fair distribution over allocations, if all players had the same utility
function as P . We think of an expected normalized utility of 1 as the fair share
of a player. A randomized allocation that gives every player the same expected
normalized utility (regardless of whether the expected normalized utility given
to each player equals 1 or not) gives each player exactly the same fraction of
the utility of his perceived fair share, and hence is arguably fair. The above
discussion is summarized (in an equivalent way) in Definitions 4 and 5.

Definition 4 Given a utility function u and a number of players n, the nor-
malized version of u is û(x) = u(x)/tu, where tu = 1

nmaxA

∑n
i=1 u(A(i)), where

A ranges over all valid allocations (satisfying
∑n

i=1 A(i) ≤ n and A(i) ≥ 0 for
1 ≤ i ≤ n).

Definition 5 A distribution D over allocations is fair with respect to utility
functions (u1, . . . , un) if and only if every player gets exactly the same normal-
ized expected utility, where the normalization is as in Definition 4. Namely, for
all 1 ≤ i < j ≤ n, EA←D[ûi(A(i))] = EA←D[ûj(A(j))]. A randomized allocation
rule is fair if given a tuple (u1, . . . , un) it produces a fair randomized allocation.

Definition 5 is related to earlier definitions given in [8] and [4]. See Section 1.2
for more details.

3.2 Economic efficiency

Though our notion of fairness was guided by aspects of economic efficiency, the
fairness notion per se does not offer any level of economic efficiency.

In the current manuscript the utility functions (even the normalized ones)
for players are on a subjective scale for each player. A common way of incor-
porating economic efficiency considerations in such cases is by requiring Pareto
optimality. This is not the approach that we will follow in this manuscript, for
reasons discussed in Section 6.3. In this Section we only note that if utility
functions are strictly monotone then an allocation is Pareto-optimal if and only
if it is complete.
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Definition 6 An allocation is complete if all the good is allocated.

Instead of Pareto optimality, we shall consider a different notion of economic
efficiency that we shall refer to as individual efficiency, or safety. It comes
together with a parameter ρ > 0.

Definition 7 A randomized allocation is ρ-safe if every player is guaranteed
expected utility of at least ρ, where the utility of player i is measured according
to the player’s normalized utility function ûi (as in Definition 4).

In general, our goal would be to obtain randomized allocations that are fair
(in the sense of Definition 5) and safe for a value of ρ as large as possible. A
natural target value is ρ = 1, and this value is indeed achievable in several
special cases.

Proposition 8 If all utility functions are concave then there is a fair allocation
that is 1-safe and complete. If all utility functions are convex then there is a
fair randomized allocation that is 1-safe and complete. If all players have the
same normalized utility function then there is a fair randomized allocation that
is 1-safe.

Proof. For concave utility functions, û(1) = 1. Hence the allocation A(i) = 1
for all i is fair, 1-safe and complete.

For convex utility functions, û(n) = n. Hence the randomized allocation
A(i) = n for a random player i and A(j) = 0 for j ̸= i is fair, 1-safe and
complete.

If all players have the same normalized utility function, then the randomized
allocation in the proof of Proposition 2 is fair and 1-safe. It is complete if û is
monotone2, but not necessarily complete if û is not monotone. �

3.3 Allocation mechanisms

For allocation rules, we assumed that the utility functions of players are given.
In this section we assume that the utility functions are private information of
the respective players. We consider allocation mechanisms that operate in two
stages. In the first stage each player i provides a report ri of his choice to the
mechanism. In the second stage the mechanism M computes a randomized allo-
cation D = M(r1, . . . , rn) as a function of the reports, and selects one allocation
A← D at random according to D.

The only actions available to players are to choose a report. In the special
case that the report of each player is his utility function, namely, ri = ui, an
allocation mechanism is the same as a randomized allocation rule. However,
allocation mechanisms differ from allocation rules in two respects. One is that
players might be strategic and not report their true utility functions. The

2More exactly, it can be assumed without loss of generality to be complete, because if u is
monotone then the allocation A in the proof of Proposition 2 can be taken to be complete.
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other is that the reporting language need not be that of utility functions – it
could be that reports take some other form. This last aspect is essential to our
randomized allocation mechanisms. The utility function of a player in the sense
used in this paper (recall the discussion prior to Definition 1) does not suffice
in order to describe the player’s true preferences. A complete description of the
preferences of a player would be what we referred to as a full utility function
that includes also his preferences over lotteries, and not just his preferences
over allocations. This might seem to require the reporting language to be more
complex than that of stating a utility function. However, in our case the opposite
holds, and our mechanisms use a reporting language that in general requires less
communication than reporting a utility function. Reporting a utility function
might require a player to communicate n/ϵ real numbers (recall that utility
functions need be defined only on integer multiples of ϵ), which might be a lot
of communication if ϵ is very small, and if high precision is needed in order to
specify each real number3. It will turn out that the allocation mechanisms that
we design will require from each player a report that can be encoded using only
n log n

ϵ bits, regardless of the complexity of the underlying utility function.
Let us now return to the issue of strategic behavior. Every player i is assumed

to know his own utility function ui, the value of n and ϵ, and the function M .
Given n, ϵ,M , a strategy Si,n,ϵ,M for player i is a function that maps utility
functions to reports. We shall omit i, n,M from this notation, and then we
have that ri = Si(ui). More generally, one may consider also mixed strategies
that output a distribution over reports, but this will not be needed in the current
work.

In the current work we consider the benefits that an allocation mechanism
can offer to players that are expectation maximizers 4. The goal of an expectation
maximizing player i is to maximize his own expected utility E[ui(A(i))], where
expectation is computed relative to the randomized allocation that is generated
by the mechanism. Observe that in general the report ri can influence this
randomized allocation.

The solution concept that we shall use is that of dominant strategies. (A
more accurate term would be strategies that are dominant for expectation max-
imizers, but we shall use the shorter term dominant strategies with the hope
that no ambiguity arises because of it.)

Definition 9 Given an allocation mechanism M and values for n and ϵ, a
report ri is a dominant report for player i that has utility function ui, if re-
gardless of the reports of other players, ri maximizes the expected utility of
player i. Namely, for every tuple R = (r1, . . . , rn) with ri at its ith coordi-
nate, and for every tuple R′ that differs from R only on its ith coordinate,

3Observe that players might need to know n and ϵ in order to bound the size of their
report. Without loss of generality we assume throughout that n and ϵ are publicly known.
For example, they can be announced by the mechanism prior to soliciting reports from the
players.

4We remark here that our mechanisms retain many of their desirable properties even if
players are not expectation maximizers, but we defer discussion of this aspect to Section 6.4.

10



EA←M(R)[ui(A(i))] ≥ EA←M(R′)[ui(A(i))]. A strategy Si is a dominant strat-
egy for player i if for every possibly utility function ui it holds that ri = Si(ui)
is a dominant report.

We extend the notion of safety introduced in Definition 7 from the context of
allocations to the context of allocation mechanisms. Our allocation mechanisms
will be required to be safe only to players that follow their dominant strategies.

Definition 10 An allocation mechanism is ρ-safe if every player has a domi-
nant strategy, and moreover, whenever a player follows his dominant strategy,
his expected normalized utility is at least ρ, regardless of reports of other players.

