
Oblivious Collaboration

Yehuda Afek ∗ Yakov Babichenko † Uriel Feige ‡ Eli Gafni § Nati Linial ¶

Benny Sudakov ‖

March 30, 2011

Communication is a crucial ingredient in every kind of collaborative work. But what is the

least possible amount of communication required for a given task? We formalize this question by

introducing a new framework for distributed computation, called oblivious protocols.

We investigate the power of this model by considering two concrete examples, the musical

chairs task MC(n,m) and the well-known Renaming problem. The MC(n,m) game is played by n

players (processors) with m chairs. Players can occupy chairs, and the game terminates as soon as

each player occupies a unique chair. Thus we say that player P is in conflict if some other player

Q is occupying the same chair, i.e., termination means there are no conflicts. By known results

from distributed computing, if m ≤ 2n − 2, no strategy of the players can guarantee termination.

However, there is a protocol with m = 2n − 1 chairs that always terminates. Here we consider

an oblivious protocol where in every time step the only communication is this: an adversarial

scheduler chooses an arbitrary nonempty set of players, and for each of them provides only one bit

of information, specifying whether the player is currently in conflict or not. A player notified not to

be in conflict halts and never changes its chair, whereas a player notified to be in conflict changes its

chair according to its deterministic program. Remarkably, even with this minimal communication

termination can be guaranteed with only m = 2n − 1 chairs. Likewise, we obtain an oblivious

protocol for the Renaming problem whose name-space is small as that of the optimal nonoblivious

distributed protocol.

Other aspects suggest themselves, such as the efficiency (program length) of our protocols. We

make substantial progress here as well, though many interesting questions remain open.

∗The Blavatnik School of Computer Science, Tel-Aviv University, Israel 69978. afek@tau.ac.il
†Department of Mathematics, Hebrew University, Jerusalem 91904, Israel yak@math.huji.ac.il
‡Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot 76100, Israel.

uriel.feige@weizmann.ac.il. The author holds the Lawrence G. Horowitz Professorial Chair at the Weizmann Institute.
Work supported in part by The Israel Science Foundation (grant No. 873/08).
§Computer Science Department, Univ. of California, LA, CA 95024, eli@cs.ucla.edu
¶School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel nati@cs.huji.ac.il
‖Department of Mathematics, UCLA, Los Angeles, CA, 90095. bsudakov@math.ucla.edu. Research supported in

part by NSF CAREER award DMS-0812005 and by a USA-Israeli BSF grant

1 Introduction

In every distributed algorithm each processor must occasionally observe the activities of other pro-

cessors. This can be realized by explicit communication primitives (such as by reading the messages

that other processors send, or by inspecting some publicly accessible memory cell into which they

write), or by sensing an effect on the environment due to the actions of other processors (such as in

Carrier Sense Multiple Access channels with Collision Detection, CSMA/CD). Here we consider two

severe limitations on the processors’ behavior and ask how this affects the system’s computational

power: (i) A processor can only post a proposal for its own output, (ii) Each processor is “blind-

folded” and is only occasionally provided with the least possible amount of information, namely

a single bit that indicates whether its current state is “good” or “bad”. Here “bad/good” stands

for whether or not this state conflicts with the global-state desired by the processor. Moreover, we

also impose the requirement that algorithms are deterministic (use no randomization). This new

minimalist model, properly defined, is called the oblivious model. This model might appear to be

significantly weaker than other (deterministic) models studied in distributed computing. Yet, we

show that two natural problems in this field, renaming [1, 2] and musical chairs [9], can be solved

optimally within the highly limited oblivious model. Furthermore, we discuss the efficiency of

oblivious solutions and the relations between the oblivious model and the read/write model which

is a thoroughly studied model in distributed computing [14].

The oblivious model can be described and formalized in two different ways: (i) in terms of

the operations available to individual processors, or (ii) in terms of an oblivious oracle (as in the

abstract). In either case, associated with every state of a participating processor is a proposed

output, so that the state at which a processor halts thus defines its final output. In our model,

an oracle mediates between the processors. The only way a processor can sense its environment is

by querying the oracle about a single predicate on the current vector of outputs of the processors.

