
SIAM J. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 46, No. 1, pp. 190–223

CHASING GHOSTS: COMPETING WITH STATEFUL POLICIES∗

URIEL FEIGE† , TOMER KOREN‡ , AND MOSHE TENNENHOLTZ§

Abstract. We consider sequential decision making in a setting where regret is measured with
respect to a set of stateful reference policies, and feedback is limited to observing the rewards of the
actions performed (the so-called bandit setting). If either the reference policies are stateless rather
than stateful or the feedback includes the rewards of all actions (the so-called experts setting), previ-
ous work shows that the optimal regret grows like Θ(

√
T ) in terms of the number of decision rounds

T . The difficulty in our setting is that the decision maker unavoidably loses track of the internal
states of the reference policies and thus cannot reliably attribute rewards observed in a certain round
to any of the reference policies. In fact, in this setting it is impossible for the algorithm to estimate
which policy gives the highest (or even approximately highest) total reward. Nevertheless, we design
an algorithm that achieves expected regret that is sublinear in T , of the form O(T/ log1/4 T ). Our
algorithm is based on a certain local repetition lemma that may be of independent interest. We also
show that no algorithm can guarantee expected regret better than O(T/ log3/2 T ).
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1. Introduction. A player is faced with a sequential decision making task, con-
tinuing for T rounds. There is a finite set [n] = {1, . . . , n} of actions available in every
round. In every round, based on all information observed in previous rounds, the
player may choose an action i ∈ [n] and consequently receives some reward r ∈ [0, 1]
on that particular round. The total reward of the player is the sum of rewards accu-
mulated in all rounds. There are various policies suggested to the player as to how to
choose the sequence of actions in a way that would lead to high total reward. Exam-
ples of policies can be to play action 2 in all rounds, to play action 2 in odd rounds and
action 3 in even rounds, or to start with action 1, play the current action repeatedly
in every round until the first round in which it gives payoff less than 1/2, then switch
to the next action in cyclic order, and so on. The number of given policies is denoted
by k. A priori the player does not know which is the better policy. An algorithm of
the player is simply a new policy that may be based on the available given policies.
For example, the algorithm may be to follow policy number 5 in the first T/2 rounds
and play action 3 in the remaining rounds. The regret of the algorithm of the player is
the difference between the total payoff of the best given policy to that of the player’s
algorithm. Our goal is to design an algorithm for the player that has as small regret
as possible.
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There are many different variations on the above setting, and some have been ex-
tensively studied in the past, with two of the most common variations referred to as
“experts” algorithms and “bandit” algorithms [4, 14, 3]. In this work we study a nat-
ural variation that apparently did not receive much attention in the past. We present
this variation in its simplest form in section 1.1 and defer discussion of extensions to
section 1.7.

1.1. The stateful policies model. We view the sequential decision making
problem as a repeated game between a player and an adversary. Before the game
begins, the adversary determines a sequence of reward functions r1:T = (r1, . . . , rT ),

1

where each function assigns each of the actions in [n] with a reward value in the
interval [0, 1]. We refer to such adversary as oblivious, since the functions r1:T can-
not change as a result of the player’s actions (as they are chosen ahead of time).
On each round t, the player must choose, possibly at random, an action Xt ∈
[n]. He then receives the reward rt(Xt) associated with that action, and his feed-
back on that round consists of this reward only; this is traditionally called bandit
feedback.

The player is given as input a set Π of k > 1 policies, which are referred to as
the reference policies. Each policy π ∈ Π is a deterministic function that maps the
sequence of all previously observed rewards into an action to be played next. For a
policy π, we use the notation xπ

t to denote the action played by π on round t, had
π been followed from the beginning of the game. Given that the sequence of reward
functions r1:T is already fixed, xπ

t has a deterministic value. The player’s goal is to
minimize his (expected) regret measured with respect to the set of reference policies
Π, defined by

RegretT = max
π∈Π

T∑
t=1

rt(x
π
t )−E

[
T∑

t=1

rt
(
Xt

)]
.

We say that the player’s regret is nontrivial if it grows sublinearly with T , namely, if
RegretT = o(T ).

While regret measures the performance of a specific algorithm on a particular se-
quence of reward functions, we are typically interested in understanding the intrinsic
difficulty of the learning problem. This difficulty is captured by the game-theoretic
notion of minimax regret, which intuitively is the expected regret of an optimal al-
gorithm when playing against an optimal adversary. Formally, the minimax regret is
defined as the infimum over all player algorithms, of the supremum over all reward
sequences, of the expected regret.

In this paper we consider a type of reference policies that we refer to as stateful
policies, which we define next (see also Figure 1 for an illustration of this concept).

Definition 1.1 (stateful policy). A stateful policy π = (sπ0 , f
π, gπ) over n

actions and S states is a finite state machine with state space [S] = {1, 2, . . . , S},
characterized by three parameters:

(i) the initial state of the policy sπ0 ∈ [S], which is used to initialize the policy
before the first round;

(ii) the action function fπ : [S] �→ [n], describing which action to take in a given
round, depending on the state the policy is in;

1We use the notation as:t as shorthand for the sequence (as, . . . , at).
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Fig. 1. (Left) A stateful policy over n = 2 actions with S = 3 states, with s1 being the initial
state. The labels on the edges between states indicate the set of rewards that trigger the corresponding
transition (which is the role of the function gπ). The dashed arrows depict the function fπ that
assigns each state with an action. (Right) A reactive policy over n = 3 actions, considered in the
example of section 1.1. The state si is a placeholder that stands for each of s1, s2, s3 and shows the
outgoing transitions that are common to all three states.

(iii) the state transition function gπ : [S] × [0, 1] �→ [S], which, given the cur-
rent state and the observed reward of the action played in the current round,
determines to which state to move for the next round.

The action xπ
t played by a stateful policy π on round t (had π been followed from

the beginning of time) can be computed recursively, starting from the given initial
state sπ0 , according to

∀ t ∈ [T ] ,
xπ
t = fπ(sπt−1) ,

sπt = gπ(sπt−1, rt(x
π
t )) .

Here, sπt represents the state π reaches at the end of round t.
In our setting, we assume that the player is given as input a reference set Π of

k > 1 stateful policies, each over at most S states. The player may base his decisions
on the description of the k reference policies (in particular, the policies can serve as
subroutines by his algorithm). Without loss of generality, we shall assume that each
policy in Π has exactly S states. Also, for simplicity we assume that policies are
deterministic (involve no randomization) and time-independent: the functions fπ and
gπ do not depend on the round number; see section 1.7 for extensions of our results
to randomized and to time-dependent policies.

Example. We present a detailed example to illustrate the model. Suppose that
our player, a driver, faces a daily commute problem that repeats itself for a very large
number T of days. There are three possible routes that he can take, and an action
is a choice of route (hence n = 3). Each of the three routes can be better than the
others on any given day. The reward of the player on a given route in a given day is
some number in the range [0, 1] that summarizes his satisfaction level with the route
he took (taking into account the time of travel, road conditions, courtesy of other
drivers, and so on). The driver learns of this reward only after taking the route and
does not know what the reward would have been had he taken a different route. We
further assume that the effect of a single driver on traffic experience is negligible: the
presence of the driver on a particular route on a given day has no effect of the quality
(satisfaction level) of that or any other route on future days.
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The driver is told that there is a useful policy for choosing the route in a given
day, based only on the reward of the previous day. This policy has three states (hence
S = 3). The action function f is simply the identity function (in state i take route
i). The state transition function g is independent of the current state and depends
only on the reward received. If x denotes the reward received in the current day, then
the next state is as follows: g(x) = 1 for |x − 1

2 | ≤ 1
6 , g(x) = 2 for |x − 1

2 | > 1
3 ,

and g(x) = 3 otherwise. The only part not specified by the policy is the initial state
s0 (which route to take on the first day). Hence effectively there are three reference
policies, different only on their initial state, and thus k = 3.

The beauty of the policy, so the player is told, is that if he gets the initial state
right and from then on follows the policy blindly, his overall satisfaction is guaranteed.
Not knowing which is the better reference policy, does the player have a strategy that
guarantees sublinear regret (in T ) against the best of the three reference policies? If
so, how low can this regret be guaranteed to be?

The kind of policies considered in our example above is perhaps the weakest type
of a stateful policy, one that we refer to as a reactive policy.

Definition 1.2 (reactive policy). A reactive policy π over n actions (with 1-
lookback) is specified by an initial action xπ

1 ∈ [n] to be played in the first round of the
game and by a function π : [0, 1] �→ [n] that maps the observed reward of the action
played in the current round to an action to be played on the next round.

A reactive policy simply reacts to the last reward it receives as feedback and
translates it into an action to be played on the next round. A reactive policy can be
seen as a special type of a stateful policy with S = n states if we identify each of the
sets π−1(i) ⊆ [0, 1] with a unique state i ∈ [n]. In this view, the action function fπ

is simply the identity function, and the state transition function gπ is independent of
the current state (and maps a reward r to the state i if r ∈ π−1(i)). See also Figure
1 for a visual description of the reactive policies used in our example.

1.2. Main results. We now state our main results, which are upper and lower
bounds on the expected regret in the stateful policies model.

Theorem 1.3. For any given k, S ≥ 1, there is an algorithm for the player that
guarantees sublinear expected regret with respect to any reference set Π of k stateful
policies over S states. Specifically, for any set Π and any oblivious sequence of reward
functions, Algorithm 3 given in section 2.3 achieves an

O

(√
kS · T log log T

log1/4 T

)
upper bound over the expected regret with respect to Π.

Though the regret achieved in Theorem 1.3 is sublinear, it is only slightly so.
Unfortunately, this is unavoidable.

Theorem 1.4. There is a set of k = 3 reference policies over S = 3 states
and n = 3 actions with respect to which no player algorithm can guarantee expected
regret better than O(T/ log3/2 T ). Moreover, this negative result holds in the commute
example given in section 1.1 in which the reference policies are all reactive (as in
Definition 1.2).

For proving the above bounds, it will be convenient for us to first obtain upper
and lower regret bounds in a simplified model we call the hidden bandit. This model
precisely captures the main difficulties associated with the stateful policies setting
and may be of independent interest. Our results in the hidden bandit setting will be
stated after we establish the required definitions in section 1.5.



194 U. FEIGE, T. KOREN, AND M. TENNENHOLTZ

1.3. Discussion. A unifying paradigm for virtually all previous sequential opti-
mization algorithms, whether in the expert or the bandit setting, is the following. As
rounds progress, the algorithm “learns” which arm had the better past performance
(in the expert setting the algorithm observes all arms; in the bandit setting the al-
gorithm uses an “exploration and exploitation” procedure) and then plays this arm
(either deterministically or with high probability). For example, in the full-feedback
analogue of our setting where the rewards of all actions are observed on each round,
the player is able to “simulate” each of his contending policies and keep track of their
cumulative rewards. Hence, he can treat each policy as an independent “expert” and
use standard online learning techniques (such as the randomized weighted majority
algorithm) to obtain O(

√
T ) regret in this setting.

This typical learning paradigm is not suitable for our stateful policies model in
conjunction with bandit feedback, as there is no way by which the algorithm can learn
the identity of the best reference policy, even if this reference policy gives reward 1
in every round and all other reference policies give reward 0 in every round. This
difficulty stems from the fact that reference policies might differ only by their initial
state, and their identity is lost because the player cannot track the state evolution of
policies, due to the bandit nature of the feedback.

To illustrate this complication, let us consider the standard black-box reduction
from partial information to full-information models (see, e.g., Chapter 4 in [19]) and
see why it fails in the context of stateful policies. The reduction is based on sep-
arate exploration and exploitation mechanisms: it dedicates certain rounds, chosen
at random, for exploring the rewards of all actions, and uses the remaining rounds
for exploiting actions based on past exploration. In particular, the procedure requires
the player to switch repeatedly between different actions for incorporating exploration
between exploitation rounds.