We now incorporate both fairness (as in Definition 5) and safety, to obtain
our definition of a ρ-fair allocation mechanism.

Definition 11 An allocation mechanism is ρ-fair (at least ρ-fair, respectively)
if every player has a dominant strategy, and moreover, whenever all players
follow their dominant strategies, the randomized allocation output by the mech-
anism is fair and ρ-safe (at least ρ-safe, respectively). More generally, if only a
subset of the players follow their dominant strategies, the fairness and ρ-safety
properties hold with respect to the members of this subset.

A ρ-fair mechanism is ρ-safe. However, a ρ-safe mechanism is not necessarily
ρ-fair, because though all players get expected utility at least ρ (assuming they
all play their dominant strategies), some players may get higher utility than oth-
ers. Sacrificing fairness in this way may have potential benefits: it may increase
total welfare, and it may circumvent the conflict underlying Proposition 34.

4 Results

In this section we state our main results. An overview of the proof technique
appears in Section 4.1. Full proofs appear in Section 5.

Our first proposition relates to our normalization of utility functions but
disregards fairness issues. It limits the total utility that can be derived from an
allocation.

Proposition 12 Let (û1, . . . , ûn) be arbitrary normalized utility functions and
let A be an arbitrary allocation. Then

∑n
i=1 ûi(A(i)) ≤ 3n− 1.

Our next proposition shows that there are no ρ-fair allocation rules for ρ >
n

2n−1 .

Proposition 13 There is a choice of normalized utility functions (û1, . . . , ûn)
such that for every distribution D over allocations, there is at least one player i
for which EA←D[ûi(A(i))] ≤ n

2n−1 . Namely, no randomized allocation rule can
guarantee every player expected normalized utility higher than n/(2n− 1).
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Theorem 14 shows that there are allocation rules that match the bounds of
Proposition 13. Moreover, there are such allocation mechanisms. The alloca-
tion mechanism referred to in Theorems 14, 15 and 17 are all based on a new
framework that we refer to as bin matching. See Section 4.1 for more details.

Theorem 14 There is a ρ-fair allocation mechanism with ρ = n/(2n− 1).

Theorem 14 offers no guarantees in terms of Pareto optimality of the allo-
cations that it generates. This is partly remedied in Theorem 15, though at
the price of replacing fairness by safety. (Recall that complete allocations are
those that allocate all the good. They are necessarily Pareto optimal if utility
functions are strictly monotone. See Section 6.3 for more information on Pareto
optimality.)

Theorem 15 If utility functions are required to be monotone, then there is ρ-
safe allocation mechanism with ρ = n/(2n − 1), that furthermore is supported
only on complete allocations.

Though the value of ρ in Theorems 14 and 15 cannot be improved in the
worst case (due to Proposition 13), it can be improved in important special
cases.

Definition 16 For 1 ≤ t ≤ n, a utility function is t-concave if there is no
optimal unanimity allocation (allocation A maximizing tu in Definition 4) that
involves parts larger than t. In particular a strictly concave utility function is
1-concave, and every utility function is n-concave.

Theorem 17 There is a randomized allocation mechanism (that shall be called
minbin) that is ρ-safe for ρ = n/(2n − 1) and has the following additional
guarantees if players follow their dominant strategies:

1. If all utility functions are strictly concave then ρ = n
n+1 .

2. Let t be the smallest value that satisfies both the following conditions: all
utility functions are t-concave and t divides n. Then ρ ≥ n

n+⌈t⌉+1 .

The minbin allocation mechanism underlying the proof of Theorem 17 is
supported on allocations that need not be complete. When utility functions are
monotone, it is possible to modify the minbin mechanism so that it becomes
complete, at the cost of slightly hurting the value of ρ (by a factor no worse
than n−1

n ) in its safety guarantees. See Proposition 19 for example.

4.1 Techniques

The proofs of Propositions 12 and 13 are quite short and do not involve partic-
ularly interesting techniques. They can be found in Section 5.1.

The allocation mechanisms that we design (in Theorems 14, 15 and 17) are
all based on a new framework that we refer to as bin matching, as it combines
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aspects of bin packing and of matchings. In this framework, the allocation does
not require a player to report his utility function. Instead, the player reports
an allocation. Namely, the report Ri of player i is a vector (ri1, . . . , rin) with∑

j rij ≤ n and rij ≥ 0 for every 1 ≤ j ≤ n. Every rij is referred to as an item.
Hence from each of the n players the mechanism receives n items of nonnegative
sizes summing up to at most n. Our mechanism will pack all n2 items in B
bins, where a packing is legal if every item is placed in exactly one bin, no two
items of the same player are placed in the same bin, and furthermore, the total
size of items placed in a bin does not exceed n. Observe that every such bin
corresponds to an allocation: if every player with an item in this bin gets a part
of the good of size equal to the size of his respective item, then every player
gets a nonnegative part (some players might get an empty part), and the total
size of allocated parts does not exceed n. The distribution D associated with
the allocation mechanism is the uniform distribution over these B allocations.
namely, one of the B bins is chosen at random, and the corresponding allocation
is given to the players.

Suppose that B depends only on n but not on the reports of the players.
In this case, each player can partition the good into n parts of his choice, and
is guaranteed to get every part with probability 1/B. As B is fixed a-priori,
a player will maximize his expected utility by partitioning the good into parts
whose sum of utilities (according to his own utility function) is maximized.
Hence a dominant report for the player is to choose a partition exactly as in
the allocation underlying Definition 4. One can readily see that under this
dominant report, the expected utility of the player is exactly n/B. Hence such
an allocation mechanism is ρ-fair and ρ-safe, for ρ = n/B.

To maximize the value of ρ in this approach, one would like B to be as small
as possible. This leads us to ask what is the minimum number of bins that
surely suffices for a legal packing, regardless of the reports of the players. We
call this problem the bin matching problem, and denote the minimum number
of bins by B(n). Theorem 14 will follow from showing that B(n) = 2n− 1. See
details in Section 5.2.

Observe that the fact that B > n implies that packing the n2 items into B
bins necessarily involves bins that are not fully packed (the total size of items
in them is strictly less than n). Hence the bin matching mechanism does not
provide a distribution over complete allocations (in the sense of Definition 6).
The proof of Theorem 15 extends the bin matching mechanism so that the parts
not allocated by it do get allocated in the extended mechanism. The difficulty is
to do so while maintaining the property that players have dominant strategies.
Our solution involves picking one player P at random, solving the bin matching
problem while ignoring P ’s report, allocating the good to the other players
according to the solution of the bin matching problem, and if not all the good
was allocated, giving the remaining part to P . The proof that such a mechanism
remains ρ-safe for ρ = n

2n−1 (even for P ) appears in Section 5.3.
The proof of Theorem 17 extends the bin matching mechanism in a different

way – if the reports are favorable, it uses less than 2n − 1 bins, and hence
offers players a higher value of ρ. Again, the difficulty is to implement this

13



principle while maintaining the property that players have dominant strategies.
Our minbin allocation mechanism does this as follows. For the given reports by
all players, pack the items legally in the minimum possible number of bins. Let
this number be nopt. In addition, for every player i, let ni be the number of bins
that would suffice for every bin matching instance in which the report of player
i is arbitrary and the reports of all other players remain unchanged. Observe
that necessarily nopt ≤ ni ≤ 2n − 1 (where the last inequality follows from
Theorem 18). Now pick at random one bin out of nopt, and give each player i
its item from that bin (if there is such an item) with probability nopt/ni. Hence
each player i gets a fraction of n

nopt

nopt

ni
= n

ni
≥ n

2n−1 of his fair share. The

minimal values for nopt and ni might not be computable in polynomial time.
Nevertheless, we show that even a relaxed version of the min bin allocation
mechanism in which one uses polynomial time computable upper bounds on
these values suffices in order to prove the bounds claimed in Theorem 17. See
Section 5.4 for the full proof.