Based on the single bit answer the processor needs to either halt with its current output, or proceed

with its computation and propose a new output. But how can a processor’s computation proceed?

It has no information about the state of other processors (beyond the one bit that tells it that

it must proceed), and we are forbidding randomization. Consequently, a processor’s proposed

output can depend only on its current state, and therefore the sequence of states that processor

pi traverses is simply an infinite word πi over the alphabet of possible outputs. Upon receiving

a negative answer from the oracle, processor pi in state πi[k] moves to state πi[k + 1]. Given the

definition of a computational task, it is up to the programmer to design the words πi and the

query that each processor poses to the oracle under which that task is always realized properly.

Our only assumption is that the oracle correctly answers the queries, and a processor eventually

halts/proceeds to the next state in his word upon a bad/good response from the oracle.

The Musical Chairs, MC(n,m) task involves n processors p1, . . . , pn and, m chairs numbered

1, . . . ,m. Each processor pi starts in an arbitrary chair, dictated by the input. If the input chairs

are all unique, all processors are good and the input is the output. If not all input chairs are unique,

the task calls for each processor to capture a chair in exclusion.

The Renaming(n,m) task is a close relative of MC(n,m). There are m slots (chairs) numbered

1, . . . ,m and each participant has to capture a slot in exclusion. The processors have no input. If

only k < n processors participate, then each has to capture (output) a unique slot from the first

min (2k − 1,m) slots. If all the n processors participate then they each capture one of the m slots

in exclusion.

In Section 2 we define the oblivious model in detail. For the MC and the renaming problems

we use the collision query - a processor is good iff it is the only one to propose the current chair.

1

We show that in this case the general oblivious model simplifies considerably. These simplifications

later help us produce an optimal solution.

Remarkably, for each processor we produce a program which is a single cyclic word on an

alphabet of chairs. Furthermore, for the MC task the program can be started at any chair in

the word. This provides for self stabilization [5, 6]. Namely, consider a system state where each

processor occupies an exclusive chair and there are no conflicts. Suppose that the system gets

perturbed, and program counters change arbitrarily. This may create conflicts, but the system will

nevertheless resettle obliviously in finite time into a conflict-free safe state.

Here are the main contributions of the present paper:

1. Introduction of the general oblivious model and its specialization to the problems at hand.

2. A proof that there are tasks that are solvable in a read/write wait-free manner, but not

solvable obliviously.

3. Characterization of the minimal m for which there is an MC(n,m) oblivious algorithm:

Theorem 1 There is an oblivious MC(n,m) algorithm if and only if m ≥ 2n− 1.

Moreover, for all N > n there exist N words on m chairs such that any n out of the N words

constitute an oblivious MC(n, 2n− 1) algorithm.

4. Likewise, for the Renaming problem

Theorem 2 There is an oblivious Renaming(n,m) algorithm if and only if m ≥ 2n− 1.

5. A lower bound on the number of chairs required in the oblivious MC task is derived by

reduction from the renaming task, which in turn is derived from the read/write wait-free

model.

6. The words in Theorem 1 use the least number of chairs, namely m = 2n − 1. However, the

lengths of these words grows doubly exponentially in n. Are there oblivious MC algorithms

with much shorter words? Even length O(n)? Perhaps even length m? How long can the

scheduler survive? Here we consider systems with N ≥ n words (programs) and any n out of

the N should constitute a solution of MC. We call these MC(n,m) systems with N words.

Theorem 3 For every N ≥ n, almost every choice of N random words of length cn logN in

an alphabet of m = 7n letters is an MC(n,m) system with N full words (words that contain

every letter in 1, . . . ,m). Moreover, every schedule on these words terminates in O(n logN)

steps. Here c is an absolute constant.

7. Since we are dealing with full words (words that contain every letter in 1, . . . ,m) and we

seek to make them short, we are ultimately led to consider the case where each word is a

permutation on [m]. At the moment the main reason to study this question is its aesthetic

appeal. We can design permutation-based oblivious MC(n, 2n−1) algorithms for very small n

(provably for n = 3, computer assisted proof for n = 4). We suspect that no such constructions

are possible for large values of n, but we are unable at present to show this. We do know,

though that

2

Theorem 4 For every integer d ≥ 1 there is a collection of N = nd permutations on m = cn

symbols such that every n of these permutations constitute an oblivious MC(n,m) algorithm.