Notice the emerging difficulty in the context of stateful policies: whenever the
player desires to switch from exploitation of one policy to exploration of another,
he has no way of telling the current state of the new policy (which is required for
producing its prediction) because he has been exploiting a different policy and, as a
consequence, did not observe the past rewards required for determining the up-to-
date state of the new policy. This complication in mixing-in exploration rounds is the
major hurdle in using typical regret-minimization techniques for obtaining positive
results in the stateful policies model.

1.4. Related work. Several variants of our model have been extensively stud-
ied in the past. However, to the best of our knowledge, our results constitute the
first known example of a learning problem where the minimax regret rate is of the
form Θ(T/polylog(T )). For this reason, we believe that the problem we consider is
substantially different from previously studied, seemingly related sequential decision
problems.

The full-feedback analogue of our setting is known to be captured by the so-called
experts framework and has been studied under the name of “simulatable experts” [5].
As we mentioned earlier, standard online learning techniques yield O(

√
T ) regret in

this setting. Consequently, we exhibit an exponential gap between the minimax regret
rates of the full-feedback and bandit-feedback variants of the problem.2 As far as we
know, this is the first evidence of such gap to date: the only previously known gap

2We say that the gap between the achievable rates is exponential, since the average (per-round)
regret decays like 1/polylog(T ) in the bandit case, while in the full-information case it decays like
1/

√
T .



CHASING GHOSTS: COMPETING WITH STATEFUL POLICIES 195

between the two feedback models was observed in the multiarmed bandit problem
with switching costs, where the minimax regret rates are Θ(

√
T ) and Θ̃(T 2/3) in the

full-feedback and bandit-feedback versions, respectively [2, 6].

Among models with bandit feedback, the one most closely related to ours is per-
haps the setting of the Exp4 algorithm [3], which is a variation on the standard
multiarmed bandit problem. In this setting, on each round of the game, before com-
mitting to a single action and observing its reward the player is provided with the
advice of a fixed set of “experts” on which arm to choose. The player’s goal is to
perform as well as the best expert in the set, and his regret is computed with respect
to that expert. Auer et al. [3] suggest the Exp4 algorithm for this setup and prove
that it achieves an optimal O(

√
T ) bound over the regret. The crucial difference be-

tween this setting and ours is in the fact that the advice of an expert is assumed to be
available at all times, whereas the advice of a stateful policy becomes unavailable once
the player deviates from it. In other words, while our policies are simple algorithms
that observe bandit feedback, we think of their experts as “oracles” whose observation
is not limited to the player’s rewards.

Our setting might seem reminiscent of (online) reinforcement learning models,
and in particular, of online Markov decision processes (MDPs) [10, 18, 7]. In these
models, there is typically a finite number of states, and the player’s actions on each
round cause him to transition from one state to another. As a consequence, the
reward of the player on each round is determined not only based on his action on
that round but also as a function of his actions in previous rounds. In contrast, in
our setting the environment is oblivious and thus determines the reward based solely
on the player’s action on the current round. Furthermore, in an MDP the state is of
the environment and the player’s actions inevitably cause this state to change from
round to round; in our model, the state is owned by the player (more precisely, by
his contending policies) and he may freely transition himself to an arbitrary state (of
any one of the policies) at any given moment, or even choose not to be in any of the
states.

More generally, the settings considered in the related works [16, 11, 1] (among
others), which deal with stateful and reactive environments in an online decision
making framework, are also substantially different from ours. As is the case with the
reinforcement learning literature, the focus of these works is the adaptiveness of the
adversary and not of the player’s reference policies.

Finally, we remark that our definition of a stateful policy is not new and similar
notions have been considered in the past. Most notably, the work of Feder, Merhav,
and Gutman [12] in the related context of binary sequence prediction considers a
similar concept which they call the “FS predictor” and studies the prediction power
of the class of all such predictors with at most S states. However, our goal is entirely
different from theirs: while they are concerned with the prediction power of the class
of all such predictors with at most S states, we aim to understand the difficulty of
learning a small set of these concepts (with bandit feedback).

1.5. The hidden bandit problem. In this section we present a setting that
we shall refer to as the hidden bandit problem, which captures the main difficulties
associated with the stateful policies model. It will be convenient for us to first obtain
results in the hidden bandit model and then translate them to the stateful policies
model.

To motivate the hidden bandit problem, let us distinguish between two different
modes a player in the stateful policies model may be in, at any given round: the
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Fig. 2. The dynamics of the switch action in the hidden bandit model can be viewed as a two-
state Markov chain, where state 0 stands for the reference arm and state 1 for the decoy arm. The
arrow labels denote the corresponding arm transition probabilities.

“good mode,” in which the algorithm is following the best reference policy in its
correct state, and the “bad mode,” in which the algorithm is doing something else
(following the best reference policy in an incorrect state, following other reference
policies, or executing a sequence of actions that do not correspond to any reference
policy). The player might not be aware of his current mode and is unable to switch
between the modes deterministically. However, if at some point in time the player is
told that he is in the “good mode,” then from that point onward he can replicate the
actions of the best policy by observing its rewards and emulating its state transitions,
and remain in the same mode.

Roughly, the hidden bandit problem can be described as a multiarmed bandit
problem with two arms, the reference arm and the decoy arm, that correspond to
the “good mode” and the “bad mode” in the stateful policies model, respectively.
Unlike standard multiarmed bandit problems, a key aspect of this problem is that in
any given round the player does not know which of the arms he is currently pulling.
Accordingly, the player is not able to select which arm to pull on each round; rather,
he can only choose whether to stay on the current arm or to switch to the other arm
with some probability. These aspects capture the difficulties in the stateful policies
model, in which once the player leaves a certain policy, attempting to return to that
policy involves guessing correctly the policy’s internal state, an aspect that a player
is not sure of.

The model. We now turn to the formal description of the hidden bandit model.
There are two parameters associated with the hidden bandit model. One is T , the
number of rounds, and the other is p, a parameter in the range 0 < p < 1. There
are two arms, arm 0 and arm 1, that will be referred to as the reference arm and
the decoy arm, respectively. At each round, the player has only two possible actions
available:

• stay: stays on the same arm on which the player entered the round;
• switch: switches to arm 1 if the player entered the round on arm 0; otherwise,
switches to arm 0 with probability p and stays on arm 1 with probability
1− p.

The dynamics of the switch action can be seen as a two-state Markov chain, illustrated
in Figure 2. Initially, prior to round 1, the player is placed on one of the arms at
random, being on arm 0 with probability p

1+p and on arm 1 with probability 1
1+p .

This initial probability distribution is the stationary distribution with respect to the
randomized switch action defined above. Hence, any sequence of actions (either stay
or switch) of the player gives rise to a sequence of random variables X1:T , where
Xt ∈ {0, 1} indicates which arm is pulled by the player on round t. Even though at
each round the player is pulling some arm, the player cannot observe on which arm
he is playing. In other words, the sequence X1:T is not observable by the player.
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On each round t = 1, . . . , T , the adversary assigns a reward to each arm. We let
rt(i) ∈ [0, 1] denote the reward of arm i on round t. The rewards of the reference arm
are set by the adversary in an oblivious way, before the game begins. The rewards of
the decoy arm are set by the adversary in an adaptive way as the game progresses: at
every round t, the reward of arm 1 can be based on the entire history of the game up
to round t. The feedback to the player on round t in which arm Xt is played consists
only of the reward rt(Xt), and the player does not get to observe the reward of the
other arm on that round.

The goal of the player is to minimize his expected regret, which is computed only
with respect to the total reward of the reference arm, namely,

RegretT =
T∑

t=1

rt(0)−E

[
T∑

t=1

rt(Xt)

]
,

where the expectation on the right-hand side is taken with respect to the randomiza-
tion of the switch actions, as well as to the internal random bits used by the player.

This completes the description of the hidden bandit problem.
Remark. The fact that the adversary can set the rewards on the decoy arm in

an adaptive manner will allow us to simulate any execution in the stateful policies
model by an execution in the hidden bandit model. Consequently, all positive results
(algorithms with low regret) that we shall prove in the hidden bandit model will
transfer easily to the stateful policies model (basically, by setting p = 1/(Sk), where
k is the number of reference policies and S is the maximum number of states that
a policy might have). On the other hand, it might not be true that negative results
in the hidden bandit model transfer to the stateful policies model. Nevertheless,
our negative results for the hidden bandit model will be obtained with an oblivious
adversary (which is oblivious not only on the reference arm but also on the decoy
arm) and consequently will transfer to the stateful policies model.

Results. We now present our results for the hidden bandit problem, which we
later show how to translate into the corresponding upper and lower bounds in the
stateful policies model.

Theorem 1.5. For any given 0 < p < 1, there is an algorithm for the player in
the hidden bandit setting that guarantees sublinear expected regret (in T ). Specifically,
Algorithm 2 presented in section 2.2 achieves an expected regret of

O

(
1√
p
· T log logT

log1/4 T

)
over any sequence of reward functions.

Theorem 1.6. For p = 1
2 , no algorithm for the player in the hidden bandit setting

guarantees expected regret better than O(T/ log3/2 T ), not even if the adversary uses
an oblivious strategy on both arms.

There is a gap between the upper bound of Theorem 1.5 and the lower bound of
Theorem 1.6 that translates into a gap between our main upper and lower bounds of
Theorems 1.3 and 1.4. In some natural special cases, we are able to close this gap.
We say that an adversary is consistent if there is a fixed offset 0 < Δ ≤ 1 such that in
every round t, rt(0)− rt(1) = Δ. Say that the player’s algorithm is semi-Markovian if
the choice of action taken at any given round depends only on the sequence of rewards
obtained since the last switch action. (See exact definitions in section 2.6.)

Theorem 1.7. In the hidden bandit setting, if the player’s algorithm is required
to be semi-Markovian and the adversary is required to be consistent, then there is
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an algorithm achieving expected regret O(T/ log T ), and this is best possible up to
constants (that may also depend on p).

We remark that we actually prove a slightly stronger statement than that of
Theorem 1.7: for the positive results a Markovian algorithm suffices, and for the
negative results a constant adversary suffices. See section 2.6 for more details.

1.6. Our techniques and additional related work. Our algorithm in the
proofs of Theorems 1.5 and 1.3 is based on a principle that to the best of our knowledge
has not been used previously in sequential optimization settings. This is the local
repetition lemma which will be explained informally here and addressed formally in
section 2.1 (see Lemma 2.4).

In the hidden bandit setting, suppose first that the sequence of rewards that the
adversary places on the reference arm is repetitive—the same reward r on every round.
If the player knows that the reference arm is repetitive, it should not be difficult for
the player to achieve sublinear regret, even if he does not know what r is. He can start
with an exploration phase (occasional switch requests embedded in sequences of stay
actions) that will alert him to repeated patterns of r values in-between two switches.
Thereafter, in an exploitation phase, whenever the player gets a reward below r, he
will ask for a switch. The only way the decoy arm can cause the player not to reach
the reference arm is by offering rewards higher than r, but getting rewards higher
than r on the decoy arm causes no regret. (The above informal argument is made
formal in the proof of Theorem 1.5.)

The above argument can be extended (with an O(εT ) loss in the regret) to the
case that the rewards on the reference arm are ε-repetitive, namely, in the range of
r± ε for some r. Suppose now that given some integer d < T , the reference arm is not
ε-repetitive, but only (d, ε)-locally repetitive, in the following sense: starting at any
round that is a multiple of d, the sequence of rewards on the d rounds that follows
is ε-repetitive. A (d, ε)-locally repetitive sequence need not be ε-repetitive—it can
change values arbitrarily every d rounds. However, if d is sufficiently large (compared
to 1/p in the hidden bandit setting), the player should be able to achieve small regret
by breaking the sequence of length T to T/d blocks of size d and treating each block
as an ε-repetitive sequence.