5 Proofs

5.1 Negative results

Proof of Proposition 12.
Proof. Consider an arbitrary allocation and for every player i, let pi be the size
of the part that player i receives. Then

∑
pi ≤ n. Definition 4 can be used to

upper bound the normalized utility ûi(pi) that a part of size pi can give player i.
This is done as follows. Let qi = ⌊ npi

⌋ be the maximum number of parts of size

pi into which the good of size n can be partitioned (possibly, leaving a leftover
part smaller than pi). Definition 4 implies that the sum of normalized utilities
of any n parts (some of which may be empty) of total size at most n cannot
exceed n. Hence if qi < n, we have that ûi(pi) ≤ n/qi < 2pi, and if qi ≥ n then
ûi(pi) ≤ 1. Consequently, the sum of normalized utilities of all players cannot
exceed

∑n
i=1 max[1, 2pi]. This sum is maximized when p1 = n and pi = 0 for

all i > 1, giving 3n− 1. �

We remark that the bounds in Proposition 12 can be slightly improved, but
such improvements are omitted for the sake of simplicity.

Proof of Proposition 13.
Proof. Consider the case in which n− 1 players each have normalized utility n
for the whole good but no utility for any part of it. We call such players single
minded. The remaining player has normalized utility 1 for parts of size 1 or
more, and no utility for smaller parts. We call such a player unitary. In this
case, in every allocation at most one player can receive positive utility. Consider
an arbitrary randomized allocation. As the good is allocated with probability at
most 1, either the unitary player receives positive utility with probability at most

n
2n−1 , or some single minded player receives positive utility with probability at

most 1
2n−1 . In the former case, the expected normalized utility of the unitary
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player is at most n
2n−1 . It the latter case, the expected normalized utility of the

corresponding single minded player is at most n · 1
2n−1 = n/(2n− 1). �

5.2 Tight bounds for bin matching

Recall the bin matching framework of Section 4.1. The report Ri of player i
is a vector (ri1, . . . , rin) with

∑
j rij ≤ n and rij ≥ 0 for every 1 ≤ j ≤ n.

Every rij is referred to as an item. Altogether there are n players, and each
player has n items of nonnegative sizes summing up to at most n. One needs
to pack all n2 items in B bins, where a packing is legal if every item is placed
in exactly one bin, no two items of the same player are placed in the same bin,
and furthermore, the total size of items placed in a bin does not exceed n. We
let B(n) denote the minimum number of bins that surely suffices for a legal
packing, regardless of the reports of the players.

Theorem 18 For the bin matching problem, B(n) = 2n − 1 suffices, and is
sometimes necessary.

Proof. In agreement with the notation in the proof of Proposition 13, a player
will be called unitary if its n items are each of size 1, and single minded if it has
one item of size n and its remaining items have size 0. The case of n− 1 single
minded players and one unitary player requires 2n − 1 bins in order to legally
pack all the items, showing that B(n) ≥ 2n− 1.

To show that B(n) = 2n − 1 suffices, temporarily remove the n − 1 largest
items (among all n2 items), breaking ties arbitrarily. Let S denote the set of
n2 − n + 1 remaining items, and for every player i, let Si denote those items
of S that belong to player i. Let s denote the size of the largest item in S
(which originally was the nth largest item). Pack S into n bins using a bin
matching algorithm that we call sorted first fit (SFF). This algorithm packs the
items player by player into the given number of bins (which is n in our case).
For every 1 ≤ i ≤ n and 1 ≤ j ≤ n, Player i puts his jth largest item (among
items of Si) in the bin that was jth least loaded with respect to the previous
bin matching (breaking ties arbitrarily). SFF ensures that the difference in load
between any two bins is at most the size of the largest item, which is s in our
case.

Suppose for the sake of contradiction that when running SFF on S with n
bins, some bin overflows. Then on one hand, at least one bin has volume above
n, and n−1 bins have volume above n−s. On the other hand, the total volume
of S is at most n2 − (n − 1)s (because the n − 1 largest items were removed).
But n2− (n−1)s ≤ n+(n−1)(n−s) (in fact, equality holds), contradicting the
possibility of an overflow. Hence S can be packed in n bins, and n−1 additional
bins suffice in order to pack the n−1 largest items, giving a total of 2n−1 bins.
�

The combination of Theorem 18 and the discussion in Section 4.1 prove
Theorem 14.
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5.3 Allocation mechanisms with completeness

Throughout this section we assume that all utility functions are monotone. We
shall prove Theorem 15, in which one wants all the good to be allocated. Observe
that the proof of Theorem 18 selects a bin that might not be full, and hence not
allocate all the good. Simply giving the surplus to one of the players will result
in a mechanism in which players might not have dominant strategies, because
the optimal report of a player might then depend on the distribution of surplus
among bins, and the player does not a-priori know what this distribution is
going to be. Hence one needs a different approach. We first present a generic
approach that might entail a modest loss in economic efficiency.

Proposition 19 Consider an arbitrary randomized allocation mechanism M
for n players (that might not be complete) that under dominant strategies ensures
every player expected utility at least ρ. Then M can be modified to become
complete and ensures every player an expected utility at least (1− 1/n)ρ.

Proof. Apply mechanism M but with slightly modified reports: pick one player
P at random and change his report to be some arbitrary default report (e.g., n
items of size 1). If the resulting allocation of M happens to be complete, keep
it. Else, give the unallocated part of the good to P , thus obtaining a complete
allocation. The property of having dominant strategies in the new mechanism
is inherited from the corresponding property of M (only the allocation for P
changes but P has no influence on his allocation). The guarantee of expected
utility for players other than P did not decrease, and the probability of a player
to be chosen as P is 1/n. Hence the new guarantee for a player is an expected
utility of at least (1− 1

n )ρ. �

Combining Theorem 18 and Proposition 19 gives a complete mechanism that
is ρ-safe for ρ = n−1

2n−1 , which almost matches the requirements of Theorem 15.
We now prove Theorem 15 via a modification of the proof of Proposition 19.

Proof. Pick one player P at random and change his report to a default report
of being single minded (one item of size n, and the rest of the items of size 0).
Now obtain a legal packing BP of all items in 2n − 1 bins (this can be done
by Theorem 18). Pick a bin at random, and for each item in the bin, give the
respective player a part of the same size as the item. If not all the good is
allocated, give the remaining part to P .