The constant c depends only on d. In fact, this holds for almost every choice of N random

permutations on [m].

We should stress that our proofs of Theorems 3 and 4 are purely existential. The explicit

construction of such systems of words remains largely open, though we do have some results

in this direction, e.g.,

Theorem 5 For every integer d ≥ 1 there is an explicitly constructed collection of N = nd

permutations on m = Od(n
2) symbols such that every n of these permutations constitute an

oblivious MC(n,m) algorithm.

1.1 A road map

Most of the technical results in this paper concern the design of oblivious algorithms for the MC

task, either with the least possible number of chairs (namely, m = 2n − 1), or only m = O(n)

chairs. These results then extend to the renaming task. The purpose of this section is to highlight

several additional aspects of the subject.

We start with a number of simple observations. (i) An oblivious MC(n,m) algorithm cannot

include any two identical words. Otherwise the corresponding players might move together in

lock-step, constantly being in collision. Hence it is essential that no two processors have the same

program. (ii) For every oblivious MC(n,m) algorithm with finite words, there is a finite upper

bound on the number of moves a processor can make before termination. This is because there

are only finitely many system states, and in a terminating sequence of moves no system state can

be visited twice. (iii) In fact, for every collection of finite words there is a directed graph whose

vertices are all the system states. Edges correspond to the possible transitions. The collection of

words constitute an oblivious MC protocol iff this graph is acyclic. These observations depend on

the assumption that the algorithm is deterministic.

Our oblivious algorithms for MC have a number of additional desirable properties. For every

n > 1, m = 2n − 1 and N > n we design N periodic words that are full (i.e., contain every

chair) with the following properties: for every choice of n or fewer of the N words, for every

choice of states on these words, each word is guaranteed to reach a chair not shared by any other

word. There is an upper bound (that depends only on N) on the number of steps taken by any

word, and moreover, this guarantee holds even if other words fault and no longer change states.

Hence our oblivious algorithms can be run in dynamic settings in which the set of players in the

system keeps changing. It is still guaranteed to reach a conflict free state provided that there are

sufficiently long intervals without dynamic changes. Moreover, this protocol can withstand various

kinds of faults, e.g., non-faulty processors can complete their computations even in the presence of

faulty processors. To illustrate this idea, consider a company that manufactures N communication

devices, each of which can use any one of m frequencies. If several such devices happen to be at

the same vicinity, and simultaneously transmit at the same frequency, then interference occurs.

Devices can (i) Move in or out of the area, (ii) Hop to a frequency of choice and transmit at this

frequency, (iii) Sense whether there are other transmissions in this frequency. The company wants

to provide the following guarantee: If no more than n devices reside in the same geographical

area, then no device will suffer more than M interference events for some specific integer M . Our

oblivious MC algorithms would guarantee this by pre-installing in each device a list of frequencies

(a word in our terminology), and having the device hop to the next frequency on its list (in a cyclic

3

fashion) in response to any interference it encounters. No communication beyond the ability to

sense interference is needed.

In Section 2 we present a formal model in which our oblivious algorithms apply, placing it

within a known standard framework for distributed computing. The model presented in Section 2

does not attempt to capture all possible interpretations of our MC protocols. For example, the

model concerns tasks that terminate, whereas our protocols work equally well in reactive systems

that keep adapting to a changing environment. What the formal model does capture is important

connections with previous works in distributed computing, from which a lower bound of m ≥ 2n−1

can easily be inferred. This lower bound shows that our upper bounds are best possible, so let us

elaborate on it.

Not all aspects of oblivious protocols are required for the purpose of the lower bound m ≥
2n− 1. The two crucial aspects are the asynchrony of the model, and the fact that our algorithms

are deterministic (no randomization). In a synchronous setting, where in every time step, every

processor involved in a collision moves to its next state), m = n suffices, even for oblivious protocols.

(This can be proven using the techniques of Theorem 3. Details omitted.) Likewise, m = n suffice if

randomization is allowed – with probability 1 eventually there are no collisions. However, no specific

upper bound on the number of steps can be guaranteed in this case. Moreover, if the randomized

algorithms is run using pseudorandom generators (rather than true randomness) the argument

breaks. For any fixed seed of a pseudorandom generator, the algorithm becomes deterministic and

the lower bound m ≥ 2n− 1 holds.