But what happens if the rewards on the reference arm are not (d, ε)-repetitive?
Then we can use a notion of scales. For 0 ≤ � < logd T , the scale-� version of a sequence
of length T is obtained by bunching together groups of d� consecutive rounds into one
super round and making the reward of the super round equal to the average of the
rewards of the rounds it is composed of. The player in the hidden bandit setting may
choose a random scale �, in the hope that in this scale the resulting sequence of super
rounds is (d, ε)-repetitive. It turns out this approach works. This is a consequence of
the local repetition lemma that we state here informally.

Lemma 2.4 (local repetition lemma, informal statement). For every choice of
integer d ≥ 2 and 0 < ε, δ < 1, if T is sufficiently large (as a function of d, ε, and δ),
then for every string in σ ∈ [0, 1]T , in almost all scales (say, a fraction of 1 − δ) the
resulting sequence is almost (d, ε)-repetitive (almost in the sense that only a δ fraction
of the blocks fail to be ε-repetitive).

We are not aware of a previous formulation of the local repetition lemma. How-
ever, it has connections to results that are well known in other contexts. We briefly
mention several such connections, without attempting to make them formal. The
regularity lemma of Szemerédi asserts that every graph has some “regular” structure.
Likewise, the local repetition lemma asserts that every string has some “regular” (in
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the sense of being nearly repetitive) structure. Our proof for the local repetition
lemma follows standard techniques for proving the regularity lemma, though is easier
(because strings are objects that are less complicated than graphs). An alternative
proof for the local repetition lemma can go through martingale theory (e.g., through
the use of martingale upper-crossing inequalities). The relation of our setting to that
of martingales is that the sequence of values observed when going from a super round
in the highest scale all the way down to a random round in smallest scale is a mar-
tingale sequence. Yet another related topic is Parseval’s identity for the coefficients
of Fourier transforms. It gives an upper bound on the sum of all Fourier coefficients,
implying that most of them are small. This means that at a random scale a sequence
of values has small Fourier coefficients, and small Fourier coefficients correspond to
not having much variability at this scale. Indeed, a variant of the local repetition
lemma in the special case of d = 2 is reproved in [13] using Parseval’s identity for
the so-called Haar transform. Moreover, it turns out that the exact same special case
was also handled (while proving nearly the same bounds) as part of earlier work of
Drucker on certain prediction tasks [8].

Our lower bound of Theorem 1.6 is based on a construction that was used by Dekel
et al. [6] for proving lower bounds on the regret for bandit settings with switching
costs. The construction is a full binary tree with T leaves that correspond to the
rounds, in which each edge of the tree has a random reward, and the reward at a
leaf is the sum of rewards along the root to leaf path. The reward on the decoy arm
is identical to that of the reference arm, except for a constant offset, which on the
one hand should not be too large so that the player cannot tell when he is switching
between arms, and on the other hand should not be too small as it determines the
regret. In the context of [6], such a construction results in a regret of Ω(T 2/3/ logT ).
In our context, a similar construction gives a much higher, almost linear lower bound.
We remark that our modification of this randomized construction shares similarities
with a construction used by Dwork et al. [9] to obtain positive results in a different
context, that of differential privacy. (The inability of the player to distinguish between
the reference arm and the decoy arm is analogous to keeping the value of an offset
“differentially private.”)

The upper bound in Theorem 1.7 is based on a simple randomized algorithm that
in every round asks for a switch with probability that is exponential in the negative
of the reward of that particular round. The proof that this algorithm has low regret
(when the adversary is consistent) is based on showing that the expected fraction of
rounds spent on the decoy arm is exponential in the (negative) offset of the decoy arm
compared to the reference arm.

The lower bound in Theorem 1.7 (against semi-Markovian algorithms) is based
on the adversary choosing at random a fixed reward on the reference arm and a fixed
smaller reward on the decoy arm. Natural distributions for choosing these two rewards
only lead to a regret that behaves roughly like Ω(T/ log3/2 T ). To get the matching
lower bound of Ω(T/ logT ) we use a distribution similar to the distribution of queries
that was used in work of Raskhodnikova [20] on monotonicity testing with a small
number of queries.

1.7. Extensions of our upper bound. We discuss a few simple extensions of
the basic model presented in section 1.1.

Time-dependent policies. In our stateful policies model, reference policies were
assumed to be time independent. We may also consider a model in which reference
policies can be time dependent (the functions fπ, gπ have an additional input which
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is the round number). Our lower bound (Theorem 1.4) is proved with respect to time-
independent reference policies and hence holds without change when reference policies
can be time dependent. Our upper bound (Theorem 1.3) also holds without change
when reference policies are time dependent—nothing in the proof of Theorem 1.3
requires time independence.

Randomized policies. In our stateful policies model, reference policies were as-
sumed to be deterministic. We may also consider a model in which reference policies
can be randomized (the functions fπ, gπ have access to random coin tosses). Our
lower bound (Theorem 1.4) is proved with respect to deterministic reference policies
and hence holds without change when reference policies can be randomized. For the
upper bound, there are two natural ways of evaluating the regret. One, less demand-
ing, is against the expected total reward of the reference policy with highest total
expected reward. The other, more demanding, is against the expectation of the real-
ized maximum of the total rewards of the reference policies. (That is, one runs each
one of the reference policies using independent randomness and observes which policy
achieves the highest reward.) Our upper bound (Theorem 1.3) extends to random-
ized reference policies, even under the more demanding interpretation—one simply
fixes for each reference policy all its random coin tosses in advance, thus making it
deterministic, and then Theorem 1.3 applies with no change.

Stateful and reactive adversaries. One of the motivations of the current study
was to consider also stateful adversaries, and not just stateful policies. For a stateful
adversary, the reward at a given round can depend not only on the action taken by
the player but also on the entire history of the game up to that round (via some state
variable that the adversary keeps and updates after every round). In general, it is
hopeless to attain sublinear regret in such settings (for example, the action taken in
the first round might determine the rewards in all future rounds, and then one mistake
by the player already gives linear regret). However, our positive results do extend to
a certain class of stateful adversaries, for which the reward received at any round is a
function of the actions of the player on that and the � previous rounds (for some fixed
�). We refer to this class as reactive adversaries, in analogy to our notion of reactive
policy, though it has been studied in the literature under the names “loss functions
with memory” [17] and “bounded memory adaptive adversary” [1]. See section 2.7
for more details.

2. Proofs.

2.1. The local repetition lemma. In this section we formulate and prove the
local repetition lemma, which is a key lemma for the proof of Theorem 1.5. As this
lemma may have other applications, we use a generic terminology that is not specific
to our sequential decision models. In the notation of the local repetition lemma, a
sequence will be referred to as a string, its length will typically be denoted by n (rather
than T ), and the entries of the string (which will still have values in [0, 1]) will be
referred to as characters rather than rewards. Hence, strings are a concatenation of
individual characters, where the value of a character is a real number in the range [0, 1].
However, it will be convenient for us to sometimes view a string as a concatenation of
substrings. Namely, each entry of the string might be a string by itself, and the whole
string is a concatenation of these substrings. We may apply this view recursively,
namely, the entries of each substring might also be substrings rather than individual
characters. The notation that we introduce below is flexible enough to encompass
this view.
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For arbitrary n, given a string s ∈ [0, 1]n, xs denotes its average value. Using
s(i) to denote the ith entry of s, and using xs(i) to denote the value of this entry, we

thus have xs =
1
n

∑n
i=1 xs(i). This notation naturally extends to the case that s is not

a string of characters but rather is a string of n substrings, in which each substring
s(i) is by itself a string of m characters (same m for every 1 ≤ i ≤ n). In this case,
xs(i) is the average value of string s(i), and the expression 1

n

∑n
i=1 xs(i) still correctly

computes xs.

As a rule, whenever we view a string as being composed of substrings, all these
substrings will be of exactly the same length.

Definition 2.1 (repetitive string). Let n be a multiple of d. Consider a string
s ∈ [0, 1]n, viewed as a concatenation of d substrings, s(1), . . . , s(d), each in [0, 1]n/d.
Given ε > 0, we say that s is (d, ε)-repetitive if for every i we have |xs − xs(i)| ≤ ε.

A key aspect of our approach is that we shall typically not consider the string as
a whole, but rather consider only a local portion of the string, namely, a substring.
Moreover, the size of the local portion depends on the level of resolution at which
we wish to view the string. Consequently, we endow the string with a probability
distribution over its substrings, as in Definition 2.2.

Definition 2.2 (d-sampling). Let n be a power of d, say, n = dk. A d-sampling
of a string s ∈ [0, 1]n proceeds as follows. First a value � (for level) is chosen uniformly
at random from {0, . . . , k − 1}. Then s is partitioned into d� consecutive substrings,
each of length dk−�. Thereafter, one of these substrings is chosen uniformly at random
and declared the result of the sampling.

The d-sampling process from a string s can be alternatively described as sampling
a node from a d-ary tree with k levels whose leaves correspond to the n = dk characters
of s, as follows: first, a level 0 ≤ � < k is chosen uniformly at random, and then a
node is picked uniformly at random from the nodes in that level; the output of the
process is the substring formed by the characters corresponding to the leaves of the
subtree whose root is the sampled node (which is necessarily not a leaf by itself). See
also Figure 3 for a visual example of this process.

The result of d-sampling is always a string whose length is divisible by d and
hence compatible in terms of length with the requirements of Definition 2.1.

Remark. In Definition 2.2 we assume that n is a power of d. We shall make similar
simplifying assumptions throughout this section. However, our work easily extends
to cases that n is not a power of d. We explain how to do this in the context of d-
sampling. Let k be largest such that dk ≤ n. With probability dk/n choose the prefix
of length dk of s and on it do d-sampling as in Definition 2.2. With the remaining
probability 1− dk/n choose the suffix of length n− dk of s, and recursively partition
it into a prefix and suffix as above, applying Definition 2.2 only to the prefix. When
the suffix becomes shorter than d, stop (this suffix can be discarded from s without
affecting our results).

We can now state the key definition for this section.

Definition 2.3 (locally repetitive string). Let n be a power of d, and consider
a string s ∈ [0, 1]n. Given ε, δ > 0, we say that s is (d, ε, δ)-locally repetitive if with
probability at least 1 − δ, a random substring of s sampled using d-sampling (as in
Definition 2.2) is (d, ε)-repetitive (as in Definition 2.1).

The main result of this section is the following.

Lemma 2.4 (local repetition lemma). Let d be a positive integer, and ε, δ > 0.
Then for every n > dk where k = d/(4ε2δ), every string s ∈ [0, 1]n is (d, ε, δ)-locally
repetitive.
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Fig. 3. An illustration of the d-sampling process with d = 3 and k = 3. First, a level of the
d-ary tree is picked uniformly at random among all levels but the last, say, level � = 1; then, a node
within that level is chosen uniformly at random, say, the rightmost one (marked in black). The
output of d-sampling in this case is the substring s(3) formed by the characters that correspond to
the descendent leaves of the sampled node, marked in gray.

Proof. For simplicity, we shall assume that 1/ε, 1/δ, and k are integers. Let s be
a string in [0, 1]n with n = dk. We say that a substring v is aligned if its location in s
is such that it may be obtained as a result of d-sampling. Observe that if v is aligned,
then it is a concatenation of d equal length strings v(1), . . . , v(d), each of which is
aligned as well. Recall that we refer to � in Definition 2.2 as the level. We use the
notation v ∈ � to say that v is aligned, and moreover, v is in level � with respect to
d-sampling.

Define the variability of level � to be

∀ 0 ≤ � ≤ k , V� =
1

d�

∑
v ∈ �

(xv)
2 .

Proposition 2.5. With the above definition, we have Vk − V0 ≤ 1
4 .

Proof. By definition, V0 = (xs)
2. On the other hand, Vk ≤ 1

d�

∑
v ∈ � xv = xs

since 0 ≤ xv ≤ 1 for all substrings v. Hence, Vk − V0 ≤ xs − (xs)
2 and the difference

on the right-hand side is maximized when xs =
1
2 , giving a value of 1

4 .
The variability V� is monotonically nondecreasing with �, because for a given

aligned string v with substrings v(1), . . . , v(d), we have that xv = 1
d

∑d
i=1 xv(i), and

the square of an average is never larger than the average of the squares. For aligned
strings v that are not (d, ε)-repetitive, the following proposition shows that there is a
noticeable increase in variability in the next level.

