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CONTAGIOUS SETS IN RANDOM GRAPHS

By Uriel Feige∗,§, Michael Krivelevich†,¶ and Daniel
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We consider the following activation process in undirected graphs:
a vertex is active either if it belongs to a set of initially activated
vertices or if at some point it has at least r active neighbors. A
contagious set is a set whose activation results with the entire graph
being active. Given a graph G, let m(G, r) be the minimal size of a
contagious set.

We study this process on the binomial random graph G := G(n, p)

with p := d
n

and 1 � d �
(
n log logn

log2 n

) r−1
r

. Assuming r > 1 to be a

constant that does not depend on n, we prove that

m(G, r) = Θ

(
n

d
r

r−1 log d

)
,

with high probability. We also show that the threshold probability

for m(G, r) = r to hold is p∗ = Θ
(

1

(n logr−1 n)1/r

)
.
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1. Introduction. In r-neighbor bootstrap percolation we are given an
undirected graph G = (V,E) and an integer r > 1. Every vertex is either
active or inactive. A set of vertices composed entirely of active vertices is
called active. Initially, a set of vertices A0 is activated. These vertices are
called seeds. A contagious process evolves in discrete steps where for i > 0,

Ai = Ai−1 ∪ {v : |N(v) ∩Ai−1| ≥ r},

and N(v) is the set of neighbors of v. In words, a vertex becomes active in a
given step if it has at least r active neighbors. In this case we shall say the
vertex is infected1. We refer to r throughout this paper as the threshold. Set

〈A0〉 :=
⋃
i

Ai.

Definition 1 Given G = (V,E) and a threshold r, a set A0 ⊆ V is called
contagious if 〈A0〉 = V . That is, activating A0 results with the entire graph
being activated. The minimal cardinality of a contagious set in G is denoted
in G by m(G, r). The number of generations of a (not necessarily contagious)
set A0 which we denote by τ := τ(A0) is the minimal integer such that⋃
i≤τ Ai = 〈A0〉.

Bootstrap percolation has been studied for a variety of graphs [5, 6, 7, 9,
20, 21]. Here we focus on the random graph G(n, p) on n labeled vertices,
where every possible edge appears independently with probability p. Our
interest is in providing both upper and lower bounds on the typical size of a
contagious set of minimal cardinality. We remark that the term “bootstrap
percolation” is often used with respect to choosing vertices independently
with some probability q to the set of seeds. In contrast, in this work we do
not restrict ourselves to the study of randomly generated contagious sets.

Studying the behavior of combinatorial quantities in G(n, p) has a long
and rich history [10], and has resulted in a plethora of ideas which have
proven useful in other contexts as well. In addition, there is much interest
in studying computational problems on random graphs [18]. Furthermore,
combinatorial and algorithmic ideas originating from the study of the model
G(n, p) of random graphs are often useful in the study of more general
families of random graphs. Hence, beyond the intrinsic value of studying the
value of m(G, r) in G(n, p) which we consider to be of interest of its own
right, we believe the ideas in the current work may prove applicable in other
contexts where contagious processes are studied.

1We alert the reader that in [21] the term infected is used in a sense different than ours.
There a vertex is said to be infected if it has at least one active neighbor but fewer than
r active neighbors.
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1.1. Our results. Consider G(n, p), and let p := d
n . We obtain a nearly

tight characterization of the probable value of m(G, r). We say an event
in the probability space G(n, p) occurs “typically” or “with high probabil-
ity” (w.h.p.) if it occurs with probability 1 − o(1), where o(1) represents a
term that tends to 0 as n tends to infinity. For two integer-valued functions
f(n), g(n), we say that f(n)� g(n) if limn→∞

f(n)
g(n) = 0.

Theorem 1.1 Let G ∼ G(n, p) with p := d
n and

1� d�
(
n log log n

log2 n

) r−1
r

.

Then with high probability

m(G, r) = Θ

(
n

d
r
r−1 log d

)
.

The upper bound in Theorem 1.1 is constructive in the sense that it is
derived by analyzing a polynomial time algorithm that typically finds a

contagious set of size at most O

(
n

d
r
r−1 log d

)
.

Clearly it is always the case that m(G, r) ≥ r. We examine how large p
needs to be in order for G(n, p) to satisfy that typically m(G, r) = r. The
property of having a contagious set of size r is a monotone property, hence
it has a sharp threshold [13]. We determine this threshold up to constant
multiplicative factors:

Theorem 1.2 Let G ∼ G(n, p) and suppose r ≥ 2 is an integer. There
exist 0 < c < C, such that the following holds: if p < c

(n logr−1 n)1/r
, then

with high probability no set of size r is contagious. If p > C
(n logr−1 n)1/r

,

then with high probability there is a contagious set of size r. Moreover, with
high probability there is a choice of a contagious set B0 of size r for which
τ(B0) = O(log log n). This upper bound on τ(B0) is best possible up to con-
stant factors – with high probability there is no contagious set B of size r
with τ(B) = o(log log n), as long as p = o(n−1/r).

1.2. Related work. Bootstrap percolation was introduced by Chalupa,
Leath and Reich [15], motivated by applications in statistical physics. Other
early works include [1, 27]. Initially, the study of bootstrap percolation fo-
cused mostly on lattices and grids. More recently, it has been studied on
other families of graphs such as random d-regular graphs [9, 20], hypercubes
[5] and several models of random graphs with a given degree sequence (e.g.,
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[2, 3]). These works studied the case in which the set of seeds is selected in-
dependently at random. The smallest contagious set (the value of m(G, r))
was studied for some families of graphs such as hypercubes [5, 23] and grids
[8].

The critical size of a random set needed for full activation (with high
probability) of the binomial random graph G(n, p) was first studied in [28].
The results in [28] were generalized and extended by [21] (using ideas from
[25]), where the critical size of a random set required for complete activation
of G(n, p) for arbitrary constant threshold r is determined in great detail
of precision. We shall apply the following theorem from [21] (which follows
from Theorem 3.1, page 1996, and Theorem 3.10, page 2000, in [21]).

Theorem 1.3 Let r ≥ 2 be a fixed integer independent of n. Suppose G ∼
G(n, p) with n−1 � p� n−1/r. Let

ac :=

(
1− 1

r

)
·
(

(r − 1)!

npr

)1/(r−1)
.

Consider a fixed set A of vertices that are activated as seeds. Then for every
fixed δ > 0, with high probability the following holds:

1. If |A| = (1 + δ)ac then at least n − O(n(pn)r−1e−pn) vertices will be

activated. Furthermore, τ(A) = ln ln(np)
ln r + lnn

np +O(1).