The lower bound of m ≥ 2n − 1 uses some benign-looking aspects of the MC task, so further

discussion is called for. Recall that each processor starts in an arbitrary chair, dictated by the

input. In the absence of an external input specifying the starting chair, a trivial oblivious MC

algorithm (with m = n) contains n distinct single-letter words. Another requirement is that if

the input chairs are all unique, all processors are good and the input is the output. Without such

a requirement, the processors might simply ignore the initial input and the trivial oblivious MC

algorithm would still apply. Hence the lower bound of m ≥ 2n−1 depends on requirements beyond

the need for each processor to capture a chair in exclusion. Here this extra requirement is the

possibility to dictate an input. This particular requirement is common in distributed computing

as it allows composition of protocols. It also makes it easy to transfer previously existing lower

bounds to our MC problem.

Our present proof for the lower bound of m ≥ 2n−1 leaves something to be desired. It relies on

previous nontrivial work in distributed computing. What’s worse is that we prove a lower bound for

a simple oblivious model via a reduction to a lower bound proved in a more complicated model. This

roundabout approach obscures the essential properties that make the lower bound work. Indeed,

in a companion manuscript (in preparation), we present a self contained proof for the lower bound

of m ≥ 2n − 1. That presentation clarifies the minimal requirements that are needed in order to

make the lower bound work. In particular, it is not necessary that one can dictate an arbitrary

starting chair for each processor – dictating one of two chairs suffices.

As noted, we design oblivious MC(n,m) protocols with m = 2n − 1. Part of our work also

concerns analyzing what ratios between m and n one can obtain using collections of randomly

chosen words as in Theorem 3. As explained in the introduction, this allows us to present more

efficient deterministic oblivious programs – though random words seem to need more chairs, they

can reach conflict free configurations more quickly. Moreover, the use of random words is a design

principle that can be applied to design oblivious algorithms for other tasks as well. Developing an

understanding of what they can achieve and techniques for their analysis is likely to pay off in the

long run. One of the major questions that remain open in our work is whether randomly chosen

4

words can be used to design deterministic oblivious MC protocols with m = 2n− 1.

2 The model

2.1 Tasks

A task [13] is a distributed computational problem involving several processes (or processors).

There is an upper bound denoted by n on the number of processes that may participate in the

task. Each participating process starts with a private input value, exchanges information with

other participating processes (for example, by writing to and reading from a common memory),

and halts with an output value. A nonparticipating process is indistinguishable to other processes

from a process that is participating but has not yet performed any observable operation (such

as a write operation). The task is specified by a relation ∆ that associates with every input

vector (one element per participating processor) a set of output vectors that are allowed given this

input. For notational convenience, the input and output vectors are of dimension n (even when the

number of participating processors is smaller) and the corresponding entries for nonparticipating

processors are denoted there by the special symbol ⊥. We use the notation vinp and vout to

denote these vectors, though the reader should note that the subscripts inp and out might be a bit

misleading (the ⊥ entries for nonparticipating processors are neither true inputs nor true outputs,

but only notation indicating that the processors are not participating). Given our convention

regarding⊥, an input vector vinp implicitly describes which are the participating processors, namely,

Prtc(vinp) = {pi | vinp(i) 6= ⊥}. Restating our conventions regarding notation for nonparticipating

processors we have that for (vinp, vout) ∈ ∆ it must hold that vinp(i) = ⊥ iff vout(i) = ⊥.

The Musical Chairs task: In the musical chairs task MC(n,m) there are n ≥ 1 processors

{p1, . . . , pn}, and a set of chairs {1, . . . ,m}. Each participating processor starts in an arbitrary

chair, dictated by its input, and it has to capture a chair in exclusion. If the input chairs are all

unique, all processors must output their input. The formal definition, following the notations of

[13] is:

vinp(i), vout(i) ∈ {1, 2, ...,m,⊥}.