Proposition 2.6. If v is an aligned string that is not (d, ε)-repetitive, then

1

d

d∑
i=1

(xv(i))
2 > (xv)

2 +
ε2

d
.

Proof. If v is not (d, ε)-repetitive, then it has at least one substring v(i), with

|xv − xv(i)| > ε. Hence
∑d

i=1(xv − xv(i))
2 > ε2. By definition, xv = 1

d

∑d
i=1 xv(i).

Hence
∑d

i=1(xv − xv(i))
2 =

∑d
i=1(xv(i))

2 − d(xv)
2. Putting these two facts together

we get that
∑d

i=1(xv(i))
2 > d(xv)

2 + ε2, implying the proposition.
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We now turn to prove the lemma. Let v be a random substring obtained as a
result of d-sampling. Define δ� to be the conditional probability that given that the
d-sampling procedure sampled level �, the substring v sampled is not (d, ε)-repetitive.

Hence, δ = 1
k

∑k−1
�=0 δ�. Then applying Proposition 2.6 level by level implies that

Vk =
1

dk

∑
v ∈ k

(xv)
2

>
1

dk−1

∑
v ∈ k−1

(xv)
2 +

ε2

d
δk−1 > · · ·

> (xs)
2 +

ε2

d

k−1∑
�=0

δ�

= V0 +
kδε2

d
.

Contrasting this with Proposition 2.5 we obtain kδε2

d < 1
4 , implying that δ < d

4ε2k .
In Appendix A we provide an alternative proof for Lemma 2.4. Though that

proof gives somewhat weaker bounds, we find it informative, as it shows the relation
between the lemma and martingale theory.

Lemma 2.4 is best possible in the following sense.
Lemma 2.7. There is a universal constant c > 0 such that the following holds.

Let d be a positive integer, and 0 < ε, δ < 1
2 . Then there exists a string s ∈ [0, 1]n,

where n > dk with k = cd/(ε2δ), that is not (d, ε, δ)-locally repetitive.
Proof. Again, we assume for simplicity that 1/ε and 1/δ are integers. Fix d, k

and let n = dk. Given ε > 0, pick η > ε/2 to be as small as possible, conditioned
on 1/2η being an integer. Construct a string s ∈ [0, 1]n in a top-down manner, by
associating the xv variables with the possible choices of substrings v in the d-sampling
scheme. Start by setting xs = 1

2 . Thereafter, for every substring v for which xv is
already determined do the following. If v is a single character, nothing needs to be
done. Else, v represents a string whose length is a multiple of d. Let v(0), . . . , v(d−1)
denote the d substrings whose concatenation gives v. If either xv = 0 or xv = 1, then
for every i, let xv(i) = xv. In this case v is (d, ε)-repetitive. However, in every other
case, let xv(0) = xv + η, xv(1) = xv − η, and xv(m) = xv for all 2 ≤ m ≤ d− 1. In this
case v is not (d, ε)-repetitive. Figure 4 shows a possible instance of this construction.

The construction above maintains that 0 ≤ xv ≤ 1 for every v, and moreover,
xv = 1

d

∑d
i=1 xv(i). Hence the xv variables indeed represent the true averages over the

corresponding substrings of s.
For an individual character at location i in the string s, its value is integer (0 or 1)

if and only if when writing i in base d (namely, i = ak−1d
k−1 + . . . a1d+ a0, with 0 ≤

aj ≤ d−1), there is a value 0 ≤ j ≤ k−1 such that among the coefficients aj , . . . , ak−1,
there is a difference of at least 1/2η between the number of those coefficients that are 0
and the number of those coefficients that are 1; see Figure 4 for a demonstration of
this argument.

Let us now set k = cd/η2 for some small universal constant c > 0 (independent
of d and η). It is not difficult to argue that in this case, only a small fraction of the
characters of s are integers (i.e., either 0 or 1). (For a random i, only O(k/d) of its
digits in base d are 0/1, and for most sequences of ±1 of length m, there is no prefix
whose sum exceeds O(

√
m) in absolute value.) Hence for this value of k, almost no v

is (d, ε)-repetitive.
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Fig. 4. An example of the construction in Lemma 2.7 with d = 3, k = 3, and η = 1/4.
The digits along the path leading to each leaf form the d-ary representation of the corresponding
character’s index in the string. A leaf has a value of 0 (respectively, 1) if and only if the path
leading to one of its ancestors (possibly the leaf itself) has two more 1’s than 0’s (respectively, two
more 0’s than 1’s) along its edges. Three examples of ancestors that meet this condition are marked
in gray.

Finally, set k = k0/2δ, with k0 = cd/η2. With probability 2δ the d-sampling
procedure will choose a level among the top k0 levels, and then with probability at
least 1

2 the sampled string v will not be (d, ε)-repetitive.

2.2. Upper bound for hidden bandits. In this section we present an algo-
rithm for the hidden bandit problem whose worst-case expected regret is sublinear.
Our algorithm exploits the fact that the reward sequence of the reference arm, whose
values are set in an oblivious manner by the adversary, is (d, ε, δ)-locally repetitive
(see Definition 2.3) for appropriately chosen values of d, ε, δ, as implied by the local
repetition lemma. Hence, it would be instrumental to first consider the simpler case
where the reference sequence is in fact (d, ε)-repetitive (see Definition 2.1).

When the reference sequence is (d, ε)-repetitive, we propose an algorithm, de-
scribed in Algorithm 1, which is based on a simple first-explore-then-exploit strategy.
The algorithm begins with an exploration phase (Phase I), where it tries to hit the
reference arm at least once and obtain an estimate of its reward, which is almost
constant at the appropriate scale. Then, in the exploitation phase (Phase II), the
algorithm repeatedly asks for a switch whenever the observed rewards drops below
the top estimated rewards obtained in Phase I. Eventually, since the reference arm
is (d, ε)-repetitive, the algorithm should stabilize on that arm no matter what the
rewards on the decoy arm are.

The following lemma shows that for small values of ε, if d is large enough as a
function of ε, then the expected regret of Algorithm 1 is not large.

Lemma 2.8. Assume that the reward sequence of the reference arm is (d, ε)-
repetitive, with d ≥ (1/p2ε) log2(1/ε). Then the expected regret of Algorithm 1 is at
most 8εT .

Proof. Let v denote the average reward (over all rounds t = 1, 2, . . . , T ) of the
reference arm. Notice that the probability of not visiting this arm in the first phase
of the algorithm is no more than (1 − p)m ≤ e−pm ≤ ε. Hence, with probability at
least 1 − ε, the first phase of the algorithm samples the reference arm at least once,
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• let m = 
(1/p) log(1/ε)�
• Phase I: for i = 1, . . . ,m: stay on chosen arm for T/d rounds and let r̄i be
the average of the observed rewards, then switch once
• sort the averages r̄1, . . . , r̄m in descending order to obtain r̄1 ≥ . . . ≥ r̄m
• Phase II: initialize i = 1, s = 0 and repeat (until T rounds have elapsed):

– stay for T/d rounds and let r̄ be the average of the observed rewards
– if r̄ < r̄i − 2ε, switch once and update s← s+ 1
– if s ≥ m, update i← i+ 1 and reset s = 0

Algorithm 1: An algorithm for (d, ε)-repetitive reference sequences (parameters:
d, ε, p, T ).

so that there exists some j ∈ [m] for which r̄j ∈ [v − ε, v + ε] as the reward sequence
of the reference arm is assumed to be (d, ε)-repetitive. The total regret incurred in
this phase is bounded by m · T/d.

Next, assume that indeed r̄j ∈ [v − ε, v + ε] for some j ∈ [m] and consider the
second phase of the algorithm. Notice that once i = j and the reference arm is
selected, the algorithm stops switching and stays on that arm until the game ends.
This is true because the reference arm is (d, ε)-repetitive, so each average reward r̄
encountered when this arm is selected exceeds v − ε ≥ r̄j − 2ε.

Let us bound the regret incurred in the second phase of the algorithm until this
event occurs (if at all). To this end, consider iterations with i ≤ j. On any such
iteration in which r̄ ≥ r̄i − 2ε, we have r̄ ≥ r̄j − 2ε ≥ v − 3ε so that the incurred
regret is at most 4ε · T/d. The number of iterations that fail to satisfy this condition
is equal to the number of switch actions issued by the algorithm. The number of
switch actions in iterations with i < j is no more than (j − 1) ·m, and once i = j,
the algorithm hits the reference arm after at most m switch actions with probability
1 − ε (and subsequently stops switching). Thus, with probability at least 1 − ε the
total number of switch actions is bounded by (j − 1) ·m+m ≤ m2. In this case, the
total regret incurred in the second phase is at most 4εT +m2 ·T/d. Overall, the total
regret in both phases is then bounded by

4εT +
T

d
·m2 +

T

d
·m ≤ 4εT +

2T

d
·m2 ≤ 4εT +

2T

d
· 2
p2

log2
1

ε
≤ 8εT ,

where we have used our assumption that d ≥ (1/p2ε) log2(1/ε).
On the other hand, if one of the phases fails, then the total regret might be as

large as T , but this happens with probability at most 2ε. Hence, the expected regret
of the algorithm is at most 10εT .

Our general algorithm, which works for any reference sequence, is described in
Algorithm 2. The algorithm invokes Algorithm 1 above as a subroutine on a randomly
chosen block size, exploiting the locally repetitive structure guaranteed by the local
repetition lemma.

We are now ready to give the main result of this section, which gives an upper
bound over the expected regret of Algorithm 2.

Theorem 1.5 (restated). The expected regret of Algorithm 2 is

O

(
1√
p
· T log logT

log1/4 T

)
.

The proof uses the local repetition lemma, restated here for convenience.



206 U. FEIGE, T. KOREN, AND M. TENNENHOLTZ

• set

ε =
1√
p
· log logT
log1/4 T

, d =

⌈
1

p2ε
log2

1

ε

⌉
• choose block size b = di, where i is chosen uniformly at random from
{1, . . . , logd T �}
• for i = 1, . . . , T/b: invoke Algorithm 1 on a block of size b with parameters d, ε, p, b

Algorithm 2: An algorithm for the hidden bandit problem that guarantees sublinear
expected regret (parameters: p, T ).

Lemma 2.4 (restated). Let d be a positive integer and ε, δ > 0. Then for every
n > dk where k = d/(4ε2δ), every string s ∈ [0, 1]n is (d, ε, δ)-locally repetitive.

Proof of Theorem 1.5. Set d = (1/p2ε) log2(1/ε), δ = ε, k = d/4ε3 in Lemma 2.4
(for simplicity, we assume that d and k are integers), which then states that any
sequence of length at least Tε = dk is (d, ε, ε)-locally repetitive. Notice that for
T ≥ Ω(1) and for our choice of ε we have

logTε =
1

4p2ε4
log2

(
1

ε

)
· log

(
1

p2ε
log2

1

ε

)
≤ 1

p2ε4
log4

(
1

p2ε4

)
=

logT

log4(log T )
· log4

(
logT

log4(logT )

)
≤ logT ;

thus Tε ≤ T , which means that the reward sequence of the reference arm is (d, ε, ε)-
locally repetitive. Since b was chosen uniformly at random, this means that each
b-aligned block of size b in this reward sequence is (d, ε)-repetitive with probability at
least 1− ε.

Now, consider a certain iteration of the algorithm. With probability 1 − ε,
the corresponding block in the reference reward sequence is (d, ε)-repetitive with
d = (1/p2ε) log2(1/ε). Hence, according to Lemma 2.8, following the strategy of Algo-
rithm 1 in this block yields an expected regret of O(εb). Overall, the expected regret
in all T/b blocks is then O(εT ). Using the definition of ε concludes the proof.