For every player other than P this randomized mechanism offers expected
utility n

2n−1 . We now show that for P it offers at least as much. Consider the
packing BP into 2n− 1 bins and the true (original) report of P . We show that
all items of the true report can be added to BP without placing two of these
items in the same bin and without any bin overflowing. P ’s largest item can
be placed in the bin of BP that originally contained P ’s default item of size n,
since this default item is no longer needed. P ’s jth largest item is of size at
most n/j. It will be placed in the bin (j − 1)th least loaded in BP (excluding
the bin that was already used in order to pack P ’s largest item). This bin had
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volume at most (n−1)n
2n−j , as otherwise the total volume of bins in BP exceeds n2.

The jth item fits there because (n−1)n
2n−j + n

j ≤ n for every 2 ≤ j ≤ n.
Observe that when the complete mechanism picks a bin, the size of the part

that it gives P is at least as large as the size of the true item packed there. By
the assumption that the utility function is nondecreasing, the expected utility
obtained by P is at least n/(2n− 1). �

5.4 Better bounds for t-concave utility functions

The crux of the proof of Theorem 17 is to show that for t-concave utility func-
tions, n+⌈t⌉+1 bins suffice for every corresponding instance of the bin matching
problem (if t divides n). In Section 5.4.1 we show this for allocation rules (the
utility functions and hence also the value of t are given a-priori). In Section 5.4.2
we show this in the more difficult case of allocation mechanisms (in which play-
ers report inputs to the mechanism, and one needs to maintain the property
that players have dominant strategies).

5.4.1 Allocation rules with bounded value of t

Let B(n, t) denote the minimum number of bins that surely suffice for bin
matching when there are n players and no item is larger than t. Observe that
B(n, 1) = n and that B(n, n) = B(n) = 2n − 1. Hence one might be tempted
to interpolate and conjecture that B(n, t) = n+ t− 1 for every t. Allowing for
noninteger t, the corresponding conjecture might be that B(n, t) = n+ ⌈t⌉ − 1.
Indeed, B(n, t) = n+ ⌊t⌋− 1 would not suffice, as the following example shows.

Example 20 Let t > 1 be noninteger but divide n. There is one unitary player,
and each other player has n/t items of size t and the remaining items of size 0.
Each of the n bins that contains an item of the unitary player must have volume
loss of t−1, hence (t−1)n volume needs to be packed in other bins. This requires
⌈t⌉ − 1 additional bins.

The bound B(n, t) = n + ⌈t⌉ − 1 is too optimistic as well. We say that a
player is maximal if t divides n and the player has n/t items of size t and n−n/t
items of size 0.

Proposition 21 There are instances of bin matching with noninteger t and
sufficiently large n that require n+ ⌈t⌉ bins.

Proof. Let t > 1 be noninteger, let n > t be divisible by t and sufficiently
large. Consider ⌈t⌉ unitary players and n − ⌈t⌉ maximal players. If there are
only n+⌈t⌉−1 bins, then n+⌈t⌉−1−⌈t⌉(⌈t⌉−1) > n−t2 of them have items from
all unitary players. Each such bin must lose a volume of at least 2t−⌈t⌉, and so
the total volume lost is more than (n− t2)(2t−⌈t⌉) > 2nt−n⌈t⌉− t3. The extra
space available is only (⌈t⌉−1)n, which does not suffice if (2t+1)n > 2⌈t⌉n+ t3.
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This last inequality can be made to hold if the fractional part of t is larger than
1/2, and n is sufficiently large (in particular, larger than t3). �

The following is a straightforward upper bound on B(n, t).

Theorem 22 For the bin matching problem, B(n, t) < n + ⌈t + t(t−1)
n−t ⌉. In

particular, B(n, t) < n+ ⌈t⌉+ 1 when t ≤
√
n.

Proof. As in the proof of Theorem 18 we shall use the sorted first fit (SFF)
bin matching algorithm. Pack the items player by player into the given number
of bins (which we shall denote by n + c). For every 1 ≤ i ≤ n and 1 ≤ j ≤ n,
Player i puts his jth largest item in the bin that was jth least loaded with
respect to the previous bin matching (breaking ties arbitrarily). SFF ensures
that the difference in load between any two bins is at most the size of the largest
item. In particular, if there is an overflow, at least one bin has volume above
n, and all remaining bins volume above n− t. The total volume packed is more
then n + (n + c − 1)(n − t) = n2 + c(n − t) − t(n − 1). This exceeds n2 when
c ≥ tn−1n−t . �

The upper bound in Theorem 22 is nearly tight when t ≤
√
n (matches the

negative examples up to additive 1 or 2, depending on the exact values of t and
n). However, as t grows the gap between the upper bound of Theorem 22 and
the known lower bound grows linearly with t. Our next theorem narrows this
gap to a constant for many values of t, and in particular whenever t divides n.
We first introduce some notation.

k = ⌊n/t⌋ is the number of items of size t that can be packed in a bin.
b = ⌈(n − 1)/k⌉ is an upper bound on the number of bins that suffice in

order to pack the n− 1 largest items, if they belong to different players.
If t divides n then b ≤ ⌈t⌉. However, if t does not divide n then it could be

that b > ⌈t⌉. In particular, if t > n/2 then b = n− 1. In any case, b ≥ t− t/n.
The proof of Theorem 18 suggests that for b as above, n+ b bins may suffice

(namely, that B(n, t) ≤ n+b). Indeed, this is the case whenever the n−1 largest
items each belong to a different player. Then they can be packed into b bins,
and the remaining items into n bins, as in the proof of Theorem 18. However if
one of the players holds more than b of the largest items, then it is no longer true
that the n − 1 largest items can be packed into b bins. Alternatively, one may
try to pack only one item from each player (its largest item) in b dedicated bins,
and hope that the remaining items can still be packed into n bins. However,
this last packing step is sometimes impossible.

Example 23 Let r ≥ 2, n = 54r, h = 3r, t = 9r, and allow n + r = 55r
bins. There are h heavy players with n/t = 6 items of size t. The other n − h
light players have items of size 1. Remove one item (the largest) from each
player. For the remaining items, any packing of the heavy players uses at most
5h = 15r bins. Any packing of the light players can place n + r − 15r = 40r
items per player in the remaining bins, and hence at least 14r − 1 items in the
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15r bins. The total volume available in the 15r bins is 15rn. The total demand
is 5hn/6 + (14r − 1)(n − h). Hence things fit only if 25

2 r · 54r > 51r(14r − 1),
or equivalently, 675r > 714r − 51 which does not hold for r ≥ 2.

Taking increasing values of r, the above example shows that the number of
extra bins (beyond n) that are needed in order to legally pack all items but one
from each player grows linearly with n.

Nevertheless, the bound B(n, t) ≤ n + b can be proved whenever b ≥
√
n

(complementing Theorem 22 that handles the case b <
√
n quite well).

Theorem 24 Let c = min[b,
√
n], where b is as defined above. Then B(n, t) ≤

n+ c.

Proof. If the n− 1 largest items (breaking ties arbitrarily) can be packed into
c bins, then the proof follows from that of Theorem 18. Hence it is left to deal
with the case that the n− 1 largest items cannot be packed into c bins. Given
that c ≥ b, this happens only if at least c+ 1 of the n− 1 largest items belong
to the same player. This implies that s ≤ n/(c + 1) (where as in the proof
of Theorem 18, s denotes the size of the nth largest item). We use this last
inequality to present a packing. The packing has three phases.