2. If |A| ≤ (1 − δ)ac then at most 2
(
(r−1)!
npr

)1/(r−1)
vertices will be acti-

vated.

For example, Theorem 1.3 implies that when G ∼ G(n, p) with p as above,
then with high probabilitym(G, 2) ≤ 1+δ

2np2
. (Observe that n2pe−pn = o(n/d2)

for the range of p in Theorem 1.3, and hence the set of vertices not infected
by A is small and can be added to the set of seeds with only negligible effect
on the total number of seeds.) To the best of our knowledge, the upper
bound m(G, r) ≤ (1 + δ)ac was the best upper bound known on m(G, r) in
random graphs prior to our work.

The lower bound of Theorem 1.3 implies that a randomly chosen set of
(1 − δ)ac vertices has only negligible probability of being contagious. Our
upper bound in Theorem 1.1 (whose proof involves a more sophisticated
choice of set of seeds) implies that for such graphs m(G, r) is with high
probability significantly smaller than ac. This shows that choosing an initial
set of seeds carefully (rather than uniformly at random) is typically beneficial
for this key model of random graphs.

It is proven in [21] that when p � n−1/r, an arbitrary set of size r of
activated vertices will activate the whole of G(n, p) w.h.p. Similarly to The-
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orem 1.1, Theorem 1.2 demonstrates that a careful choice of the seeds results
in a contagious set of size r for p much smaller than n−1/r.

Theorem 1.1 and the constructive nature of the upper bound there imply
that there is a polynomial time algorithm that for most graphs (from the
distribution specified in Theorem 1.1) returns a contagious set whose size is
within a constant factor of the minimum possible. In contrast, on worst-case
instances, approximating the minimal size of a contagious set within a ratio
better than O(2log

1−δ n) (n is the number of vertices) is intractable for every
δ ∈ (0, 1), unless NP ⊆ DTIME(npoly(logn)) [16].

Theorem 1.3 (taken from [21]) considers also τ , the number of generations
until complete activation. The parameter τ has been studied also in families
of graphs such as grids [11, 12] and dense graphs [19]. We consider τ in the
context of Theorem 1.2 but not in the context of Theorem 1.1. We briefly
discuss τ further in Section 5.

The minimal number of edges that forces an n-vertex graph to satisfy
m(G, r) = r was considered in [19]. For example, it is proven that a graph
having at least

(
n−1
2

)
+1 edges must satisfy m(G, 2) = 2. This result is tight,

as m(G, 2) = 3 (for n ≥ 3) when G is a clique on n− 1 vertices along with
an additional isolated vertex.

The current paper is one part of a larger body of work whose preliminary
version is available in [14]. Other parts of that work will be published sep-
arately, and they concern contagious sets in d-regular graphs. For example,
it is shown there that sufficiently strong expansion properties (e.g., spectral
gap d−O(

√
d), or girth Ω(log log d)) ensure that m(G, 2) ≤ O(n/d2), where

n = |V (G)|. (Recall in contrast that the best general upper bound for the
value of m(G, 2) for d-regular graphs on n vertices is m(G, 2) ≤ 2n

d+1 [24];
this bound is easily seen to be tight.) In addition, it is shown that when G
is a random d-regular graph over n vertices (which with high probability is
an excellent spectral expander, see [17]), it holds that m(G, 2) ≥ Ω( n

d2 log d
)

with high probability. That lower bound regarding random d-regular graphs
is established using ideas similar to those used to establish the lower bound
in Theorem 1.1.

1.3. Overview of proof techniques. The proof of the upper bound in The-
orem 1.1 is based on the following observation (we consider r = 2 throughout
this section – similar reasoning applies for r > 2). For a subset A ⊆ V , we
denote by N(A) the set of all vertices in V \ A having a neighbor in A.
Suppose we have an initial set A of seeds, and consider N(A). Given that
the graph is random, one can analyze the distribution of the sizes of the con-
nected components of the subgraph induced by N(A). Introducing a single
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seed in a connected component of size k activates the whole component, thus
giving k − 1 infected vertices per investment of one seed. It turns out that

we can activate a set of size n
d2

= 1
np2

in G by choosing O
(
n log log d
d2 log d

)
seeds

in this way. Thereafter, the results of [21] can be used in order to deduce
that G (apart from a set of negligible cardinality which can be activated
separately) is activated with high probability.

To achieve the improved upper bound in Theorem 1.1, we repeat the pro-
cedure above iteratively. In iteration 0, choose an arbitrary set A0 of seeds of
size n

d2 log d
. Next, for each 1 ≤ i ≤ log log d, consider the external neighbor-

hood of the vertices activated in iteration i − 1. Within this neighborhood
identify the largest connected component, and activate a set Bi that includes
one vertex from each component (thus activating the whole component), un-

til the sum of sizes of activated components reaches 2in
d2 log d

. After log log d
iterations we have n

d2
active vertices, which as previously noted suffices to

activate the whole of G (apart from a set of negligible cardinality treated

separately). The total number of activated vertices is |A0| +
∑log log d

i=1 |Bi|.
We show that the latter sum is bounded by O( n

d2 log d
), with high probability.

Our lower bound in Theorem 1.1 is based on observing that if there is a
contagious set of size t0, then adding to it the first t−t0 infected vertices gives
an induced subgraph with t vertices and at least 2(t− t0) edges. For a choice
of t0 <

n
6d2 log d

and t = n
3d2

, a simple probabilistic argument shows that a
random graph with high probability does not contain any such subgraph.

For Theorem 1.2, the proof of the lower bound on the threshold prob-
ability for m(G, 2) = 2 follows the same principles as the lower bound for
Theorem 1.1 (but with t0 = 2). For the proof of the upper bound (the typical
existence of a contagious set of size 2 when p ≥ C√

n logn
) we represent G as a

union of two random graphs G1 and G2 with edge probabilities 1√
n logn

and
C1√
n logn

, respectively. We first show that in G1, a random set of two vertices

has probability significantly higher than logn
n of infecting Ω(log n) additional

vertices. We then show that this implies that with high probability, there
is at least one pair of vertices that infects a set S of size Ω(log n) in G1.
Finally, the results of [21] are used to prove that with high probability S
will activate the whole of G2, and thus the whole of G.