2.3. Upper bound for stateful policies. We now show how our algorithm
for the hidden bandit setting can be applied, via a simple reduction, in the stateful
policy model. The resulting algorithm is presented in Algorithm 3, which provides
implementations of the stay and switch actions of the hidden bandit model. The basic
idea is to think of the best performing policy (in hindsight) within the set Π as the
reference arm, and let the decoy arm capture all other policies, as well as other action
paths that do not correspond to any policy.

We now prove our main upper bound result, which provides a regret guarantee
for Algorithm 3.

Theorem 1.3 (restated). For any reference set Π of k stateful policies over S
states, the expected regret of Algorithm 3 with respect to Π is

O

(√
kS · T log logT

log1/4 T

)
.

Proof. Let π∗ ∈ Π be the best policy in the set Π, namely, the one having the
highest total reward in hindsight. For all t = 1, 2, . . . , T , we let s∗t ∈ [S] denote the
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• choose a policy π1 ∈ Π and a state s1 ∈ [S] uniformly at random
• invoke Algorithm 2 with parameters p = 1/kS and T , and the following imple-
mentation of stay and switch:
– stay on round t: play the action fπt(st), observe reward r, and update πt+1 ←

πt and st+1 ← gπt(st, r)
– switch on round t: play the action fπt(st), then choose a policy πt+1 ∈ Π and

a state st+1 ∈ [S] uniformly at random

Algorithm 3: An algorithm for competing with stateful policies (parameters: Π, T ).

state visited by π∗ on round t had it been followed from the beginning of the game.
Consider a hidden bandit problem where the reward sequence of the reference arm is
the sequence obtained by following the policy π∗ throughout the game, and the arm
being pulled on round t is given by the random variable

∀ t Xt = 11πt �=π∗ ∨ st �=s∗t .

The decoy arm models any situation where the algorithm deviates from the policy
π∗, and each reward obtained on that arm is possibly a function of the entire history
of the game, including even the random bits used by the player. Since the model
allows for the decoy arm to be completely arbitrary, we do not precisely specify the
rewards associated with that arm, The claimed regret bound would then follow from
Theorem 1.5 once we verify that the implementations of the stay and switch actions
are correct, namely,

(i) ifXt = 0 (i.e., the algorithm is on the reference arm on round t), then choosing
stay ensures that Xt+1 = 0;

(ii) if Xt = 1 and the algorithm chooses switch, then Xt+1 = 0 with probability
at least p = 1/kS.

Again, since the decoy arm may be completely adversarial, it is not crucial to verify
the transitions directed toward it (in particular, the decoy arm might imitate the
reference arm in response to a certain action of the algorithm).

To see (i), note that Xt = 0 implies πt = π∗ and st = s∗t . In particular, the
algorithm picks on round t the same action played by π∗ on that round and observes
the same reward. Hence, if the algorithm chooses stay, then the update st+1 ←
gπt(st, r) ensures that st+1 = s∗t+1, retaining the algorithm in the correct state on
round t+ 1. Next, if Xt = 1, which means that the algorithm is not on the reference
arm on round t, then by choosing switch the random choice of (πt+1, st+1) hits the
configuration (π∗, s∗t+1) with probability p = 1/kS. That is, with probability at least
1/kS the algorithm would be on the reference arm on round t + 1, which proves
(ii).

Remark. Following the same idea explained in the proof above, it is actually
possible to obtain a slightly improved dependence on the number of policies k and
save a k1/4 factor in the resulting bound, albeit with a more involved algorithm.

2.4. Lower bound for hidden bandits. In this section we prove our lower
bound for the hidden bandit problem with p = 1/2 given in Theorem 1.6, which we
restate here more formally.

Theorem 1.6 (restated). For any randomized player strategy in the hidden bandit
model with p = 1/2, there exists an oblivious sequence of reward functions r1, . . . , rT
that forces the player to incur an expected regret of Ω(T/ log3/2 T ) with respect to the
reference arm.
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width = 3
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Fig. 5. (Taken from [6].) An illustration of the MRW random process with T = 7. (Top) A
dependency graph of the random walk, which for each time t includes an incoming directed edge
from its parent ρ(t) in the process. The maximal cut of this walk (see Definition 2.12), whose size
is 3, is achieved at t = 1; hence, the width of the walk is 3. (Bottom) The random walk can be
equivalently described as the sequence of random variables at the leaves of a binary tree obtained by
summing the variables ξt’s on the right edges along the corresponding paths from the root.

In order to prove Theorem 1.6 we make use of Yao’s principle [21], which in our
context states that the expected regret of a randomized algorithm on the worst case
reward sequence is no better than the expected regret of the optimal deterministic
algorithm on any stochastic reward sequence. Hence, Theorem 1.6 would follow once
we establish the existence of a single sequence of stochastic reward functions, Γ1:T ,
which is difficult for any deterministic algorithm of the player (in terms of expected
regret).

Our construction of the required stochastic sequence Γ1:T is based on a variant
of the multiscale random walk (MRW) stochastic process of Dekel et al. [6].

Definition 2.9 (MRW [6]).
Given a sequence ξ1, . . . , ξT of independent and identically distributed (i.i.d.) ran-

dom variables, the MRW process W0:T is defined recursively by

W0 = 0 ,

∀ t ∈ [T ] Wt = Wρ(t) + ξt ,(1)

where

ρ(t) = t− 2δ(t) , δ(t) = max{i ≥ 0 : 2idivides t}.
Figure 5 gives an illustration of the MRW process for T = 7 and shows how each

variable in the random walk is obtained from the preceding variables in the walk. An
alternative, equivalent formulation of the same random process is demonstrated in the
bottom part of the figure: one can construct a binary tree with T leaves corresponding
to the rounds of the game, in which the sum of the ξt variables along the path from
the root to a leaf yields the walk variable associated with that round. For further
details on the MRW stochastic process and its properties, refer to [6].
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Strategy for the hidden bandit adversary (parameters: T )
• set

ε =
1

320 log
3/2
2 T

and γ =
1

4 log2 T
;(2)

• define W1:T to be an MRW process generated according to (1), where ξ1:t are
i.i.d. random variables equipped with the distribution

∀ n ∈ Z , Pr(ξt = εn) = 1−e−γ

1+e−γ · e−γ|n|;(3)

• for x ∈ {0, 1} set

∀ t ∈ [T ] Γ̃t(x) = 1
2 +Wt − ε 11x �=0 ,

Γt(x) = clip
(
Γ̃t(x)

)
,

where clip(r) = min{max{r, 0}, 1}.

Fig. 6. An oblivious strategy for the adversary that forces a regret of Ω(T/ log3/2 T ) for any
algorithm for the hidden bandit problem with p = 1/2.

Our construction, described in Figure 6, is similar to the one used by Dekel at
al. [6], with one crucial difference: instead of using a Gaussian distribution for the
step variables ξ1:T , we employ a two-sided geometric distribution supported on integer
multiples of ε (this is a discrete analogue of the continuous Laplace distribution). We
then use the resulting MRW process W1:T to form a sequence of intermediate reward
functions Γ̃1:T , where the reward of arm x = 0 is consistently better than that of
arm x = 1 by a gap of ε. The actual reward functions Γ1:T are obtained from Γ̃t by
clipping the reward values to the [0, 1] interval.

For this construction, we prove the following lower bound on the performance of
any deterministic algorithm that immediately implies Theorem 1.6.

Theorem 2.10. The expected regret of any deterministic player algorithm on
the stochastic sequence of reward functions Γ1:T defined in Figure 6 is at least 10−4 ·
T/ log

3/2
2 T.

Before we begin with the analysis, we recall two key combinatorial properties of
the MRW process that are essential to our analysis. See [6] for more details and the
formal proofs.

Definition 2.11 (depth). Given a parent function ρ, the set of ancestors of t is
denoted by ρ∗(t) and defined as the set of positive indices that are encountered when
ρ is applied recursively to t. Formally, ρ∗(t) is defined recursively as

ρ∗(0) = {},
∀ t ∈ [T ] ρ∗(t) = ρ∗

(
ρ(t)

) ∪ {ρ(t)} .(4)

The depth of ρ is then defined as d(ρ) = maxt∈[T ] |ρ∗(t)|.
Definition 2.12 (cut, width). Given a parent function ρ, define

cut(t) = {s ∈ [T ] : ρ(s) < t ≤ s} ,
the set of rounds that are separated from their parent by t. The width of ρ is then
defined as w(ρ) = maxt∈[T ] |cut(t)|.



210 U. FEIGE, T. KOREN, AND M. TENNENHOLTZ

Lemma 2.13. The depth and width of the MRW are both upper-bounded by
log2 T �+ 1.

We begin the analysis with some notation. Fix some deterministic player strategy
that generates a sequence of random variables X1:T when faced with the random
reward functions Γ1:T , where Xt ∈ {0, 1} is the arm pulled on round t of the game.
We let Yt = Γ̃(Xt) denote the unclipped reward encountered on round t by following
the strategy (which is not directly observable to the player).

The strategy induces a partition of the rounds into epochs, where epoch m spans
over rounds between the player’sm−1 andmth switch actions. Let χm ∈ {0, 1} denote
the arm pulled throughout epoch m, and let Tm denote the length of that epoch. We
set Tm = 0 if the mth epoch does not take place (that is, if the player makes less
than m− 1 switch actions throughout the game). Without loss of generality, we may
assume that there are exactly T epochs corresponding to m = 1, 2, . . . , T , some of
which are of zero length.

Without loss of generality, we may assume that the assignment of arms to epochs
is determined before the game begins. Namely, a sequence of random variables
χ1, χ2, . . . , χT is drawn ahead of time from the distribution described by the Markov
chain, where χm ∈ {0, 1} is the index of the arm assigned to the player on the mth
epoch (some of these variables may eventually not be used). Notice that as we assume
the player to be deterministic, the set of random variables ξ1:T and χ1:T completely
determine the outcome of the game.

A key step in our analysis is to show that even if we allow the player to observe
the entire sequence Y1:T directly, he is unable to detect (with sufficient confidence) an
epoch during which the reference arm was pulled. To this end, for each epoch m ∈ [T ]
we define two conditional probability measures,

Pm(·) = Pr( · | χm = 0),

Qm(·) = Pr( · | χm = 1),

over the sigma algebra F = σ(Y1:T ) generated by the variables Y1:T . Our first lemma
shows that any event observable to the player (i.e., one that relies on the random
variables the player receives as feedback) which is likely to occur assuming χm = 0 is
also likely to occur given χm = 1.

Lemma 2.14. For all epochs m and for any event A ∈ F it holds that Qm(A) ≥
1
4e · Pm(A).

Proof. Fix some epoch m ∈ [T ]. In order to prove the lemma, we bound
the log-likelihood ratio of an arbitrary feasible realization y1:T of the variables Y1:T

between the measures Pm and Qm. To do that, we condition on the variables
χ1, . . . , χm−1, χm+1, . . . , χT corresponding to the arms pulled in other epochs. Con-
sider two realizations x1:T , x

′
1:T ∈ {0, 1}T of the sequence χ1:T that differ only by the

value assigned to the mth variable, with xm = 0 and x′
m = 1, and define the measures

P ′
m(·) = Pm( · | χ1:T = x1:T ) ,

Q′
m(·) = Qm( · | χ1:T = x′

1:T ) .

Then, we can write

log
Pm(Y1:T = y1:T , χ1:T = x1:T )

Qm(Y1:T = y1:T , χ1:T = x′
1:T )

= log
Pm(χ1:T = x1:T )

Qm(χ1:T = x′
1:T )

+ log
P ′
m(Y1:T = y1:T )

Q′
m(Y1:T = y1:T )

.(5)
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In order to bound the first term on the right-hand side, note that the Markov-chain
dynamics of the switch action (recall Figure 2) imply

Pm(χm+1 = xm+1)

Qm(χm+1 = xm+1)
=

Pr(χm+1 = xm+1 | χm = 0)

Pr(χm+1 = xm+1 | χm = 1)
≤ 1

1/2
= 2 .