Phase 1. In this phase, all items of size strictly larger than s = n/(c+1) are
packed. Observe that no player can have more than c such items, that the total
number of these items is at most n− 1 (as otherwise we are done, as explained
above), and hence they all fit in c bins (because c ≥ b, for b as defined above).
Call the c bins used in this phase the large-item bins.

Phase 2. For each player, sort its items in order of decreasing size. By
the end of Phase 2, the items packed for each player will be a prefix of its
sorted order. (Note that this also holds at the end of Phase 1.) The bins used
for the packing in Phase 2 are only the large-item bins. As there are only c
such bins, for each player a prefix of length at most c is packed (in Phases 1
and 2 combined). Phase 2 ends with an arbitrary maximal packing that satisfies
these conditions: no additional item can be packed without violating either the
capacity constraints, or the matching constraints, or the prefix constraints. The
exact procedure by which such a packing is reached does not matter. There are
two possible outcomes of Phase 2 (small volume versus large volume), and they
will determine two different versions of Phase 3.

Phase 3 (small volume). At least one of the large-item bins had volume
at most n−s by the end of Phase 2. This can happen only if the bin contains at
least one item from each player (otherwise, the packing is not maximal as there
is room for an additional item). The prefix property then implies that if we take
one yet unpacked item from every player, all these items also fit in a single bin.
Hence the n remaining bins can be used in order to pack all remaining items.
(In fact, n− 1 bins would suffice.)

Phase 3 (large volume). All large-item bins have volume larger than n−s
by the end of Phase 2.. Pack all remaining items (each of which has size at most
s) in the remaining n bins using algorithm SFF of Theorem 18. This ensures
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that the gap between any two the n bins is at most s. An overflow will require
total volume greater than n+(n+c−1)(n−s) ≥ n+(n+c−1)cn/(c+1) > n2,
where the last inequality follows by the condition c ≥

√
n. Hence indeed all

items can be packed. �

Corollary 25 If t ≥
√
n and t divides n, then B(n, t) ≤ n+ ⌈t⌉.

Proof. The condition that t divides n implies that b = ⌈t⌉. Now the corollary
follows from Theorem 24. �

Corollary 25 is best possible up to one bin, by Example 20. Unfortunately,
Proposition 21 cannot be used in order to remove this slackness of one bin, as
its proof does not work when t ≥

√
n.

5.4.2 An allocation mechanism with per-instance guarantees

Ideally, for every instance of the bin matching problem, one would like the
number of bins used to be the smallest possible for that particular instance.
However, doing so conflicts with the requirement of having dominant strategies
– given his beliefs about the reports of other players, a player might contemplate
changing his own report regarding item sizes so as to make the underlying
bin matching problems solvable in fewer bins. Hence instead we propose the
following mechanism that we call minbin.

For the given reports by all players, pack the items legally in the minimum
possible number of bins. Let this number be nopt. In addition, for player i,
let ni be the number of bins that would suffice for every bin matching instance
in which the report of player i is arbitrary and the reports of all other players
remain unchanged. Observe that necessarily nopt ≤ ni ≤ 2n − 1. Now pick
at random one bin out of nopt, and give each player i its item from that bin
(if there is such an item) with probability nopt/ni. Hence each player i gets a
fraction of n/ni of his fair share.

Proposition 26 The minbin mechanism is ρ-safe for ρ = n/(2n− 1).

Proof. Player i has no influence on the value of ni. Given an arbitrary value of
ni (which is necessarily at least n), the dominant report of a player (that wishes
to maximize his expected utility) is the one maximizing

∑n
j=1 ûi(rij) subject

to the constraints
∑

j rij ≤ n and rij ≥ 0 for every i. Under this report his
expected utility is n/ni ≥ n/(2n− 1), where the last inequality follows because
ni ≤ 2n− 1 by Theorem 18. �

The minbin mechanism as described above requires computing nopt and ni

for every i, tasks that might be computationally expensive. Hence one may
consider variations on minbin in which the number of bins used is determined by
some polynomial time algorithm (and is not necessarily optimal). We now show
that in interesting special cases the guarantees of the minbin mechanism are
in fact significantly better than n/(2n− 1), and moreover, that these improved
guarantees can be obtained by polynomial time versions of minbin.
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Proposition 27 If all players are unitary and follow their dominant strategies,
then minbin offers every player expected utility of ρ = n/(n+ 1).

Proof. We need to show that in the setting of the proposition ni = n + 1 for
every player i. Equivalently, one needs to show that n + 1 bins suffice when
n − 1 reports are unitary and the report of player i is arbitrary. Start with n
bins. Consider an arbitrary report for player i and pack its items in distinct
bins. In addition, put one item of each of the remaining players in each bin.
This packing may not be legal (as player i is no longer unitary). But the total
overflow from all bins is at most equivalent to n − 1 unitary items (of players
other than i). As each bin contains all players, one can arrange the overflow
items to be items of distinct players, and then all of them fit in one extra bin.
�

We now build upon the results of Section 5.4.1 and prove the following.

Theorem 28 If no item is larger than t and t divides n, then minbin recovers
at least n/(n+ ⌈t⌉+ 1) of the fair share.

Proof. The proof breaks into three cases, depending on the value of t.
Case 1. For t ≤ 1, a bound that is even stronger than required by the

theorem is proved in Proposition 27.
Case 2. We now prove Theorem 28 in the special case that t ≤

√
n. In this

special case we will be able to drop the condition that t divides n. We shall
assume that t ≥ 2. This assumption can be made without loss of generality
because all 1 < t < 2 allow the same number of bins as the case t = 2. We
shall show that for 2 ≤ t ≤

√
n, if only one player has items larger than t,

then n+ ⌈t+ t(t−1)
n−t ⌉ bins suffice. Observe that this is the exact number of bins

obtained in Theorem 22, but unlike Theorem 22, we now allow one player to
have items larger than t. This will imply Theorem 28 when t ≤

√
n.

Let c = ⌈t + t(t−1)
n−t ⌉, and assume that we have n + c bins. Call the items

larger than t large, and all other items small. At most one player, the large
player, has large items. Run the sorted first fit (SFF) algorithm of the proof of
Theorem 22, starting from the large player.

Lemma 29 Using the notation above, if t ≤
√
n and c = ⌈t + t(t−1)

n−t ⌉, if there
is at most one large player and there are n + c bins, then SFF will produce a
legal packing, with no overflow.

Proof. After an iteration of SFF, call a bin oversized if its volume exceeds that
of the minimum bin by more than t, and bounded otherwise. After the first
iteration of SFF, those bins containing the large items are oversized. Observe
that if a bin is bounded at the end of an SFF iteration, it remains bounded in
all future iterations of SFF (in every iteration it receives an item no larger than
the one received by the current least loaded bin).