1.4. Preliminaries and notation. LetH = (V,E) be an undirected graph.
For A,B ⊆ V , we define E(A) to be the set of all edges spanned by A and
E(A,B) the set of all edges with one endpoint in A and one endpoint in
B. The notation log denotes logarithms in base 2 and ln denotes natural
logarithms. The set of integers {1 . . . `} for ` ≥ 1 is denoted by [`]. We
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will reserve the notation G for G(n, p) throughout this paper, omitting the
dependency on n, p when clear from the context.

We shall use the term infected vertex to describe an activated vertex that
is not one of the seeds, but has rather become activated by having at least
2 active neighbors. We say a set S ⊆ V is activated if every vertex of S
becomes active (either as a seed, or by becoming infected).

We close this section with a version of Chernoff’s inequality (see, e.g.,
[22]).

Lemma 1.1 Suppose that X =
∑m

i=1Xi, where every Xi is a {0, 1}-random
variable with Pr(Xi = 1) = p and the Xis are jointly independent. Then for
arbitrary η ∈ (0, 1), it holds that

Pr(X < (1− η)pm) ≤ exp(−pmη2/2),

and
Pr(X > (1 + η)pm) ≤ exp(−pmη2/3).

1.5. Organization. We first present our results when r = 2 as this case
is more transparent, making it easier to present the main ideas behind
the proofs. In Section 2 we prove that with high probability m(G, 2) =
Θ( n

d2 log d
), dealing first with the upper bound and then establishing a lower

bound. In Section 3 we determine the asymptotic threshold of having a con-
tagious set of size 2. In Section 4 we discuss how to generalize the results
of Sections 2 and 3 to the case where r > 2. In Section 5 we present some
concluding comments.

2. m(G, 2) in random graphs. In this section we prove Theorem 1.1
for the case r = 2. Unless explicitly stated, we will always focus on G(n, p)
where p := d

n is as in the range of Theorem 1.1.

2.1. Upper bound. The following lemma can be derived from known re-
sults (e.g., [10]) but we present a self-contained proof for completeness.

Lemma 2.1 Let H := G(n0, q) be the binomial random graph with n0
vertices and edge probability q (we assume n0 is large enough). Let k =
O(log n0) be an integer and q = c

n0
. Then for every c < 1/20, the probability

a given vertex v belongs to a connected component of size at least k is at

least
(
c
3

)k−1
. Furthermore, with probability at least 1− exp (−Ω(n0

k

(
c
3

)k−1
))

the number of vertices lying in components of size at least k is at least(
c
3

)k−1 · n0/4.
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Proof: Consider the following iterative procedure of exposing edges in H.
Every vertex has a mark: either it is used or it is unused. In the beginning of
the algorithm, all vertices are marked as unused and all edges of H are not
exposed. We continue the process as long as the number of unused vertices
is at least n0

2 + k (or, differently put, the number of used vertices is at most
n0
2 − k).

In the beginning of every iteration, we choose an unused vertex v in H,
and attempt to expose a simple path in H containing v as follows. Consider
a set S of exactly n0/2 unused vertices. Expose all edges between v and S. If
there is a vertex v2 ∈ S connected to v, add v2 to the path. Continue in this
fashion (attaching a vertex to the last vertex appended to the path) until
either one of two cases occurs: a success, meaning that the size of the path
containing v reaches k, or a failure, meaning that we have failed to find a
path of k vertices containing v (namely, we constructed a path P of l < k
vertices, and the last vertex on the path has no edge to any of the vertices of
the corresponding set S). Finally, proceed by marking all the vertices that
are in the path rooted at v as used.

The probability that all vertices in a set U of n0/2 unused vertices are not
connected to a vertex w /∈ U is (1 − q)n0/2. It follows that the probability
that during an iteration we can append a new vertex to a path of length
smaller than k is

1− (1− q)n0/2 ≥ n0q

3
,

(here we use our assumption on q, c) and this holds independently of the
length of the path we have constructed thus far. Hence the probability we
succeed in growing a path of length k (and hence in a connected component
of size at least k) at a given iteration is at at least(n0q

3

)k−1
=
( c

3

)k−1
.

As bn0/(3k)c ≤
n0
2
−k
k (recall we assume k = O(log n0)), it follows that the

distribution of the number of successes (until less than n0
2 +k unused vertices

remain) stochastically dominates the binomial distribution with bn0/(3k)c
trials and success probability

(
c
3

)k−1
(the exact number of trials depends

on the number of failures, but failures only increase the number of trials).
Furthermore, standard concentration results concerning the binomial distri-

bution imply that probability at least 1− exp (−Ω(n0
k

(
c
3

)k−1
)), the number

of successes is at least n0
4k

(
c
3

)k−1
. Since every success places k vertices (rather

than just one) in a component of size at least k the lemma is proven. 2

imsart-aap ver. 2014/10/16 file: Contagious_annals_revised.tex date: July 7, 2016



9

We shall also rely on the following lemma.

Lemma 2.2 Let the activation threshold be r = 2 and let d0 be a sufficiently
large constant. Then for d = d(n) ≥ d0, a random graph G ∼ G(n, p) is
w.h.p. such that activating any set of size at least n/2 activates all but at
most n/d3 vertices.

Proof: Let A0 be an initially activated set, and let U = [n]− 〈A0〉. Then
|U | ≤ n/2, and every vertex of U has at most one neighbor outside of U ,
implying that the number of edges crossing between U and its complement is
at most |U |. The probability of having such a set U of cardinality |U | ≥ n/d3
in G(n, p) can be estimated from above through Lemma 1.1 as follows:

n/2∑
k=max{1,n/d3}

(
n

k

)
Pr[Bin(k(n− k), p) ≤ k] ≤

n/2∑
k=max{1,n/d3}

(
n

k

)
e−

knp
8

≤
n/2∑

k=max{1,n/d3}

(en
k

)k
e−

knp
8

We now distinguish between two cases: if d ≤ n1/3 then we upper bound the
summation above by

n/2∑
k=n/d3

(ed1/3 · e−
np
8 )k = o(1).

Otherwise, if d > n/3 the summation can be upper bounded by

n/2∑
k=1

(en · e−n2/3/8)k = o(1),

as desired.
2

Theorem 2.1 If d = np satisfies 1� d�
(
n log logn
log2 n

)1/2
and G ∼ G(n, p),

then whp m(G, 2) ≤ 13n
d2 log d

.

We give a constructive proof for Theorem 2.1. Namely, we provide an
algorithm that finds a contagious set that is not larger than the upper bound
in this Theorem. Our algorithm is composed of three stages described below.
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Stage I. Set
` = log log d .