Similarly, using Bayes’ law,

Pm(χm−1 = xm−1)

Qm(χm−1 = xm−1)
=

Pr(χm−1 = xm−1 | χm = 0)

Pr(χm−1 = xm−1 | χm = 1)

=
Pr(χm = 0 | χm−1 = xm−1)

Pr(χm = 1 | χm−1 = xm−1)
· Pr(χm = 1)

Pr(χm = 0)

≤ 1/2

1/2
· 2/3
1/3

= 2 ,

where we have used the fact that the Markov chain is in its stationary distribution
(13 ,

2
3 ). Hence, recalling that the sequences x1:T and x′

1:T only differ by their mth
element and using the Markov property of χ1:T , we conclude

log
Pm(χ1:T = x1:T )

Qm(χ1:T = x′
1:T )

= log
Pm(χm−1 = xm−1)

Qm(χm−1 = xm−1)
+ log

Pm(χm+1 = xm+1)

Qm(χm+1 = xm+1)

≤ 2 log 2 .(6)

For bounding the second term on the right-hand side of (5), we decompose it into
a sum using the fact that Yt is conditionally independent of all Ys with s �= ρ(t) given
Yρ(t) under both P ′

m and Q′
m (recall (1)), as follows:

log
P ′
m(Y1:T = y1:T )

Q′
m(Y1:T = y1:T )

=

T∑
t=1

log
P ′
m(Yt = yt | Yρ(t) = yρ(t))

Q′
m(Yt = yt | Yρ(t) = yρ(t))

.

Here, for convenience, we define a fictitious deterministic reward Y0 = y0 = 1
2 . Each

term in the above sum corresponds to an edge in the dependency graph of the MRW
process, formed by the function ρ. Consider a particular term of the sum that repre-
sents the edge (ρ(t), t), and let i and j denote the epochs containing the end points
ρ(t) and t, respectively. Notice that the conditional distribution of Yt given Yρ(t) is de-
termined only by the values of χi and χj. In particular, if χi = χj , then Yt = Yρ(t)+ξt.
However, if χi = 0, χj = 1, then Yt = Yρ(t) + ξt − ε, and if χi = 1, χj = 0, then
Yt = Yρ(t) + ξt + ε. Hence, the log-likelihood term is zero unless Yt | Yρ(t) has dif-
ferent distributions under the measures P ′

m and Q′
m, which can happen only when

either i = m or j = m (but not both) since the realizations x1:T , x
′
1:T differ only in

the value assigned to χm. In the latter case, the log-likelihood term is equal to the
log-likelihood ratio between the distributions of ξt and ξt ± ε at some point in their
(common) support, which can be at most γ, as can be seen from (3).

Now, notice that any edge (ρ(t), t) for which either i = m or j = m is in cut(Sm)
or in cut(Sm+1), where Sm and Sm+1 denote the rounds on which epochs m and m+1
begin. Overall, we get

log
P ′
m(Y1:T = y1:T )

Q′
m(Y1:T = y1:T )

≤ γ · |cut(Sm−1)|+ γ · |cut(Sm)| ≤ 2γ w(ρ) ≤ 1 ,
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where we have used the fact that the width of the MRW process is upper-bounded by
2 log2 T and our choice of γ in (2). Plugging this and (6) into (5) and exponentiating
results in

Pm(Y1:T = y1:T , χ1:T = x1:T ) ≥ 1

4e
·Qm(Y1:T = y1:T , χ1:T = x′

1:T ) .

Since this holds for any assignment of the variables χi (i �= m), by marginalizing
over these variables we obtain that Pm(Y1:T = y1:T ) ≥ 1

4e · Qm(Y1:T = y1:T ) for any
sequence y1:T . Finally, integrating this inequality over the event A ∈ F gives the
lemma.

We now turn back to analyzing the player’s regret. In order to lower-bound the
expected regret of the player’s action sequence X1:T , it will be convenient for us to
first analyze the regret of the same sequence as measured by the unclipped reward
functions Γ̃t, namely,

R̃ =
T∑

t=1

Γ̃t(0)−
T∑

t=1

Γ̃t(Xt) ,

and later deal with the effect of the clipping. This quantity can be alternatively
expressed as a simple function of the variables Tm and χm,

R̃ =

T∑
m=1

R̃m , where ∀ m R̃m = εTm · 11χm �=0 .

Here, R̃m is the regret incurred during epoch m (in terms of the functions Γ̃1:T ) and
R̃ is simply the total regret incurred in all epochs. The following lemma relates the
quantity E[R̃] to the actual expected regret of the player.

Lemma 2.15. The player’s expected regret can be lower-bounded as E[R] ≥ E[R̃]−
εT/25.

Proof. We first prove that for each t ∈ [T ], with probability at least 1 − 1/25,
both of the rewards Γ̃t(0), Γ̃t(1) lie in the interval [0, 1]. Then, the lemma would
follow since this proves that in expectation there are at most T/25 rounds on which
the reward functions Γt(x) and Γ̃t(x) do not coincide. On each of those rounds, the
player’s regret might decrease by at most ε since the gap between the arms is only
narrowed by the clipping of the rewards.

To prove the above claim, fix some t ∈ [T ]. Since the depth of the process W1:T is
bounded by 2 log2 T (see Lemma 2.13), the random variable in Wt is a sum of at most
2 log2 T variables of the sequence ξ1:T . For bounding the magnitude of each of the
variables ξs, which are distributed according to (3), let us first bound their variance.
Noticing that |ξs|/ε is a geometric random variable with parameter p = 1 − e−γ and
using a standard bound of 2/p2 over the second moment of the geometric distribution
gives

Var(ξs) = E[|ξs|2] ≤ 2ε2

(1− e−γ)2
≤ 8ε2

γ2
,

where in the last inequality we have used the fact that e−x ≤ 1 − x/2 for x ∈
[0, 1]. Since the ξs’s are independent, this implies that Var(Wt) ≤ 16(ε/γ)2 log2 T.
By Chebyshev’s inequality we now obtain Pr

(
Wt ≥ 20(ε/γ)

√
log2 T

) ≤ 1/25, so that
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with probability at least 1− 1/25 we have

Wt <
20ε

γ

√
log2 T ≤

1

4

for our choice of ε and γ stated in (2).
Finally, recall that either Γ̃t(x) =

1
2 +Wt or Γ̃t(x) =

1
2 +Wt − ε, depending on

whether x = 0. In any case, we have Γ̃t(x) ∈ [0, 1] for all x ∈ {0, 1} with probability
at least 1− 1/25, since ε < 1/4.

Next, we use Lemma 2.14 to show that in expectation, the regret R̃m incurred on
epoch m grows linearly with the length of the epoch.

Lemma 2.16. For each epoch m we have E[R̃m | Tm = t] ≥ εt/12 for all t.
Proof. Fix some t ∈ {0, 1, . . . , T }, and notice that {Tm = t} ∈ F as the random

variable Tm is observable to the player and, in particular, is a deterministic function
of Y1:T . Then

E[R̃m | Tm = t] = E[εTm · 11χm �=0 | Tm = t] = εt · Pr(χm �= 0 | Tm = t) ,

and by Bayes’ law, we have

E[R̃m | Tm = t] = εt · Pr(Tm = t | χm �= 0) · Pr(χm �= 0)

Pr(Tm = t)

≥ εt

2
· Qm(Tm = t)

Pr(Tm = t)
.(7)

On the other hand, using Lemma 2.14 we obtain Pm(Tm = t) ≤ 4e · Qm(Tm = t),
which together with Pr(Tm = t) = 1

2Pm(Tm = t) + 1
2Qm(Tm = t) gives

Qm(Tm = t) ≥ 2

1 + 4e
· Pr(Tm = t) ≥ 1

6
Pr(Tm = t) .

Plugging this into (7) concludes the proof.
Theorem 2.10 is now a direct consequence of Lemmas 2.15 and 2.16.
Proof of Theorem 2.10. Applying Lemma 2.16, we can lower-bound the expected

value of R̃ as

E[R̃] = E

[
T∑

m=1

R̃m

]
= E

[
T∑

m=1

E[R̃m | Tm]

]
≥ ε

12
E

[
T∑

m=1

Tm

]
=

εT

12
.

Hence, by Lemma 2.15, the expected regret of the player can be lower-bounded as

E[R] ≥
(

1

12
− 1

25

)
· εT ≥ εT

30
.

Using our choice of ε given in (2) concludes the proof.

2.5. Lower bound for stateful policies. In this section we use the lower
bound proved in section 2.4 in the hidden bandit setting to prove a similar lower bound
in the stateful policies model. Our result applies even in a very restricted case of the
problem, where the reference set Π consists of reactive policies (see Definition 1.2).
This result is stated in Theorem 1.4, repeated here in a more specific form.

Theorem 1.4 (restated). For any randomized algorithm in the stateful policies
model, there exists a set Π of k = 3 reactive policies over n = 3 actions, and a sequence
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of oblivious reward functions r1, . . . , rT , such that expected regret of the algorithm with
respect to Π is Ω(T/ log3/2 T ).

Proof. Assume the contrary, namely, that there is an algorithm A that achieves
an expected regret of o(T/ log3/2 T ) with respect to any set of three reactive policies
over three actions, and for any oblivious sequence of reward functions. We show that
A can be used to achieve the same expected regret in the hidden bandit model with
p = 1/2 and any oblivious assignment of rewards to the arms. More specifically, we
design an algorithm A′ for the hidden bandit problem based on the algorithm A that
obtains expected regret of o(T/ log3/2 T ). This would contradict Theorem 1.6, which
states that such algorithm cannot exist, proving our claim.

Consider an instance of the hidden bandit problem with p = 1/2 and an arbitrary
sequence of oblivious reward functions r′1:T : {0, 1} �→ [0, 1]. We now describe a set of
reference reactive policies Π = {π1, π2, π3} and a randomized construction of reward
functions r1:T over actions {1, 2, 3} that simulates the hidden bandit instance. For
convenience, we will construct functions r1:T that assign reward values in the range
[−3, 3]; this only affects the constants in the resulting bounds.

Reference policies. The reference set Π consists of three reactive policies, π1, π2, π3,
that all share the same action function

π : [−3, 3] �→ {1, 2, 3} , π(r) =
⌊|r|⌋ ,

mapping the last observed reward to the next action. The policies differ only by their
initial action on round t = 1, where policy πi begins by playing action i.

Reward functions. To construct the functions r1:T , we draw a sequence of per-
mutations σ1, . . . , σT+1 chosen independently and uniformly at random from the set
of all permutations over the elements {1, 2, 3} and define for each action i ∈ {1, 2, 3}
the following reward sequence:

∀ t ∈ [T ] rt(i) = round
(
r′t
(
11i�=σt(1)

)
, σt+1(σ

−1
t (i))

)
,(8)

where round(r, j) is a randomized rounding function that rounds a reward value r ∈
[−1, 1] to ±j in a way that E[round(r, j)] = r, namely,

round(r, j) =

{
+j with probability 1

2 (1 + r/j) ,

−j with probability 1
2 (1− r/j) .

In particular, there are only six possible reward values: ±1,±2,±3.
Algorithm. Finally, we define an algorithm A′ for the hidden bandit problem,

based on A. Let X1, . . . , XT ∈ {1, 2, 3} denote the sequence of actions played by A
on the reward functions r1:T and the reference set Π. Then, on any round in which A
follows the function π, that is, whenever Xt+1 = π(rt(Xt)), the algorithm A′ chooses
stay; otherwise, it chooses switch. The arm being pulled by A′ on round t is given by
the random variable X ′

t = 11Xt �=σt(1), and its reward on that round is r′(X ′
t).