Assume for the sake of contradiction that some bin B overflows. Consider
the situation just before the arrival of the player P who caused the overflow,
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and let k be the index of bin B in the sorted order. If k > n, the bin cannot
overflow because the player places no item in B. Hence necessarily k ≤ n. The
size of item placed in bin k is at most n/k. Hence the volume of bin k prior
to the arrival of the item (and likewise, the volume of bins larger than k) is at
least n − n/k. Hence the total volume of bins from k up to n + c is at least
(n+ c− k + 1)(n− n/k). How did this volume build up? In the first iteration
of SFF, the large player could have contributed volume at most n to these bins.
Suppose now that the following assumption holds:

Order assumption. The bins in locations k up to n + c where in these
locations in all iterations starting from the end of the first iteration to the end
of the iteration prior to the arrival of the overflow causing player P .

Using the order assumption, SFF implies that every player between the large
player and P (there are at most n − 2 such players) could contribute volume
at most (n − k + 1) to bins from k onwards. Hence to have an overflow the
following inequality must hold:

n+ (n− 2)(n− k + 1) > (c+ n− k + 1)(n− n/k)

Observe that c ≥ 3 (implying among other things that n ≥ 4) and n/2 <
k ≤ n (because t ≥ 2 and at most n/t bins are initially oversized). Replacing
n/k by 2 and simplifying one gets the inequality n > c(n − 2), which cannot
hold for c ≥ 3. This completes the proof subject to the order assumption.

We now show that even though the order assumption need not hold, it can
be assumed without loss of generality. That is, if there is overflow for SFF in
an instance in which the order assumption was violated, there is also overflow
for a modified version of SFF in an instance in which this assumption was not
violated.

Observe that the proof of Theorem 22 implies that B cannot be a bounded
bin, hence it has to be an oversized bin. That is, B must contain a large item.
Moreover, all bins from k to n + c must contain large items, as otherwise one
of them would be bounded, implying that B is bounded as well. Consider now
a modified version of SFF. The key aspect of the modification is that at the
beginning of each iteration we only have a relaxation of the requirement that all
bins are sorted in increasing order of size. We still start with the bounded bins
sorted in increasing order, but for the oversized bin we only require that the bins
from location k onwards are at least as large as any of the other bins. We shall
still have the property that a bin can be oversized only if it contains a large
item, and that once a bin becomes bounded it remains bounded. The proof
given above goes through even for such a modified-SFF algorithm, provided
that the order assumption holds for it.

Suppose now that at some iteration the order assumption failed. Namely,
at that iteration there where two oversized bins i and j with i < k ≤ j, such
that after the new player N was added bin i was moved to index i′ ≥ k whereas
bin j moved to index j′ < k. Observe that the item just placed in bin i cannot
be large. Hence the new volume of i exceeds the new volume of j by at most
s ≤ t. Consider now a modified input instance in which the sizes of items of
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the large player were modified: the item in bin j was larger by s and the item
in i was smaller by s. For modified-SFF this modification need not have any
effect on the order of bins until the arrival of player N. Then after the arrival of
N we get the same configuration of heights of bins as without the modification,
except that now it is bin i < k who moved to j′ < k and bin j ≥ k who moved
to i′ ≥ k.

We use the above modification repeatedly whenever the order assumption
is violated, so as to get an instance were the order assumption holds. For the
repeated applications we need to establish that once the amount of volume
shifted from a large item is sufficient to make it small, the corresponding bin
i necessarily becomes bounded (and hence is no longer a candidate to move
to a location above k). Indeed, its volume cannot exceed that of the current
minimum bin M by more than t, by the following argument. If M was always
smaller than i, every player except the large player must have contributed to
M an item at least as large as the one that it contributed to bin i. Hence the
surplus in size of i compared to M is at most its large item, but the size of its
large item is brought down to become at most t. If M was at some point larger
than i, then i cannot overtake M by more than t (the size or largest item that
could arrive since that point). �

Case 3. It remains to prove Theorem 28 in the case that t >
√
n (and

recall that t divides n). This will be based on a modification of the proof of
Theorem 24. Let c be defined as in Theorem 24. We shall have n main bins, c
large-item bins, and an auxiliary bin. As in Theorem 24, we shall first consider
the n − 1 largest items. The difference now is that items (that belong to the
large player) might be larger than t. We call such items huge. We shall show
that one auxiliary bin (beyond the c large-item bins) suffices in order to handle
this difficulty. The proof breaks into two subcases.

Case 3.1. Consider first the case that no player holds more than c of the
n−1 largest items. To simplify the proof, round up the size of each of the n−1
largest items to the nearest multiple of t. Let ℓ ≤ c be the number of huge items
(all these items must belong to the large player). All remaining large items can
be packed (player by player, filling the bins in a round robin fashion) in the c
bins, while leaving at least ℓ eligible bins, where a bin is eligible if it has at least
t-volume still available, and it contains no item of the large player. Now pack
all huge items in distinct eligible bins. This might cause some of the eligible
bins to overflow. To handle the overflow, remove from each overflowed bin the
minimum necessary number of items of size t (hence not belonging to the large
player) and place them in the auxiliary bin. We need to show that this can be
done in way insuring the the auxiliary bin is legally packed.

First, let us consider the total volume placed in the auxiliary bin. The total
increase of volume of huge items that resulted from rounding up to the nearest
multiple of t is strictly less than ℓt. This rounding up volume is more than
compensated by the t empty volume initially available in each eligible bin in
which a huge item is placed. Hence the total volume moved out of eligible bins
is strictly less than the total volume of huge items. As all huge items belong to
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one player, their total volume is at most n. Hence strictly less than volume n
is moved into the auxiliary bin.

Second, let us show that the auxiliary bin need not contain two items of the
same player. By Hall’s theorem, it suffices to show that in every i eligible bins,
if j ≥ i items need to be evacuated from them, then at least j distinct players
have items in at least one of the i bins. Recall that k = n/t. In every eligible
bin, w.l.o.g. there are items of k−1 players (if there are fewer items simply add
items of size t of imaginary distinct players). Hence one need only show that
j ≤ k − 1. But if j = k then the total volume moved to the auxiliary bin is
kt = n, contradicting the previous paragraph that showed that it is strictly less
than n.

Case 3.2. Consider now the case that some player holds more than c of the
n − 1 largest items. All items of size larger than n/(c + 1) can be packed into
c+1 bins as in Case 3.1. Thereafter, proceed as in the proof of Theorem 24. �

The advantage of Theorem 28 over the results of Section 5.4.1 is that the
upper bound of t need not be imposed on the players. Rather, it is determined
empirically based on the reports.

The combination of Proposition 26, Proposition 27 and Theorem 28 estab-
lishes Theorem 17.

6 Extensions and discussion

6.1 An alternative normalization for fairness

For Definition 5 of fairness, we required that utility functions be normalized as in
Definition 4. Under û, the normalized version of utility function u, a normalized
utility of 1 is the expected utility that a player may receive if all players have
the same utility function u. This was referred to as unanimity normalization.
In this section we present an alternative normalization, that we call optimistic
normalization.