Initialize B0 = C0 = D0 to be a fixed subset of [n] of size n
d2 log d

.
For i = 1, . . . , ` repeat:
Set

si =
log d− 4

`− i+ 4
.

Step (i1). Expose edges of G between Ci−1 and V \
⋃i−1
j=0Bj . Let Bi be an

arbitrary set of d|Ci−1|
2 neighbors of Ci−1 in V \

⋃i−1
j=0Bj . If there is no such

set – declare a failure;
Step (i2). Expose edges of G inside Bi. Let xi be the number of connected

components of G[Bi] and define yi = min
{
xi,

n
d22`−isi

}
. Let Ti1, . . . , Tiyi be

the yi largest components of G[Bi] (breaking ties arbitrarily). If

|
yi⋃
j=1

Tij | <
n

d22`−i

– declare a failure. Otherwise form Di by choosing one arbitrary vertex from
each Tij . Clearly

|Di| = yi ≤
n

d22`−isi
.

Let Ci be an arbitrary subset of
⋃yi
j=1 Tij of size

|Ci| =
n

d22`−i
.

Assume that Stage I was successful for every 1 ≤ i ≤ `. Denote

A01 = D0 ∪D1 ∪ . . . ∪D` .

The algorithm activates all vertices in A01. Finally let A02 the set of vertices
that remain inactive after A01 is activated. We activate all vertices in A02 We
now prove a series of propositions that upper bound the size of A01

⋃
A02.

Proposition 2.1 Activating A01 activates
⋃`
j=0Cj.

Proof: We prove by induction that activatingD0∪. . . Di activates
⋃i
j=0Cj .

Induction basis follows from the definition of C0, D0. For the induction step,
assume that Ci−1 is already activated. Recall that each vertex in Ti1, . . . , Tiyi
has a neighbor in Ci−1 by the definition of Bi. Activating in addition the
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vertex v, where {v} = Di ∩ Tij , activates all of Tij , implying that all of Ci
gets activated. 2

Let us now estimate the probability of failure of each round of Stage I,
and see what it delivers assuming its success. Notice first that for all i ∈ [l]
we have that |Ci| ≤ n

d2
, |Bi| ≤ d

2 |Ci−1|, implying that during Stage I the
union B0 ∪B1 ∪ . . . always has cardinality at most (`+ 1) · d · n/d2 ≤ n/10.

Next observe that if there does not exist an index i ∈ [`] for which a failure
occurs in steps i1, i2, then by the definition of the algorithm above we have
that for every i the following equalities hold : |Ci| = n

d22`−i
and |Bi| = n

d·2`−i+2

which implies that, |Di| ≤ n
d22`−isi

holds for every i ∈ [`] as well. Indeed,
observe that if xi <

n
d22`−isi

, then the union of Tij is the whole set Bi, and
thus all of Bi will be activated. Otherwise yi = n

d22`−isi
. If the yi largest

components of G[Bi] do not contain all vertices in components of size at
least si, then |Tij | ≥ si for j = 1, . . . , yi, implying |

⋃yi
j=1 Tij | ≥

n
d22`−i

; in the
opposite case we also have the same outcome. Thus Step (i2), if successful,
results indeed in a subset Ci of cardinality |Ci| = n

d22`−i
, as declared.

Proposition 2.2 With high probability there is no i ∈ [`] such that step i1
fails.

Proof: For Step (i1), the probability that Ci−1 has less than d
2 |Ci−1|

neighbors outside of
⋃i−1
j=0Bj is bounded from above by

Pr

[
Bin

(
9n

10
, 1−

(
1− d

n

)|Ci−1|
)
≤ d|Ci−1|

2

]
= exp {−Θ(d|Ci−1|)}

= exp
{
−Θ

( n

d · 2`−i
)}

,

and the sum of these estimates for i = 1, . . . , ` is obviously o(1). 2

Proposition 2.3 With high probability, there is no i ∈ [`] such that step i2
fails.

Proof: Apply Lemma 2.1 with parameters

n0 = |Bi| =
n

d · 2`−i+2
, q =

d

n
=

1

2`−i+2n0
, k = si .

We derive that with probability 1 − exp
{
−Ω

(
n0
si

(
1

2`−i+4

)si)} the set Bi

has at least
(

1
3·2`−i+2

)si n
d·2`−i+4 vertices in connected components of size at
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least si. The (absolute value of the) exponent in the exceptional probability
above can be estimated as follows:

n0
si

(
1

2`−i+4

)si
=

n(`− i+ 4)

2`−i+2d(log d− 4)
· 2−

(`−i+4)(log d−4)
`−i+4

≥ 4n

d2 log d
· `− i

2`−i
.

Set K := 4n
d2 log d

, and observe that the requirement d �
(
n log logn
log2 n

)1/2
im-

plies that K � logn
log logn . By the calculations above, we can upper bound the

probability there is failure in one of the rounds by

∑̀
j=1

exp

{
−K · j

2j

}
.

Denoting the jth summand by f(j) we see that f(j+1)
f(j) = exp(K

2j
j−1
2 ) which

tends to infinity with n for all 1 ≤ j ≤ ` = log log d. Therefore
∑`

j=1 f(j) =

Θ(f(`)) = exp
{
−Θ( n

d2 log d
· log log dlog d )

}
. Hence recalling our assumed upper

bound on d(n), the union bound implies that except for probability o(1),
step (i2) is completed for every i ∈ [`]. Given that there are no failures in
step (i2), the number of vertices of Bi in components of size at least si is at
least(

1

3 · 2`−i+2

)si n

d · 2`−i+4
≥

(
1

2`−i+4

)si n

d · 2`−i+4
= 2− log d+4 · n

d · 2`−i+4

=
n

d2 · 2`−i
.

2

Now we estimate the size of the set A01 =
⋃`
i=0Di. Recall that |D0| =

n
d2 log d

, and using Propositions 2.2 and 2.3 we get that with probability

1− o(1), |Di| ≤ n
d22`−isi

= n(`−i+4)
d22`−i(log d−4) . It thus follows that

|A01| =

∣∣∣∣∣⋃̀
i=0

Di

∣∣∣∣∣ ≤ n

d2 log d
+

n

d2(log d− 4)

∑̀
i=1

`− i+ 4

2`−i

=
n

d2 log d
+

n

d2(log d− 4)

[
4
∑̀
i=1

2−`+i +
∑̀
i=1

`− i
2`−i

]
.
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Obviously
∑`

i=1 2−`+i < 2. Also,
∑`

i=1
`−i
2`−i
≤
∑∞

j=1
j
2j

=
∑∞

i=1

∑∞
j=i

1
2j

=∑∞
i=1

2
2i

= 2. Altogether,

|A01| =

∣∣∣∣∣⋃̀
i=0

Di

∣∣∣∣∣ ≤ n

d2 log d
+

n

d2(log d− 4)
(8 + 2) ≤ 12n

d2 log d
.