The transition function g and the reward functions r1:T together define three
disjoint random paths of actions throughout the game, each corresponding to one of
the policies π1, π2, π3. Namely, for each i = 1, 2, 3, the policy πσ1(i) (which plays the
action σ1(i) on the first round) plays the sequence of actions σ1(i), σ2(i), . . . , σT (i) on
rounds 1, 2, . . . , T , which is disjoint from the trajectory of other policies. This follows
from the observation that, for any i ∈ {1, 2, 3},

∀ t ∈ [T ] π
(
rt(σt(i))

)
= σt+1(i) .(9)
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t = 1 t = 2 t = 3 t = 4 t = 5 · · ·

±2 ±3 ±1 ±2 ±1 · · ·

π∗ ±3 ±2 ±3 ±3 ±2 · · ·

±1 ±1 ±2 ±1 ±3 · · ·

Fig. 7. An illustration of the reward functions and policies used in the reduction. The marked
path represents the path of the policy π∗ that corresponds to the reference arm in the hidden bandit
problem. The absolute value of each rounded reward on one of the paths indicates the next action
on that path.

In words, if the action σt(i) was played on round t, then by following the function π
the action σt+1(i) is played on round t+1. The idea is that the type of rounding used
for each reward value on one of the paths signals the function π which is the next
action to be played on that path. See Figure 7 for an illustration of this structure.

The policy π∗ = πσ1(1), whose action on the first round is σ1(1), corresponds to
the reference arm in the underlying hidden bandit problem. Indeed, by (8), the ex-
pected sequence of rewards encountered along the path of π∗ is r′1(0), r

′
2(0), . . . , r

′
T (0)

(where the expectation is taken with respect to the randomized rounding) and thus
coincides with the reward sequence of the reference arm. The expected reward se-
quences corresponding to the other two paths are identical to the reward sequence of
the decoy arm.

We now show that A′ is a valid algorithm in the hidden bandit model (with
p = 1/2). To this end, we verify that the dynamics of the stay and switch actions are
compatible with those of the hidden bandit model:

(i) The arm pulled by A′ on the first round is the reference arm with probability
1/3 (and it is the decoy arm with probability 2/3). Indeed, Pr(X ′

1 = 0) =
Pr(X1 = σ1(1)) = 1/3 since σ1 is chosen uniformly at random.

(ii) If A′ chooses stay on round t, then it remains on the same arm on round
t + 1, namely, X ′

t+1 = X ′
t with probability 1. Indeed, A′ chooses stay if

Xt+1 = π(rt(Xt)), in which case (9) implies that Xt+1 = σt+1(1) if and only
if Xt = σt(1), so X ′

t+1 = X ′
t.

(iii) If A′ chooses switch on round t and X ′
t = 0, then X ′

t+1 = 1 with probability 1.
This holds since X ′

t = 0 means that Xt = σt(1), and if A′ chose switch, then
necessarily Xt+1 �= σt+1(1), which implies that X ′

t+1 = 1 with probability 1.
(iv) If A′ chooses switch on round t and X ′

t = 1, then X ′
t+1 = 0 with probability

1/2. To see this, note that X ′
t = 1 implies that Xt = σt(j) for some j �= 1,

so if A′ chose switch, then Xt+1 �= σt+1(j) and consequently Pr(Xt+1 =
σt+1(1)) = 1/2 as σt+1 is a random permutation. This means that X ′

t+1 = 0
with probability 1/2.

Finally, notice that by (8) we have E[r′t(X
′
t)] = E[rt(Xt)] for all t. Together

with the fact that the total expected reward of π∗ equals the total expect reward of
the reference arm, this implies that the expected regret of A′ (with respect to the
reference arm) is no more than the expected regret of A (with respect to Π), which is
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assumed to be o(T/ log3/2 T ). As explained earlier, this contradicts Theorem 1.6 and
as a consequence proves our claim.

2.6. Semi-Markovian players versus consistent adversaries. In this sec-
tion we consider some natural restrictions on the hidden bandits setting. Some of
these restrictions limit the adversary, whereas others limit the player.

We first describe two types of restrictions on the adversary, one being more severe
than the other. Recall that the adversary determines the sequence of rewards for each
arm. We use rt(0) (rt(1), respectively) to denote the reward of the reference arm
(decoy arm, respectively) at round t and assume that 0 ≤ rt(i) ≤ 1.

Definition 2.17 (consistent adversary). An adversary is constant if for every
arm i, there is a certain value vi ∈ [0, 1] such that rt(i) = vi for every 1 ≤ t ≤ T .
Hence the strategy of a constant adversary is limited to selecting two values 0 ≤ v1 <
v0 ≤ 1. An adversary is consistent if there is a fixed offset 0 ≤ Δ ≤ 1 such that
in every round t, rt(0) − rt(1) = Δ. Hence the strategy of a consistent adversary is
limited to selecting an offset value 0 ≤ Δ ≤ 1 and an arbitrary sequence of rewards
rt(0) for the reference arm, in the range [Δ, 1].

When the adversary is consistent, the regret of a player is exactly Δ times the
number of rounds spent on the decoy arm. Every constant adversary is also a consis-
tent adversary, with Δ = v0 − v1.

Let us now present two types of restrictions on the algorithm of the player, one
being more severe than the other. Recall that an algorithm of a player determines for
every round t whether to switch or stay, depending on the history observable to the
player up to and including round t (namely, the sequence or rewards observed, and
the time steps of all previous switch requests). It is convenient to assume a round 0
that contains an initial switch action (there is no reward in round 0).

Definition 2.18 (Markovian algorithm). An algorithm of the player is Marko-
vian if there is a deterministic function p : [0, 1] �→ [0, 1], which given a reward r
received in round t, maps it to a probability p(r) for switching in round t+ 1. Hence,
a Markovian strategy ignores all information available to the player (including the
round number), except for the last reward received.

Definition 2.19 (semi-Markovian algorithm). An algorithm is semi-Markovian
if it depends only on the sequence of rewards obtained since the last switch request.
Namely, its input is a memory string s starting by a switch request, and then contin-
uing with a nonempty sequence of rewards (observed since the last switch up to and
including the current round), and its output is a probability p(s) of switching. Then
the player tosses a coin with bias p(s). If it comes up heads the player makes a switch
request and consequently “forgets” the current memory string s and starts building a
new memory string by placing a switch at its beginning. If the coin comes up tails the
player chooses stay and keeps the current memory string s. In either case, the reward
observed in the next round will be appended to the memory string.

2.6.1. Upper bound for consistent adversaries. We now discuss a simple
algorithm for the hidden bandit problem, suitable for the case where the adversary
is playing a consistent strategy. The algorithm, given in Algorithm 4, simply chooses
switch with probability inversely proportional to the exponent of the last observed
reward.

The intuition behind this algorithm is straightforward: since one arm is constantly
better than the other, the player is more likely to switch when he is on the worse arm.

Theorem 2.20. For η = 1
2 logT , the expected regret of Algorithm 4 is O

(
T

p log T

)
against any consistent adversary.
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• For t = 1, . . . , T : observe reward rt and switch with probability 1
2e

−ηrt (otherwise
stay)

Algorithm 4: An algorithm for the hidden bandit problem with a consistent ad-
versary, that keeps a constant gap between the rewards sequences of the two arms
(parameters: η).

Proof of Theorem 2.20. Let Xt denote the arm assigned to the algorithm on round
t. Denote by qti the probability that the algorithm requests a switch on round t given
that it is pulling arm i (i = 0, 1). Then

Pr(Xt+1 = 1 | Xt = 0) = qt0 ,

Pr(Xt+1 = 0 | Xt = 1) = pqt1 .

Hence, we can view the sequenceX1, X2, . . . , XT as a trajectory of a two-state Markov
chain, with its transition kernel on time t given by

Qt =

(
1− qt0 qt0
pqt1 1− pqt1

)
.

Our goal is to prove that this chain mixes quickly to a steady-state distribution. Note,
however, that the chain is time inhomogeneous (there is a different transition matrix
on each round), so standard bounds on mixing times do not apply. Nevertheless, our
analysis hinges on the fact that there exists a single distribution which is stationary
with respect to all transition kernels simultaneously and shows that the chain mixes
to that distribution.

First, we identify the steady-state distribution shared by all transition kernels.
Lemma 2.21. The distribution

μ =

(
p

p+ e−ηΔ
,

e−ηΔ

p+ e−ηΔ

)
(10)

is stationary with respect to all kernels Pt. That is, it holds that μPt = μ for all t.
Next, we prove that the inhomogeneous chain mixes to the common stationary

distribution μ. In the following, we let μt denote the distribution of Xt, namely, the
probability distribution over the arms induced by the algorithm on round t.

Lemma 2.22. For all t, we have ‖μt − μ‖1 ≤ 2(1− pe−η)t−1.
The proofs of both lemmas are deferred to the end of the section. Now, note that

the expected regret of the player can be written in terms of the distributions μt as

E[RT ] = Δ ·
T∑

t=1

μt
1 .

Suppose that the player could sample directly from the stationary distribution μ (on
each round independently). Then, his expected regret would be

Δ ·
T∑

t=1

μ1 = T · Δe−ηΔ

p+ e−ηΔ
≤ T

ηp
· ηΔe−ηΔ ≤ T

2ηp
,

where in the last inequality we have used the fact that the function x �→ xe−x for
x ≥ 0 is maximized at x = 1. Using Lemma 2.22, we can bound the difference between
this regret and the player’s actual regret:
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Δ ·
T∑

t=1

(μt
1 − μ1) ≤

T∑
t=1

‖μt − μ‖1 ≤
∞∑
t=1

2(1− pe−η)t−1 =
2eη

p
.

Overall, we have

E[RT ] ≤ 2eη

p
+

T

2ηp
.

Choosing η = 1
2 logT we obtain

E[RT ] ≤ 1

p

(
2
√
T +

T

logT

)
= O

(
T

p logT

)
,

as claimed.
Finally, we provide the proofs of the lemmas used in our analysis above.
Proof of Lemma 2.21. A simple calculation verifies that the distribution

νt =

(
pqt1

qt0 + pqt1
,

qt0
qt0 + pqt1

)
is stationary with respect to Pt. However, observe that

qt0
qt1

=
e−ηrt(0)

e−ηrt(1)
= e−η(rt(0)−rt(1)) = e−ηΔ ,

which gives

νt =

(
p

p+ qt0/q
t
1

,
qt0/q

t
1

p+ qt0/q
t
1

)
=

(
p

p+ e−ηΔ
,

e−ηΔ

p+ e−ηΔ

)
= μ

for all t.
For the proof of Lemma 2.22 we need the following technical result, which is a

variant of Theorem 4.9 in [15].
Lemma 2.23. Let Q be a k × k stochastic matrix such that Qij ≥ ε for some

ε > 0 and all i, j. Then for any two distribution vectors μ and ν we have

‖μQ− νQ‖1 ≤ (1 − kε) · ‖μ− ν‖1 .

Proof. Since Qi,j ≥ ε for all i, j, we can write Q = (1 − kε)M + εJ , where M
is a stochastic matrix and J denotes the all-ones k × k matrix. Now, for any two
distributions μ, ν we have μJ = νJ = 1. Consequently,

‖μQ− νQ‖1 = (1− kε) · ‖(μ− ν)M‖1 .

It remains to bound the norm on the right-hand side. We have

‖(μ− ν)M‖1 =

k∑
j=1

∣∣∣ k∑
i=1

(μi − νi)Mij

∣∣∣
≤

k∑
i=1

k∑
j=1

|μi − νi|Mij =
k∑

i=1

|μi − νi|
k∑

j=1

Mij =
k∑

i=1

|μi − νi|

= ‖μ− ν‖1 ,

which completes the proof.
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Proof of Lemma 2.22. Since qt0, q
t
1 ≤ 1

2 , the smallest entry in the matrix Qt is pq
t
1,

which is bounded from below by

pqt1 = 1
2pe

−ηrt(1) ≥ 1
2pe

−η

as the reward rt(1) is at most one. Hence, Lemma 2.23 above implies that for all t,

‖μt+1 − μ‖1 = ‖μtQt − μQt‖1 ≤ (1 − pe−η) · ‖μt − μ‖1 ,

where we have also used the stationarity of π. By repeating this argument, we get

‖μt+1 − μ‖1 ≤ (1− pe−η)t · ‖μ1 − μ‖1 ≤ 2(1− pe−η)t

since the L1-distance between two distributions is at most 2.