Given a utility function ui for player i, consider choosing a finite list of non-
negative sizes of parts A1(i), A2(i), . . . and probabilities p1, p2, . . . subject to the
conditions that

∑
pj = 1,

∑
j pjAj(i) ≤ 1 (if utility functions are monotone

then this condition can be replaced by
∑

j pjAj(i) = 1), and maxj Aj(i) ≤ n,
while maximizing

∑
j pjui(Aj(i)). Let t be the maximum possible value of∑

j pjui(Aj(i)) under the above constraints. Then under optimistic normaliza-
tion, the normalized version of ui is ûi(x) = ui(x)/t. In analogy to the case
of unanimity normalization, also for optimistic normalization we may think of
an expected normalized utility of 1 as the fair share of a player. In analogy to
Definition 5 that refers to unanimity-fairness, the following definition refers to
optimistic fairness.

Definition 30 A distribution D over allocations is (optimistically) fair with
respect to utility functions (u1, . . . , un) if and only if every player gets exactly
the same normalized expected utility, under optimistic normalization (as defined
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above). A randomized allocation rule is fair if given a tuple (u1, . . . , un) it
produces a fair randomized allocation.

For every utility function u, the scaling factor t involved with optimistic
normalization is at least as large as the scaling factor tu involved with unanimity
normalization. This is because both normalization can be thought of as referring
to the expected utility that the player can receive from a distribution over
allocations that in expectation gives the player at most one unit of good, but
unanimity normalization places additional restrictions on the distributions over
allocations that a player may choose from: they are required to be a uniform
distribution over n allocations. As a consequence, having a ρ-fair allocation
with respect to optimistic normalization offers at least as much utility (for every
player) as a ρ-fair allocation with respect to unanimity normalization (for the
same value of ρ). Hence it is desirable to prove a theorem similar to Theorem 14
with respect to optimistic normalization. It turns out that a small loss in the
value of ρ is involved.

Theorem 31 With respect to optimistic normalization, there is a ρ-fair allo-
cation mechanism with ρ = 1/2.

The following example shows that the value of ρ = 1/2 in Theorem 31
is best possible. Suppose that û1(x) = 1 for x ≥ 1 and 0 otherwise, and
û2(x) = 1 + ϵ for x ≥ 1 + ϵ and 0 otherwise. One may verify that both
utility functions are normalized (with respect to optimistic normalization, not
unanimity normalization). As any allocation gives average normalized utility
(over the two players) of no more that 1+ϵ

2 , the maximum possible value of ρ is
1+ϵ
2 . Letting ϵ tend to 0 implies that the value of ρ = 1/2 is best possible. The

example also illustrates that distributions that are fair according to optimistic
normalization need not be fair according to unanimity normalization and vice
versa (because u2 is normalized differently in these two cases, whereas u1 is
normalized in the same way).

We shall only sketch the proof of Theorem 31.
Proof.(Sketch.) We first describe the allowable actions of a player i in the
randomized allocation mechanism. Player i can choose an arbitrary report of
either one value ri ≤ 1 or two values (ri1, ri2) satisfying 0 ≤ ri1 < 1 < ri2 ≤ n.

We next describe the intended outcome of the randomized mechanism. If
his report was ri, Player i gets a part of size ri with probability 1/2, and hence
the expected size is at most 1/2. In the report was (ri1, ri2) the player gets a
part of size ri1 with probability ri2−1

2(ri2−ri1) and a part of size ri2 with probability
1−ri1

2(ri2−ri1) . The expected size that a player gets in this case can be readily seen

to be 1/2.
Given the intended outcome, a player i clearly has a dominant strategy.

Namely, the player may choose either ri ≤ 1 that offers normalized utility
ûi(ri)/2, or the two values 0 ≤ ri1 < 1 < ri2 ≤ n that maximize ri2−1

2(ri2−ri1) ûi(ri1)+
1−ri1

2(ri2−ri1) ûi(ri2), whichever is larger. Moreover, it can be shown that the domi-

nant choice offers normalized utility (with respect to optimistic normalization)
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of exactly 1/2. This follows from the fact that only two constraints are involved
in the definition of normalized utility (

∑
pj = 1 and

∑
j pjAj(i) ≤ 1), and

hence to find an optimal solution it suffices that only two of the pj variables are
nonzero.

Finally, we describe a randomized allocation rule that generates the intended
outcome. Recall that the good can be divided into parts that are multiples of ϵ
and that ϵ divides 1. In particular, this implies that the probabilities ri2−1

2(ri2−ri1)
and 1−ri1

2(ri2−ri1) are rational as well. Let N be the least common multiple of ri2−ri1
ϵ

for all i. This leads to the following variant of the bin matching scenario. There
are n players. Each player has N items, where for player i all these items
have size ri if his report was ri, and otherwise ri2−1

ri2−ri1N items have size ri1 and
1−ri1
ri2−ri1N items have size ri2. All these items need to be legally packed in 2N
bins of size n, with no two items of the same player in the same bin. This is
doable using a proof similar to that of Theorem 14. Pack the N largest items
in N distinct bins. For the rest of the items, pack them in the remaining bins
using the algorithm SFF. Further details are omitted. �

6.2 Nonuniform entitlements

We propose ways of extending our definitions to the case that players might
have different entitlements for the good. As before, there are n players and the
available amount of good is n. With every player i associate a weight wi ≥ 0,
representing his entitlement to the good. For simplicity of notation and without
loss of generality, we assume that weights satisfy

∑n
i=1 wi = n. Given these

entitlements, we shall normalize the utility functions. Recall that for the case
of uniform entitlements we offered two proposals for normalization: unanimity
normalization and optimistic normalization. Each of them extends in a different
way to the weighted case.

Optimistic normalization. Given utility function ui and weight wi, player
i needs to choose a finite list of nonnegative sizes of parts A1(i), A2(i), . . . and
probabilities p1, p2, . . . subject to the conditions that

∑
pj = 1,

∑
j pjAj(i) ≤

wi (if utility functions are monotone then this condition can be replaced by∑
j pjAj(i) = wi), and maxj Aj(i) ≤ n, while maximizing

∑
j pjui(Aj(i)). Let

t be the maximum possible value of
∑

j pjui(Aj(i)) under the above constraints.
Then under optimistic normalization, the normalized version of ui is ûi(x) =
ui(x)/t. Definition 30 of fairness now applies without change, and so does
Definition 7 of safety.

Unanimity normalization. Here we propose a normalization of u that
depends on the whole vector (w1, . . . , wn) of entitlements. In analogy to the
discussion leading up to Definition 4, the normalizing factor tu with respect to
a utility function u and a vector (w1, . . . , wn) is computed as follows: tu is the
maximum value such that there is a distribution D over allocations satisfying
EA←D[u(A(i))] = witu for all 1 ≤ i ≤ n. Proposition 2 still holds, though now
its proof is not as explicit. (To show that distribution D can be assumed to

26



be supported on only n allocations one may appeal to the fact that it involves
only n constraints.) The required equality in Definition 5 of fair randomized

allocations is modified to EA←D[ûi(A(i))]
wi

=
EA←D[ûj(A(j))]

wj
. Definition 7 of safety

will then require player i to get utility ρwi.
Determining the maximum possible value of ρ for ρ-fair randomized alloca-

tions under nonuniform entitlements is left to future work.

6.3 Pareto optimality

In this section we formally define the notion of Pareto-optimality of allocations
and of randomized allocations, and point out that requiring Pareto-optimality
would conflict with requiring fairness (under Definition 5).