To complete the analysis of Stage I observe that assuming it was success-
ful, the set C` is activated, and no edges between C` and V −

⋃`
i=0Bi and

inside V −
⋃`
i=0Bi have been exposed.

Stage II. Denote G2 = G[C` ∪
(
V −

⋃`
i=0Bi

)
]. We can view G2 as

a random graph with edge probability p, in which the initial seed C` of
size |C`| = n

d2
is activated. Then according to Theorem 1.3, w.h.p. all but

O(nde−d/2) < n
4 vertices of G2 will be infected. Recalling that

∣∣∣⋃`
i=0Bi

∣∣∣ ≤
n
10 , we arrive at the conclusion that w.h.p. after Stage II at least n/2 vertices
of G are infected, when activating the initial seed A01.

Stage III. According to Lemma 2.2 above, the random graphG ∼ G(n, p)
is w.h.p. such that activating any set of size n/2 results in all but at most
n/d3 vertices being activated. Apply this Lemma to the outcome of Stage
II, and denote by A02 the set of vertices that remain unactivated, w.h.p
|A02| ≤ n/d3. Define

A0 = A01 ∪A02 ,

then |A0| ≤ 12n
d2 log d

+ n
d3
< 13n

d2 log d
, and 〈A0〉 = [n].

2.2. Lower bound. In our analysis, we shall include two parameters α
and β that can simultaneously be optimized to give the best possible lower
bound provable with our current approach. For simplicity of the presenta-
tion, rather than optimizing α and β, we shall fix α = 3 and β = 2− 1

log d .
Let G be a random graph sampled from G(n, p). Let t = n

3d2
. We assume

that d is bounded from below by some sufficiently large constant (that can
be computed explicitly from the proof of Lemma 2.3), and bounded from
above by o(

√
n).

Lemma 2.3 For the setting above, w.h.p. G does not have a subgraph with
t = n

3d2
vertices and βt edges, where β = 2− 1

log d .

Proof: There are
(
n
t

)
≤ (3ed2)t possible choices of a set T of t vertices

in G. There are
((t2)
βt

)
≤ ( et2β )βt ways of choosing βt edge locations in T . The
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probability that all these choices are indeed edges is
(
d
n

)βt
= ( 1

3dt)
βt. Hence

the probability that G has a subgraph with t vertices and βt edges is upper
bounded by:

(3ed2)t
(
et

2β

)βt( 1

3dt

)βt
=

(
eβ+1d2−β

3β−12βββ

)t
.

Now in the exponent for d substitute β = 2 − 1
log d , obtaining d2−β = 2.

For the other terms we can substitute an approximation β ' 2 assuming d
is large enough. The expression eβ+1d2−β

3β−12βββ
is then roughly 2e3

48 and is strictly
smaller than 1. Raising to the power of t, the probability tends to 0 as n
grows. 2

Corollary 2.1 For the parameters as above, m(G, 2) > n
6d2 log d

w.h.p.

Proof: Suppose otherwise. Then for t = n
3d2

, the set of t0 = n
6d2 log d

seeds and first t− t0 infected vertices induces a subgraph with t vertices and
2(t− t0) = (2− 1

log d)t edges, contradicting Lemma 2.3. 2

3. The asymptotic threshold for m(G, 2) = 2.

Lemma 3.1 Let p < c√
n logn

for some sufficiently small c > 0. Then with

high probability, m(G, 2) > 2.

Proof: Otherwise, for every 1 ≤ t ≤ n− 2, there are two vertices a,b and
a set of t vertices disjoint from {a, b}, such that the subgraph spanned on
G[{a, b}∪T ] spans at least 2t edges. The probability such a subgraph exists
is upper bounded by (

n

2

)(
n

t

)(
(t+ 2)2/2

2t

)
p2t,

which (for large t) is at most

n2 (en/t)t (e(t+ 2)p)2t ≤ n2(25c)t = o(1),

when t ≥ log n and c is sufficiently small. 2

We will now prove that if p = C√
n logn

and C is large enough, then w.h.p.

G ∼ G(n, p) satisfies m(G, 2) = 2.

Lemma 3.2 Let X ∼ Bin(n, p) with np ≤ 1. Then Pr[X > 0] > np
2 .
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Proof: By Bonferroni’s Inequality,

Pr[X > 0] ≥ np−
(
n

2

)
p2 = np

(
1− (n− 1)p

2

)
>
np

2
.

2

We expose G(n, p) in two stages: G = G1 ∪ G2, where Gi ∼ G(n, pi),
p1 = 1√

n logn
, p2 = C1√

n logn
with C1 being a large enough constant, to be set

later. We will argue that w.h.p. G1 contains two vertices u1, u2 infecting a
set U of size k = Θ(log n). Then we will use G2 and Theorem 1.3 to argue
that if C1 is large enough then with high probability the set U activates all
of V in G2 and thus in G.

Lemma 3.3 Let k = c1 log n, where 0 < c1 < 1 is a small enough constant.

Let G1 be distributed as G
(
n, 1√

n logn

)
. Then with high probability there are

two vertices in G1 that activate a set of size k.

Proof: Initialize V0 = V = [n]. We describe an algorithm that has at
most n

2k iterations, indexed by i = 1, . . . , n2k . Every iteration has at most
k − 2 steps, indexed by j = 3, . . . , k. We now describe iteration i.

Let u1, u2 be arbitrary vertices of V0. For simplicity of the proof (and
at the expense of requiring a smaller constant c1 in the statement of the
lemma), partition V0 − {u1, u2} into k − 2 sets Ui,1, . . . , Ui,k−2, each of size

at least b |V0|−2k−2 c. For j = 3, . . . , k, if there is a vertex vj ∈ Ui,j−2 with at
least two neighbors in {u1, u2, . . . , uj−1}, then set uj := vj . Otherwise, abort
iteration i, dump {u1, . . . , uj−1}, update V0 := V0−{u1, . . . , uj−1}, and move
to iteration i+ 1.