1. If ∀i, j ∈ Prtc(vinp), vinp(j) 6= vinp(i) then vout = vinp, and

2. Else ∀i, j ∈ Prtc(vinp), vout(j) 6= vout(i).

The Renaming task: In the Renaming(n,m) task there are n ≥ 1 processors {p1, . . . , pn}, and

m slots numbered 1, . . . ,m. Each participant has to capture a slot in exclusion. Formally, the

processors have no input, though for notational convenience we shall assume that participating

processors have the input 1. If only k < n processors participate, then each has to capture (output)

a unique slot from the first min (2k − 1,m) slots. If all the n processors participate then they each

capture one of the m slots in exclusion. The formal definition, following the notations of [13] is:

vinp(i) ∈ {1,⊥} and vout(i) ∈ {1, 2, ...,m,⊥}

1. If |Prtc(vinp)| = k < n then vout(i) ∈ {1, 2, ..., 2k − 1,⊥} and ∀i, j ∈ Prtc(vinp), vout(j) 6=
vout(i), and

2. If |Prtc(vinp)| = n then vout(i) ∈ {1, 2, ...,m,⊥} and ∀i, j ∈ Prtc(vinp), vout(j) 6= vout(i).

5

2.2 The Oblivious Model

The Oblivious model is an asynchronous distributed computing model in which each processor,

at each point of time, exposes an output value it currently proposes, and may receive at most

one bit of information. This bit indicates whether its proposed output is legal with respect to

the other currently proposed outputs (and hence the processor may halt) or not (and then the

processor should continue the computation). If a processor decides to halt at the current state,

then its proposed output is its final output. We denote the set of possible output values by O.

A system configuration (or configuration for short) is a vector of n elements, one per processor,

whose entries come from the set O∪{⊥}. Here ⊥ represents a processor that has not yet proposed

any output, either because it is not participating, or because it was not scheduled yet to propose

an output (these two cases are indistinguishable to other processors. An entry from O represents

the output a corresponding processor proposes in the configuration. In an oblivious algorithm

correctly designed for a given task, eventually all participating processors must halt, and the final

configuration must be a legal output vector in the task specification.

The defining feature of the oblivious model is that each processor may receive only one bit

of information about the system configuration in each computation step; whether the current

configuration is illegal and it should change its state (and thus its proposed output), or whether

it may halt in its current state. The fact that a processor pi is not informed to change its state

does not necessarily mean that the current configuration is legal. For example, the configuration

might be illegal, but changing pi’s state would not get the system any closer to a legal configuration.

However, in a correct algorithm (program) at least one processor is notified to change its state in an

illegal configuration. The choice of function specifying for each configuration which processors may

change their state and which may halt and output is up to the algorithm designer. The algorithm

provides each processor with a predicate on configurations, specifying in which configuration it

changes its state, and in which it may halt. In the most general setting the predicate provided

for each processor may depend on its input, possibly a different predicate for different inputs.

However, throughout an execution one predicate is used for each processor. Our formal model does

not exclude the use of arbitrary complex predicates, but oblivious algorithms have greater appeal

when the predicates involved are simple and natural. For the two tasks considered in this paper,

the same collision predicate is used by all the processors for any input.

Initially, and as a function of its input, each processor pi selects a word πi over O, and a predicate

predi on the set of of all configurations. The first letter in πi is pi’s input, i.e., πi[1] = inputi ∈ O.

For tasks such as renaming in which a processor need not have any input, the first letter is set to

be an output that is valid if no other processor participates (which explains why in the definition

of renaming we used the convention that the input to participating processors is 1).

We describe the system using the notion of an omnipotent know-all scheduler called asyn-

chronous (other schedulers with different names are described in the sequel). Execution under the

control of the asynchronous scheduler proceeds in rounds. The scheduler maintains a set P of

participating processors, a set E ⊂ P of enabled processors, and a set DONE (disjoint from P) of

processors that have already halted. These sets are initially empty. In each round the scheduler

performs the following sequence of operations. It may add some not yet participating processors to

P . It may evaluate the predicate predi for some subset of processors in P \ E. If predi evaluates

to true, the scheduler adds processor pi to the set E. Otherwise, if it evaluates to false, it removes

pi from P and adds it to the set DONE. Finally, the scheduler selects a subset SE ⊆ E, removes

it from E, and moves each pi ∈ SE to its next letter in πi. I.e., the current output of pi is replaced

by the next one in its program, πi. This completes the round.