2.6.2. Lower bound for semi-Markovian algorithms. We refer to the fol-
lowing constant strategy for the adversary as the MT strategy. MT stands for mono-
tonicity testing, as this strategy (and the first part of the analysis of Case 2 in the
proof of Theorem 2.24 below) is a variation on a procedure of Raskhodnikova [20] for
testing whether a one-variable function is monotone. For simplicity and with only
negligible affect on the end results, assume that 1 + logT is a power of 2.

The constant strategy MT. The adversary chooses at random two integer values
1 ≤ k1 < k0 ≤ logT , subject to the following constraint. Let r be the largest power
of 2 that divides either k1 or k0 (whichever gives a larger value for r). Then the
constraint is that k0 − k1 ≤ 2r. For 0 ≤ r ≤ log logT , say that a pair k1 < k0 is in
class r if 2r−1 < k0−k1 ≤ 2r. Observe that for each value of r there are at most logT
pairs (k1, k0) in class r. Let c =

∑log log T
r=0

1
(r+1)2 and observe that c < 2 (regardless of

T ). The probability distribution from which the pair (k1, k0) is chosen is as follows:
first an integer value 0 ≤ r ≤ log logT is chosen with probability 1

c(r+1)2 . Then a pair

(k1, k0) from class r is chosen uniformly at random. Finally, given the chosen k1 and
k0, the adversary sets v0 = k0

log T and v1 = k1

log T .
Theorem 2.24. In the hidden bandit setting, regardless of the value of the param-

eter p, if the player is restricted to using semi-Markovian strategies, then his expected
regret against the MT strategy is Ω(T/ logT ).

Proof. To obtain a lower bound on the regret it suffices to consider deterministic
strategies for the player, because the strategy of the adversary is already fixed to
be MT. Given that each arm has constant reward under the MT strategy, then a
deterministic semi-Markovian strategy of the player is simply a function g : [0, 1] �→
{1, 2, . . . , T } that maps the observed reward r to how many rounds should elapse since
the previous switch until the next switch. Consider an arbitrary such strategy g of the
player, and consider the function f(k) = g(k/ logT ), defined on integer k in the range
[1, logT ]. Let LIS(f) be the length of the longest monotone increasing subsequence of
the sequence f(1), f(2), . . . , f(logT ). We consider two cases.

Case 1: LIS(f) ≥ 4
5 logT . Let i1, . . . , i� be the indices of an increasing subse-

quence of length � ≥ 4
5 logT . For at most 1

2 logT values of j we have that f(ij+1) ≥
4f(ij), as otherwise f(i�) > 4log T/2f(i1) = Tf(i1) ≥ T , which is outside the range
of the function p. Observe also that the increasing subsequence, being of length at
least 4

5 logT , must contain at least 3
5 logT consecutive pairs, where a consecutive pair

is a value j such that ij+1 = 1 + ij. Hence at least 1
10 logT consecutive pairs dif-

fer by a factor less than 4. Namely, there are at least 1
10 logT values of i for which

f(i+1) ≤ 4f(i). Refer to such a pair (i, i+1) as a dangerous pair. The dangerous pair
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is in class 0 (with classes as defined in the MT strategy). The probability of the MT
strategy to choose class 0 is 1

c ≥ 1
2 , and if chosen, the dangerous pair is chosen with

probability 1
log T . On the dangerous pair, the expected number of rounds the player

spend on the decoy arm (the one with reward i
log T rather than i+1

log T ) is at least T
5 ,

because f(i + 1) ≤ 4f(i). On the decoy arm the regret is 1
log T . Hence the expected

regret is at least

1

10
logT · 1

2
· 1

logT
· T
5
· 1

logT
=

T

100 logT
.

Case 2: LIS(f) < 4
5 logT . Consider a graph with vertices labeled from 1 to

logT , where an edge connects vertex i to vertex j > i if and only if they form a
decreasing pair with respect to f , namely, f(j) < f(i). Consider a maximal matching
in this graph. Its size is at least 1

10 logT , because otherwise all vertices not involved
in a maximal matching would form an increasing subsequence longer than 4

5 logT .
Consider an arbitrary matching edge (i, j), and let h in the range i ≤ h ≤ j be such
that the power of two that divides it is highest. If h ∈ {i, j}, then the pair (i, j) is
a possible choice of the MT algorithm. We call this an MT-pair. If i < h < j, then
both (i, h) and (h, j) are MT-pairs, and at least one of them is decreasing. Hence each
matching edge contributes at least one decreasing MT-pair. A simple case analysis
(which is omitted) shows that two different matching edges cannot possibly contribute
the same decreasing MT-pair. Hence there are at least 1

10 logT decreasing MT-pairs.
Observe that these pairs need not be disjoint: the same h vertex can participate in
several (or even all) pairs.

Let c be the constant in the definition of the MT strategy. Then there must be a
choice of integer r in the range 0 ≤ r ≤ log logT that is dangerous in the sense that
there are log T

10c(r+1)2 decreasing MT-pairs of class r. This dangerous r is chosen with

probability 1
c(r+1)2 . Given that a dangerous r is chosen, the probability of choosing

a decreasing MT-pair of class r is at least 1
10c(r+1)2 , because there are at most logT

pairs in a class. If a decreasing MT-pair is selected, the player spends in expectation
at least T/2 steps on the decoy arm. In these steps, the regret of the player is at least
2r−1

log T . Hence the expected regret is at least (using also c < 2):

1

c(r + 1)2
· 1

10c(r + 1)2
· T
2
· 2

r−1

logT
≥ 2r+1T

320(r + 1)4 log T
.

The expression 2r+1

(r+1)4 is minimized when r = 5, giving roughly 1
20 . Hence the

expected regret in case 2 is at most T
7000 log T .

We have not attempted to optimize the leading constant in the Ω notation, and no
doubt it can be substantially improved beyond the bounds shown in our proof.

The combination of Theorems 2.20 and 2.24 implies the following result.
Theorem 1.7 (restated). Consider a hidden bandit problem with p = 1

2 , where
the adversary is restricted to be consistent and the player is restricted to use semi-
Markovian algorithms. Then, the player can guarantee expected regret O(T/ logT ),
and this is the best possible guarantee in this setting. Moreover, to achieve this guaran-
tee Markovian strategies suffice, and to block stronger guarantees constant adversaries
suffice.

2.7. Reactive adversaries. In this section we discuss an extension of our ba-
sic setting, where the adversary is allowed to be reactive. Reactive adversaries are
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adversaries that set the reward given at any round as a function of the actions of the
player on that and the � previous rounds (for some fixed �). In other words, a reactive
adversary determines a sequence of reward functions r1, . . . , rT : [n]�+1 �→ [0, 1] before
the game begins, where each function in the sequence is used to map �+1 consecutive
actions of the player to a reward value. With the notation of section 1.1, the expected
regret of the player in this case is given by

RegretT = max
π∈Π

T∑
t=1

rt(x
π
t , . . . , x

π
t−�)−E

[
T∑

t=1

rt(Xt, . . . , Xt−�)

]
.

For simplicity, we focus on the case where � = 1.
When the reference policies are stateless, previous work showed that the player

can obtain Õ(T 2/3) expected regret against a reactive adversary [1], and this rate is
best possible in general [6]. These results do not hold when the reference policies are
stateful; indeed, our lower bound (Theorem 1.4) clearly extends to reactive adversaries
as the oblivious adversary we have considered above is a special case of a reactive
adversary.

Our algorithms can be adapted to the reactive adversary setting. We sketch our
approach, while omitting the technical details. For simplicity we assume that � = 1,
though the approach easily extends to arbitrary values of �, at a cost of higher upper
bounds on the regret as � grows. Essentially, the only issue we have to address is
providing a new implementation of a switch action in Algorithm 3 that switches at
some round t to a random policy and initializes it in a random state. The difficulty is
that even if the switch is successful and results in the best policy at its correct state
for round t, the reward observed as feedback on round t is also a function of the action
in round t−1, where a different policy was followed (and a possibly different feedback
was observed). Hence applying the state transition function with this reward might
cause the policy to reach an incorrect state at round t+1. We deal with this problem
by spending two rounds, t and t+1, on implementing the switch operation. In round
t the player plays a random action. In round t+1 the player picks a random policy to
switch to and guesses its internal state (as done by Algorithm 3) and plays the action
recommended by the guessed policy in the guessed state. With probability 1/(knS)
all the following conditions hold simultaneously: the player guessed the best reference
policy at its correct state for round t+ 1, and the actions performed in rounds t and
t+1 are exactly as would have been chosen had the player followed the best policy all
along. Thereafter, the feedback received in round t + 1 puts the player on the right
track of the best policy. This approach retains the sublinear regret rate provided by
Algorithm 3 (in terms of T ), but the dependence on the constants involves also n,
and not only k and s.

Appendix A. Martingales and locally repetitive strings. Lemma 2.4 is
central to our work. Hence, it is instructive to see another proof for it. Let us
recall for this purpose Doob’s upcrossing inequality for martingales. Let X1, . . . , Xn

be a martingale, namely, a sequence of random variables such that Xi = E[Xi+1 |
X1, . . . , Xi] for all i, and suppose that the range of values of the martingale is bounded
in the sense that 0 ≤ Xn ≤ 1 (hence the same necessarily holds for all Xi). Fixing
0 ≤ a < b ≤ 1, an (a, b)-upcrossing in a sequence is a pair of indices i < j such that
Xi ≤ a and Xj ≥ b. The number of (a, b)-upcrossings in the sequence is the largest
number t such that there are indices i1 < ji < i2 < j2 . . . < it < jt, and for every
1 ≤ � ≤ t, there is an (a, b) upcrossing in (i�, j�). The following lemma is known as
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Doob’s upcrossing inequality for martingales, for which we sketch a simple proof for
completeness.

Lemma A.1 (Doob’s upcrossing inequality). For the setting as above, the expected
number of (a, b) upcrossing is at most a/(b− a).

Proof (sketch). Think ofXi as the value of a stock at time i. Due to the martingale
property, there is no trading policy for the stock that gains money in expectation.
Consider the strategy of buying the stock as soon as it drops below a, selling it as
soon as it moves above b, and so on. At the last round the stock is sold regardless of
its value. If the number of crossings is U , this strategy makes a profit of (b − a)U .
Selling on the last round loses at most a (the maximum possible value at which the
stock was bought). Hence (b − a)E[U ]− a ≤ 0, proving the lemma.

Fix ε > 0 that divides 1, and for integer 0 ≤ m < 1/ε, we refer to an (mε, (m+1)ε)
upcrossing as an ε-upcrossing. Summing over all m, Lemma A.1 implies that the
expected number of ε-upcrossings is

1

ε

1/ε∑
m=1

(m− 1)ε <
1

2ε2
.

A similar bound applies by symmetry to the analogous notion of ε-downcrossing.
Hence altogether the expected number of ε crossings is at most 1/ε2.

We can now sketch an alternative proof for Lemma 2.4 (with somewhat weaker
bounds).

Proof of Lemma 2.4 (sketch). Starting from s, consider the process of partitioning
s into d substrings and choosing one of them at random, and doing so recursively until
a single character u is reached. The averages xs, . . . , xu encountered on such a random
path form a martingale sequence, with final value in [0, 1]. In expectation, at most 4/ε2

of the steps were an ε/2-crossing. Observe that for every string v that is encountered
along the way, if v is not (d, ε)-repetitive, then there is probability at least 1/d of
moving to a substring u that inflicts an ε/2 crossing (the inequality |xv − xu| > ε
implies that within this range there is a crossing of width ε/2 aligned at a multiple of
ε/2). Hence at most 4d/ε2 steps went through strings that are not (d, ε)-repetitive.
As there are k steps, this implies that δ ≤ 4d/kε2.
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