Observe crucially that during iteration i we have only exposed edges of
G1 touching {u1, . . . , uj−1}, so the rest (i.e. edges whose both endpoints
belong to V0) are not exposed and fully retain their randomness. Also, at
each iteration we dump less than k vertices; since we perform at most n

2k
iterations, the size of V0 is always at least n/2.

Let us now estimate the probability that the i-th iteration succeeds. When
looking for uj inside this iteration, the probability that such a vertex is
found is at least the probability that there is a vertex in a set of size n/2k
having at least 2 neighbors in a set of size j − 1, where the edge prob-
ability is p1. The probability for a given vertex of Ui,j to have at least
two neighbors in the set of size j − 1 can be estimated from below by(
j−1
2

)p21
2 >

(j−2)2p21
4 . Thus the probability that there is a required vertex

in Ui,j is at least Pr[Bin
(

n
2(k−2) ,

(j−2)2p21
4

)
> 0], and the latter is at least
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n(j−2)2p21
16k by Lemma 3.2, as n

2(k−2) ·
(j−2)2p21

4 < 1 (recall we assume k = c1 log n

where c1 is sufficiently small); this estimate is valid independently of what
happened in the current iteration. Thus the probability that the i-th itera-
tion succeeds is at least (using Stirling’s approximation)

k∏
j=3

n(j − 2)2p21
16k

=

(
np21
16k

)k−2
·((k−2)!)2 ≥

(
np21(k − 2)2

16e2k

)k−2
≥
(
np21k

200

)k
.

Substituting the expressions for k and p1, we obtain that the above expres-
sion is at least (c1/200)c1 logn, and this is more than 2k logn

n for c1 > 0 small
enough.

Since we are ready to perform n
2k iterations, with each being successful

independently with probability at least 2k logn
n , w.h.p. one of them will indeed

succeed – resulting in a set of size k which can be activated by two vertices
in it. 2

The equality m(G, 2) = 2 now follows from Theorem 1.3. Namely, in G2

there is an active set S of cardinality c1 log n (generated by choosing two
“correct” vertices to start the process in G1). Hence when p2 = C1√

n logn
for

C1 >
1√
c1

, we get that with high probability S is a contagious set in G2.

We now deal with the number of generations. We first consider the upper
bound. To this end, we upper bound the number of generations until acti-
vation of the contagious set constructed in Lemma 3.3. We analyze first the
number of generations it takes to activate k vertices in the infection pro-
cess occurring in G1. For this, consider the following random directed graph
which we denote by H2,k. There are k vertices numbered from 1 to k. Each
vertex i ≥ 3 has two outgoing arcs to two random vertices of index less than
i. It is implicit in the proof of Lemma 3.3, that the length of the longest
directed path of H2,t is an upper bound on the number of generations, which
we denote by l(H2,k). The parameter l(H2,k) was studied in several previous
works (e.g., [4, 26]) and shown to be of order Θ(log k). Here we present a
simple self contained proof that l(H2,k) = O(log k) (the leading constant in
the O-term in our proof is not optimal).

Lemma 3.4 With high probability, l(H2,k) is at most 40 log k.

Proof: Let 0 < ρ < 1 be a constant to be optimized later. Call an arc
(i, j) in H2,k good if j ≤ ρi and bad if j > ρi (note that necessarily j < i).
A path can have at most g good arcs, where g is largest number satisfying
kρg ≥ 1. Given a vertex i, the probability that a random outgoing arc is bad
is at most (1− ρ). For arbitrary t ≥ 2g, let us upper bound the probability
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that there is a path of length t. There are (less than) k possible starting
points. From each vertex there are two outgoing arcs to choose. So the
number of candidate paths is at most k2t. For each candidate path, there
are

∑g
i=1

(
t
i

)
≤ 2t possible locations for the good arcs. For the rest of the

arcs to be bad, the probability is at most (1− ρ)t−g ≤ (1− ρ)t/2. Hence the
probability that some candidate path actually reaches length t is at most
k22t(1− ρ)t/2.

Choose ρ = 19
20 . Then g ' 20 ln k, and we can choose t = 40 ln k. For these

parameters, k22t(1 − ρ)t/2 = k 240 ln k

2010 ln k = k(45)10 ln k = o(1). Hence w.h.p.
l(H2,k) does not exceed 40 ln k. 2

Lemma 3.4 implies that with high probability the number of generations
until B0 infects a set of size c1 log n in G1 is at most O(log k) = O(log log n).
Thereafter, Theorem 1.3 implies that with high probability all the vertices
in G2 are activated within O(log log n) generations.

Now we establish a lower bound on the number of generations. We first
claim that with high probability no set of size k ≥ log n can infect too many
vertices in a single round.

Lemma 3.5 Suppose that p ≤ 1√
2en

. Then, with high probability every set

of size k ≥ log n in G(n, p) infects (in one round) a set of size smaller than
k2.

Proof: Given that a set S of size k is active, the probability that a
vertex outside S is infected by S in one round is Pr(Bin(k, p) ≥ 2) ≤ (pk)2.
Therefore, the probability for a fixed k there is a set of size k infecting k2

additional vertices in one round is at most(
n

k

)
·
(
n

k2

)
(p2k2)k

2
,

Which can be upper bounded (when k ≥ log n) by

(en
k

)k (1

2

)k2
= o(1/n).

Taking a union bound over all k ≥ log n concludes the proof. 2

Lemma 3.5 implies that with high probability, for every contagious set
of size log n, the number of generations required to activate G(n, p) for
p ≤ 1√

2en
is at least log log n− log log log n. The same must hold for conta-

gious sets of size 2 (because every contagious set of size 2 is contained in a
contagious set of size log n). This concludes the analysis of the number of
generations and the proof of Theorem 1.2 (for the case r = 2).
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4. Generalizing the results for r > 2. In this section we study the
case where the threshold of every vertex is r, where r > 2 is a fixed constant.
As the proofs are similar to the r = 2 case, we sketch the main ideas without
going into every detail.

4.1. The asymptotic value of m(G, r) in G(n, p). Here we explain that a
similar reasoning to the case r = 2 implies that in G(n, p), w.h.p. m(G, r) ∼

n

d
r
r−1 log d

. We begin by discussing the upper bound. First we have the fol-

lowing lemma.

Lemma 4.1 Let r > 2 be a fixed integer (independent of n). For d ≥ 100r,
a random graph G ∼ G(n, p) is w.h.p. such that activating any set of size at
least n/2 activates all but at most n/d3 vertices.