6

An oblivious algorithm solves a task if for every input vector, the scheduler is forced to eventually

place all participating processors in the DONE set. At that point it can no longer continue, and

the final configuration is such that (vinp, vout) ∈ ∆, the relation that defines the task.

A well known model for distributed computing is the read/write wait-free model, that we

shall sometimes simply refer to as read/write. The main features of this model is that processors

communicate via read and write operations, scheduling is asynchronous, and every task is completed

by a processor in a finite number of steps (regardless of the actions of other processors; this is the

wait-free property). See [12] or [13] for more details. The asynchronous scheduler for oblivious

algorithms mimics the behavior of an asynchronous read/write algorithm on configurations. Thus

Theorem 6 below can be proved simply by having each processor emulate the scheduler through

reads (snapshots) and writes of its newly proposed output in shared memory.

Theorem 6 Every task that is solvable obliviously is solvable read-write wait-free.

Proof. Given an oblivious distributed program to solve a task we provide a read-write wait-free

algorithm to solve the same task. In the read-write system the shared memory has one single writer

multi reader register for each processor, in which the processor publishes its currently proposed

output. W.l.o.g., we can replace each read by an atomic snapshot [3].

Initially, as a function of its input, each processor writes its first proposed output, and uploads

its predicate for the run. Then the processor repeatedly takes a snapshot and writes its next output

in its oblivious program until a snapshot evaluates to false. A snapshot evaluated by the predicate

to false, corresponds to a configuration in which a processor was added to the DONE set.

An execution in the read-write model is thus a linear sequence of reads (snapshots) and writes

and it corresponds to an execution in the oblivious model in the following way: All the processors

that observe the same snapshot are those that the asynchronous scheduler evaluates their predicate

at the same round. Those evaluated to true are added to the enabled set E, and those evaluated

to false are added to the DONE set and stopped forever. The set of writes that occur after this

snapshot, and before the next snapshot, correspond to the subset of enabled processors that the

scheduler move to their next letter in their program π. Since the scheduler must stop with the

correct output vector so will the read/write algorithm. �

Thus the oblivious model is subsumed by the read/write model. Is this a proper inclusion? To

clarify the answer we introduce an intermediate class of tasks that we call Output Negotiation,

or ON . It includes those tasks solvable read-write wait-free in a system where writing is in the

oblivious model (processors can only expose their proposed outputs), whereas reading is as in the

general read/write model (a processor can read all exposed information rather than only a single

predicate). By definition, every obliviously solvable task is ON solvable.

Corollary 7 Every obliviously solvable task is in ON .

Obviously, ON is a subset of read/write, and in Theorem 8 below we show that this inclusion

is proper. Consequently the oblivious model is a strict subset of read/write.

Theorem 8 There exists a task, AntiMC, that is solvable read-write wait-free but does not belong

to ON .

Proof. The task AntiMC is a variation on epsilon agreement [7]. It is a task with 3 processors

whose input and output are each a number in {1, . . . , 5}. A processor running alone must output

7

its input. Otherwise all the outputs must be one of two consecutive numbers (5 and 1 are not

consecutive). Formally, AntiMC on 3 proccesors:

vinp(i), vout(i) ∈ {1, 2, ..., 5,⊥}

1. If |Prtc(vinp)| = 1 then, vinp = vout,

2. Else ∀i, j ∈ Prtc(vinp), |vout(j)− vout(i)| ≤ 1.

AntiMC is solvable read-write wait-free using the standard approach for solving ε-agreement.

Let us provide a few more details. Participating processors do not only post a proposed output,

but also an integer weight (in the range 1 to W) that specifies how “confident” they are in their

output. We now describe the actions of a participating processor. Initially, it posts its input as a

proposed output, and posts a weight of 1. Thereafter, the processor performs “rounds” in its own

speed (determined by an asynchronous scheduler). In a round the processor inspects the proposed

outputs and posted weights of all other processors (assigning weight 0 to those processors who did

not yet post anything), computes a weighted average of all proposed outputs (including its own),

and posts the integer nearest to it as a new proposed output. It also raises its weight by 1 and posts

its new weight. Processors halt (with their current proposed output as their final output) when the

total weight reaches W . Choosing W to be sufficiently large guarantees that all final outputs are

within 1 of each other. Further details are omitted.