Definition 32 An allocation A is Pareto-optimal if there is no other allocation
in which every player gets at least as much utility as in A and at least one player
gets strictly more utility than in A.

For randomized allocations, there are two possible notions of Pareto-optimality.
One is simply a distribution over Pareto-optimal allocations. The other is given
in the following definition.

Definition 33 A randomized allocation D (namely, a distribution over alloca-
tions) is Pareto-optimal if there is no randomized allocation D′ in which every
player gets at least as much expected utility as in D and at least one player gets
strictly more expected utility than in D.

A Pareto-optimal randomized allocation is necessarily a distribution over
Pareto-optimal allocations, but the converse need not hold. As an example,
consider the case in which all utility functions are strictly convex (have positive
second derivative). Giving every player a part of size 1 is a Pareto-optimal
allocation. However, every player would obtain strictly higher expected utility
from a uniform distribution over the following n allocations: one player gets all
the good and the other players get nothing.

Pareto-optimality might conflict with our notion of fairness, as the following
proposition shows.

Proposition 34 For n = 2, there is a choice of normalized utility functions û1

and û2 with respect to which there is no fair Pareto-optimal allocation, and no
fair Pareto-optimal randomized allocation.

Proof. Recall that when n = 2 utility functions are defined over the domain
0 ≤ x ≤ 2. Let û1(x) = x, and let û2(x) = 0 for x < 1/2 and û2 = 1 for x ≥ 1/2.
These are indeed normalized utility functions in the sense of Definition 4 (and
also in the sense of optimistic normalization as in Section 6.1). There are only
two Pareto-optimal allocations, namely (3/2, 1/2) and (2, 0). In both these
allocations the utility of Player 1 is strictly higher than that of Player 2. Hence
neither one of them is fair in the sense of Definition 5. Likewise, there is no fair
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Pareto-optimal randomized allocation D as it would need to be supported over
Pareto-optimal allocations. �

It is an open question whether for some ρ > 0 there are ρ-safe Pareto-optimal
randomized allocation mechanisms. Theorem 15 establishes a partial result in
this direction: it provides a distribution over complete allocations, and in the
special case that utility functions are strictly monotone a complete allocation
is Pareto-optimal. However, Theorem 15 does not guarantee Pareto-optimality
when utility functions are monotone rather than strictly monotone, and even if
utility functions are strictly monotone, Theorem 15 does not necessarily meet
the stronger requirements of Definition 33.

6.4 Attitudes towards lotteries

In this manuscript we assumed that players are expectation maximizers. This
aspect is crucial to the claim that when players follow their dominant strategies
the expected normalized utility that they get is at least ρ (for a value of ρ that
depends on the particular theorem involved). However, this aspect is not crucial
if one is only concerned with the question of whether players have a dominant
strategy. The nature of the allocation mechanisms that we design is such that
even players that are not expectation maximizers still have a dominant strategy.
For the mechanisms of Theorems 14 and 15 it suffices to assume that given a
utility function, then among all lotteries of a certain class (specifically, involving
a uniform distribution over 2n − 1 outcomes, n − 1 of which are zero, and the
remaining n outcomes satisfy the constraint that the sum of sizes received in
all outcomes is at most n) there is a lottery that the player prefers at least
as much as any other lottery. It does not matter why the player prefers this
lottery (whether this is because it maximizes the expected utility, or whether
there is some other reason such as minimizing variance). For the mechanism
of Theorem 17 one needs a slightly stronger assumption (though still weaker
than the assumption that the player maximizes expectation), namely, that the
lottery remains preferable regardless of the total number of forced zero outcomes
(which could be anything between 1 and n− 1).

The following example illustrates the above point. Consider a good of size 4,
and a player that has a utility function with u(x) = 0 for x < 1, u(x) = 1 for
1 ≤ x < 2, and u(x) = 2 for 2 ≤ x ≤ 4. In the context of our allocation
mechanism and when n = 4, the player is asked to propose a partition of the
good into four parts (and then the player receives each one of the parts with
probability 1/7, and nothing otherwise). There are three partitions that are
equivalent in the sense that they maximize the sum of utilities of the parts.
They are (1, 1, 1, 1), (2, 0, 2, 0) and (1, 1, 2, 0). If the player is an expectation
maximizer, then all three partitions are equivalent for him. However, there
may be players who strictly prefer the partition (1, 1, 2, 0) over the first two. A
justification for this preference can be that it avoids the emotional stress involved
in having to make a choice: the partition (1, 1, 1, 1) excludes the possibility that
the player will be allocated a part of size 2, the partition (2, 0, 2, 0) excludes
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the possibility that the player will be allocated a part of size 1, whereas the
partition (1, 1, 2, 0) keeps both options open, leaving it to pure chance to decide
the outcome. Observe further that a full utility function that strictly prefers
the third partition over each of the other two implies that the player cannot
be modeled as being an expectation maximizer regardless of what his utility
function is (because as a lottery, the third partition is the average of the other
two). Nevertheless, such a player has a dominant strategy in our mechanism.

6.5 Iterative allocation

Bin-matching based allocation mechanisms (such as those designed in this pa-
per) ask each player to supply in advance one partition of the good into n parts,
and guarantee every player at least an n/(2n−1) fraction of his fair share. In this
section we briefly review an iterative mechanism (that appeared in [4]) which
may be preferable over bin-matching mechanisms under certain conditions.

The iterative mechanism considers players in a random order. When player
i is considered, let Di be the amount of good that was not yet allocated and ni

the number of players that remain (including i). Then player i gets to partition
Di into ni parts, and is given one of these parts at random.

The iterative mechanism is inferior to bin-matching mechanisms in two re-
spects.

1. Handling large items. If some player only has utility for very large items
(of size t nearly equal to n), then the iterative mechanism does not guar-
antee the player a constant fraction of his fair-share. There are ways of
modifying the iterative mechanism so as to overcome this issue, but they
detract from some of the advantages of the iterative mechanism.

2. The communication pattern of the iterative mechanism is more demanding
than that of the bin-matching based mechanism. Either it is adaptive
(player i is asked for a report only after Di and ni are known), or the
player needs to supply inputs for all possible combinations of ni and Di in
advance. If the latter possibility is chosen, then one can consider limiting
the expressiveness of players so as to reduce communication, for example,
by requiring a player to select at most two item sizes, or by rounding Di

down to the nearest power of two. This somewhat hurts the performance
of iterative mechanisms.

On the other hand, iterative mechanisms offer two important advantages.

1. In scheduling scenarios, if items are time allocations for jobs and a job
finishes earlier than its allocation, the remaining time is returned to the
mechanism and can be included in the time offered to future jobs.

2. If the demands of players happen to be low, iterative mechanisms may
serve a higher fraction of the demand than bin-matching based mecha-
nisms. In particular, if all players are unitary all players get their fair
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share. Moreover, if some players are “altruistic” (namely, get maximum
benefit already from items of size smaller than Di/ni, and moreover, are
willing to report ni parts of size smaller than Di/ni, allowing other players
to enjoy the surplus), other players may get more than their fair share.

In summary, the iterative mechanism is most appropriate when the max-
imum size t of an item is small compared to the total bin size. In this case
it guarantees each player a constant factor of its fair share, and this constant
approaches 1 as t approaches 1.
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