Proof: This follows from the fact that if a set U is disjoint from a set 〈A0〉,
then U can have at most r|U | neighbors in 〈A0〉. Using the assumption that
n
d3
≤ |U | ≤ n/2 and choosing d0 > 100r, implies the lemma along similar

lines to Lemma 2.2 – details omitted. 2

Our goal is to have the initial set of seeds infect a set of size C1n

d
r
r−1

, where

C1 is large enough. Then by applying Theorem 1.3, we conclude that with
high probability at least n/2 vertices are activated. Finally, using Lemma 4.1
we will be able to deduce that with high probability all of G becomes ac-
tivated. To achieve this goal, it suffices to make some modest changes to
the algorithm presented in Theorem 2.1. The main difference is that now
we look in the ith iteration for large connected components in the set of all
vertices having r − 1 neighbors in Ci−1. As in the proof of Theorem 2.1 we
initially set ` = log log d and B0 = C0 = D0 to be a fixed subset of [n] of
size C1n

d
r
r−1 log d

. The algorithm is ran for ` iterations, where ` drops by 1 in

every iteration – terminating once ` = 0. Specifically,
Iterating: We aim to get a set Ci of size

|Ci| =
C1n

d
r
r−1 2`−i

.

Given a set Ci−1, we find a subset Bi of vertices in V \
⋃i−1
j=0Bj , all having

at least r − 1 neighbors in Ci−1, and

bi := |Bi| =
Cr−11

2(`−i+1)(r−1) · d · (r − 1)r−1
n

2
=: n0 .

Since the probability a vertex (disjoint from Ci−1) has at least r − 1 neigh-

bors in Ci−1 is asymptotically equal to
(|Ci−1|
r−1

)
pr−1 ≥

(
|Ci−1|
r−1 p

)r−1
, we get
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using the Chernoff bound that the size of Bi is indeed lower bounded by(
|Ci−1|
r−1 p

)r−1
2(n−o(1))/3 > bi with probability at least 1−exp

(
−O( n

d(log d)r−1 )
)

,

where terms depending only on r are treated as constants (as we assume r
is a constant not depending on n). It is therefore straightforward to verify
that with high probability for all i ∈ [`] it holds that |Bi| ≥ bi.

Analogously to the r = 2 case, if a set S is connected, and every vertex
in S has at least r− 1 active neighbors, it suffices to activate a single vertex
in S in order to activate the whole of S. Hence we estimate the number of
“large” connected components in Bi.

Set

si =
log d

(`− i+ 1)r2

Apply Lemma 2.1 to G[Bi] with parameters

n0, q =
d

n
=

Cr−11

2(`−i+1)(r−1)+1(r − 1)r−1n0
, k = si .

We need to verify:(
Cr−11

3 · 2(`−i+1)(r−1)+1(r − 1)r−1

)si n0
4
≥ C1n

d
r
r−1 2`−i

,

which amounts to(
3 · 2(`−i+1)(r−1)+1(r − 1)r−1

Cr−11

)si
≤ n0d

r
r−1 2`−i

4C1n
=

Cr−21 d
1
r−1 2`−i−2

2(`−i+1)(r−1)+1(r − 1)r−1
.

This follows from
(

6
Cr−1

1

)si
≤ Cr−2

1
16(r−1)r−1 and 2(`−i+1)(r−1)si ≤ d

1
r−1

2(`−i+1)(r−2)+4 .

The former inequality is valid when C1 > 6 · 17(r − 1)r−1 and large enough
d (e.g., d such that si > 1). For the latter inequality, we need to satisfy

si ≤
1
r−1 log d− (`− i+ 1)(r − 2)− 4

(`− i+ 1)(r − 1)

=
log d

(`− i+ 1)(r − 1)2
− r − 2

r − 1
− 4

(`− i+ 1)(r − 1)

– which is indeed valid for our choice of si.
From the calculations outlined in the paragraph above and Lemma 2.1,

the probability that |Ci| < C1n

d
r
r−1 2`−i

is upper bounded by

ei := exp

(
− C1n

sid
r
r−1 2`−i

)
= exp

(
−C1n(`− i+ 1)r2 log d

d
r
r−1 2`−i

)
.
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Hence the probability that a failure will occur in one of the rounds is upper
bounded by

∑`
i=1 ei. Analogous reasoning to the r = 2 case implies that

∑̀
i=1

ei = exp

(
−Θ

(
n log log d

d
r−1
r log2 d

))
.

Substituting d = o

((
n log logn
log2 n

) r−1
r

)
, we have that the probability there

exists i ∈ [`] such that |Ci| < C1n

d
r
r−1 2`−i

is o(1).

The total size of the seed of Stage I is then

C1n

d
r
r−1 log d

+
∑̀
i=1

C1n

d
r
r−1 2`−isi

=
C1n

d
r
r−1 log d

+
C1n

d
r
r−1 log d

∑̀
i=1

`− i+ 1

2`−i

= O

(
n

d
r
r−1 log d

)
.

This concludes the proof that for d satisfying the condition in Theo-

rem 1.1, with high probability m(G, r) ≤ O
(

n

d
r−1
r log d

)
.

Now we turn to the lower bound. We shall use the following auxiliary
Lemma:

Lemma 4.2 Let β = r − r−1
log d . Set t = n

3d
r
r−1

and assume d = np = o(n) is

larger than an appropriate constant d0 (that may depend on r). Then with
high probability no set of vertices of size t spans βt edges.

Proof: Using the equality p = 1

3d
1
r−1 t

we conclude that the probability

that G(n, p) contains a set of size t that spans at least βt edges is upper
bounded by(

n

t

)((t
2

)
βt

)
pβt ≤ (eαd

r
r−1 )t

(
et

2β

)βt( 1

3d
1
r−1 t

)βt
=

(
eβ+1d1/ log d

3β−12βββ

)t
.

It can be verified that the latter expression is o(1). 2

Corollary 4.1 Let G be distributed as G(n, p), where d0 < d = np� n1−1/r

and d0 is a large enough constant that may depend on r but not on n. Then
with high probability m(G, r) > (r−1)n

3rd
r
r−1 log d

.

Proof: Suppose there exists a contagious set A0 of size t0 = (r−1)n
3rd

r
r−1 log d

.

Setting t = n

3d
r
r−1

, we get that A0 together with the first t − t0 infected
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vertices, would produce a set A of size n

3d
r
r−1

spanning at least r(t − t0) =

(r− r−1
log d)t edges. As we have just shown, w.h.p. such a set A does not exist.