We now show that AntiMC is not solvable just by communicating outputs. Observe that we

may assume that a processor first posts its input. (If a processor performs read operations before

posting any output we may schedule the read operations before any other processor posted an

output, and hence eventually the processor is forced to post its input.) Consider the input vector

(1, 5, 3) and two scheduling scenarios. In the first scenario, schedule p1 first (with input 1) and

continue to schedule only p1. Eventually p1 must terminate at 1. Now schedule p2 (with input 5)

and let it post its input. In the second scenario reverse the roles of p2 to terminate with 5 and

p1 to have just posted 1. Observe that in the first scenario the outputs should eventually be in

{1, 2} and in the second scenario in {4, 5}. Now schedule p3 (with input 3) and let it run without

interference until termination. Both scenarios are indistinguishable to p3, and whatever it outputs

is incompatible with at least one of the scenarios. �

2.3 Impossibility of MC(n, 2n− 2)

In Sections 3 and 4 we show that MC(n, 2n− 1) and Renaming(n, 2n− 1) are solvable obliviously.

Renaming(n, 2n − 2) is unsolvable read-write wait-free [8, 11], and hence not solvable obliviously

either. Theorem 9 shows a reduction from Renaming(n, 2n − 2) to MC(n, 2n − 2). This implies

that MC(n, 2n− 2) is not solvable read-write wait-free, and hence also not solvable obliviously.

Theorem 9 Renaming(n, 2n− 2) is read-write wait-free reducible to MC(n, 2n− 2).

Proof. Whenever we say algorithm in the proof, we shall mean a read/write wait-free distributed

algorithm.

Suppose that there is an algorithm for the MC(n, 2n−2) task. Recall that there is an algorithm

for the Renaming(n− 1, 2n− 3) task. By using both algorithms, we shall design an algorithm for

the Renaming(n, 2n− 2) task. The basic observation is that if fewer than n processors participate

then Renaming(n, 2n− 2) is equivalent to Renaming(n− 1, 2n− 3), and if n processors participate

Renaming(n, 2n − 2) is equivalent to MC(n, 2n − 2). This suggests incorporating a “counting”

8

task that helps processors determine how many processors are participating, and based on the

outcome of the counting task they decide whether to participate in Renaming(n− 1, 2n− 3) or in

MC(n, 2n− 2).

We now provide more details. Each task is run independently (e.g., on different portions of

shared memory) so that there is no interference among tasks. When a processor first arrives

(meaning that it participates in Renaming(n, 2n − 2)) it performs the counting task. In this task

it first announces its arrival (e.g., by writing its ID into some specific location in shared memory).

Thereafter it counts (by reading the corresponding locations in shared memory) how many other

processors have arrived. If the count shows that the total number of arriving processors (including

itself) is n, the processor joins the MC(n, 2n − 2) task, with a private input value of 1. If on the

other hand the count is smaller, the processor first joins the Renaming(n − 1, 2n − 3) task (again

with input 1). However, a processor that completes the Renaming(n− 1, 2n− 3) task is not done

(because by the time of its arrival and the time that it completed the Renaming(n− 1, 2n− 3) task

it could be that additional processors arrived and are running the MC(n, 2n−2) task, thus leading

to incompatibilities in the outputs). Instead, it joins the MC(n, 2n−2) task, using his output from

Renaming(n− 1, 2n− 3) as input to MC(n, 2n− 2).

It is not difficult to verify the following claims:

1. The total number of processors that ever run the Renaming(n − 1, 2n − 3) task is at most

n− 1, and hence this task runs properly.

2. If the total number of participating processors is at most n− 1 then the output is that of the

Renaming(n− 1, 2n− 3) task, and hence legal for Renaming(n, 2n− 2).

3. If the total number of participating processors is n then the output is that of the MC(n, 2n−2)

task, and hence legal for Renaming(n, 2n− 2).