This concludes the proof. 2

4.2. The threshold for m(G, r) = r. We will show that the threshold for
the emergence of a contagious set of size r in G(n, p) is p ∼ (n logr−1 n)−1/r.
We begin by proving that contagious sets of size r are unlikely to exist when
p = c(n logr−1 n)−1/r, for some appropriate constant c > 0.

Lemma 4.3 Suppose that p ≤ c(n logr−1 n)−1/r for some c > 0 that is suffi-
ciently small. Then with high probability m(G, r) > r, when G is distributed
as G(n, p).

Proof: By a similar reasoning to the case r = 2, ifG(n, p) has a contagious
set of size r then for every 1 < t ≤ n−r it has a set of t+r vertices spanning
at least rt edges. The probability that such a set exists is upper bounded by(

n

r

)(
n

t

)(
(t+ r)2/2

rt

)
prt.

For large enough t, the expression above can be upper bounded by

nr
(en
t

)t(e(t+ r)2p

2rt

)rt
< nr

(
n

(etp/r)r

t

)t
,

where we used the fact that (t+r)2 < 2t2 for large enough t. Setting t = log n
and substituting the value of p, we can upper bound the expression above
by nr(c′)t for some c′ > 0 that tends to 0 as c → 0. Hence, taking c to
be sufficiently small we can ensure that (c′)logn < n−r+1, implying that
the probability there exists a contagious set of size r is at most 1/n. This
concludes the proof of the Lemma. 2

We now proceed and prove that if p > C(n logr−1 n)−1/r for a suitable
constant C, then with high probability there is a contagious set of size r in
G(n, p).

Theorem 4.1 Suppose that p > C(n logr−1 n)−1/r, where C is a sufficiently
large constant that may depend on r. Let G be distributed as G(n, p). Then
with high probability m(G, r) = r.

Proof: It suffices to prove that for p1 = (n logr−1 n)−1/r, a random graph
G1 ∼ G(n, p1) is typically such that activating appropriately chosen r ver-
tices will infect c1 log n vertices. Thereafter, exposing the remaining edges
of G = G(n, p) with probability p2 = C2(n logr−1 n)−1/r, where C2 is a large
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enough constant, and using Theorem 1.3 implies that that the whole of G
gets activated with high probability.

We use ideas similar to those appearing in Lemma 3.3. Let k = c1 log n
where 0 < c1 < 1 is constant that will be determined later. Run the same
iterative procedure as in Lemma 3.3, but choose initially a set I of r vertices
from V0. Now partition V0 \ I to k− r sets each of size at least b |V0|−rk−r c. We
now run an iterative procedure identical to the one in Lemma 3.3, but search
for a vertex in vj ∈ Ui,j−r having at least r neighbors in {u1, u2, . . . , uj−1}
(in the procedure in Lemma 3.3, r = 2). If found, set uj := vj . If such
a uj is not found, we stop iteration j, delete {u1, . . . , uj−1} and update
V0 := V0 − {u1, . . . , uj−1}. The probability that the jth iteration succeeds

can be lower bounded by
(
j−1
r

)pr1
2 ≥

(
(j−r)p1

r

)r
/2 (recall that r is a fixed

constant and p = o(1)). Assuming c to be a sufficiently small constant

that may depend on r, we reason that Pr[Bin( n
2(k−r) ,

(
(j−r)p1

r

)r
/2) > 0] ≥

n
2(k−r) ·

(
(j−r)p1

r

)r
/2). Therefore, the probability the ith iteration succeeds

is at least

k∏
j=r+1

npr1
2rrk

· (j − r)r =

(
npr1
2rrk

)k−r
· ((k − r)!)r ≥

(
npr1(k − r)r

2errk

)k−r
.

Choosing c1 to be small enough and plugging in k and p, the aforementioned
probability can be lower bounded by (c1/10)c1 logn > n−1/3. The rest of the
argument is essentially identical to that of Lemma 3.3. 2

Similar arguments to those presented in Section 3 imply that the number
of generations for a contagious set as above to activate G is Θ(r log logn).
We omit the details.

5. Conclusions. The discussion below concerns the case r = 2.
Theorems 1.1 and 1.2 both show that the smallest contagious set has size

Θ
(

n
d2 log d

)
w.h.p., but address two different ranges of degrees. The negative

results (nonexistence of small contagious sets) in both theorems are based
essentially on the same argument (lower bounds on the size of the smallest
subgraph of average degree 4− O( 1

log d)). However, our proofs of the upper
bounds in the two theorems are based on different principles. Our proof
for Theorem 1.1 is based on an algorithm that performs log log d iterations,
where in every iteration additional vertices are designated as seeds. Such
a proof produces a contagious set of size at least Ω(log log d) (in fact, our
proof of Proposition 2.3 requires values of d for which the contagious set is
even larger), and hence is inappropriate for Theorem 1.2, in which the total
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number of seeds allowed is only 2. In contrast, the proof of Theorem 1.2
is based on examining disjoint pairs of vertices until some pair is found
to be contagious. Disjointness implies that the proof examines much fewer
than n candidate sets for being contagious. Such a proof is inappropriate for
Theorem 1.1, because for the range of degrees considered in Theorem 1.1 a

random set of size Θ
(

n
d2 log d

)
has probability much less than 1/n of being

contagious.
In this work we did not handle two ranges of degrees. One is when d is

a large constant. It is not difficult to extend Theorem 1.1 also to the case
of large constant degrees. This range of degrees is omitted from the current
work mainly for the reasons of simplicity, as we are using Theorem 1.3 as
a blackbox, and that Theorem requires d = d(n) to tend to infinity with
n. The more challenging range of parameters omitted from our paper is

when d = o
(√

n
logn

)
but still too large for Theorem 1.1 to apply. It would

be interesting to prove that the smallest contagious set has typically size

Θ
(

n
d2 log d

)
also in this regime.

The positive results in Theorem 1.2 implicitly establish one specific av-

erage degree d = Θ
(√

n
logn

)
that suffices with high probability for two

related problems: one is the existence of a contagious set of size 2, and the
other is the existence of such a set for which the number of generations is
O(log log n) (which is best possible up to constant multiplicative factors).
For both problems, this value of d is best possible up to constant factors.
Nevertheless, it would be interesting to determine whether there is some
d′ < d for which with high probability there is a contagious set of size 2, but
every contagious set of size 2 requires more than O(log log n) generations.

Theorem 1.1 does not explicitly address the number of generations. An
upper bound on the number of generations implicit in our proof of Theo-
rem 1.1 is O(log d log log d), but we doubt that it is tight.
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