The above claims imply the theorem. �

2.4 Cyclic Finite Program (Word)

The definition of oblivious algorithms in Section 2.2 postulates that as a function of its input,

each processor selects an (infinite) sequence of outputs. For the Renaming task, processors have

no input (or alternatively, are assumed to always have the input 1), and hence each processor has

only one sequence. For MC there are m possible inputs that a processor may have, and hence our

model allows each processor to have m different sequences, one for each input. Nevertheless, our

constructions of oblivious algorithms all have the property that the same sequence is used for all

inputs. Moreover, we consider finite sequences over which the processor goes cyclically. In the MC

task one can designate m locations in the word, each corresponding to a possible output that has

been dictated by the input to the processor. The infinite word for each input is then attained by

advancing cyclically on the word starting from that designated location. In fact, we strengthen the

scheduler; If an output appears in the word more than once, every appearance of the output is a

valid starting point for the MC program (providing the scheduler with more choices). This makes

the MC program self-stabilizing [5, 6], as mentioned in the introduction.

2.5 Simplified Oblivious Model for MC and Renaming

Our general model for oblivious algorithms is described using the asynchronous scheduler (Section

2.2). The asynchronous scheduler enjoys a large degree of freedom in choosing which processor

9

to move. To simplify the design and analysis of oblivious algorithms, it is convenient to con-

sider simpler schedulers that have fewer degrees of freedom, but are nevertheless equivalent to the

asynchronous scheduler in their power to prevent successful completion of tasks. Our oblivious

algorithms for MC and Renaming use only a simple collision predicate. That is, a processor can

become enabled by the asynchronous scheduler only if it is involved in a collision, and may be moved

to the DONE set only if not involved in a collision. The simple nature of this collision predicate

allows us to present a sequence of schedulers that appear to be successively weaker, though all are

in fact equivalent (with respect to MC and Renaming). The results in this section will be presented

only with respect to the MC task, but at the end of this section we explain how to extend them to

Renaming.

Terminology. Whenever we say that two schedulers are equivalent it means that a collection

of n words over an alphabet of m chairs forms an oblivious MC(n,m) algorithm with respect to

one scheduler if and only if it forms an oblivious MC(n,m) algorithm with respect to the other

scheduler. I.e., one scheduler has an infinite run from some initial configuration with a set of n

words if and only if the other scheduler has.

Recall that the asynchronous scheduler maintains several sets, P (for those processors that are

participating), E (for those processors that may move at the current or some future round), and

DONE (for those processors that will move no more). The set E gives the asynchronous scheduler

its flexibility and freedom to move processors that have been in conflict at some point in the future.

We now present a scheduler that makes only limited use of the set P , and does not use the set

DONE.

Quiescent scheduler. It is a scheduler for which the set P never changes. That is, every processor

that participates in the execution is added to P (and posts a proposed output) immediately as

the execution begins (rather than at a point in time determined by the scheduler). Moreover,

no processor is ever told to halt (and hence there is no need for the set DONE). Processors

that are never told to move from some point, simply become quiescent. When all processors are

quiescent the scheduler has no more moves, and the execution terminates. Other than putting all

participating processors in P upfront and not having a DONE set, the quiescent scheduler behaves

like the asynchronous scheduler. An oblivious MC(n,m) protocol is required to force the quiescent

scheduler to reach a configuration in which E is empty and there are no collisions. Conversely, a

quiescent scheduler foils a proposed oblivious algorithm if it can generate an infinite execution in

which in every configuration either E is nonempty or there is a collision.

Proposition 10 The asynchronous scheduler and the quiescent scheduler are equivalent.

Proof. Asynchronous scheduler at least as strong as quiescent scheduler. All moves available to

the quiescent scheduler are also available to the asynchronous scheduler. Hence if the quiescent

scheduler has an infinite run, the asynchronous scheduler can force an infinite execution as well (by

imitating the quiescent scheduler).

Quiescent scheduler at least as strong as asynchronous scheduler. For an asynchronous scheduler

to foil a proposed oblivious MC(n,m) algorithm, it needs to generate an infinite execution. The

quiescent scheduler can imitate the asynchronous scheduler with the following differences. When-

ever the asynchronous scheduler places a processor in the DONE set (there are at most n rounds in

which this happens), the quiescent scheduler does not do so (and drops the round if no other action

was taken in this round). Whenever the asynchronous scheduler places a processor in P (there are

at most n rounds in which this happens), the quiescent scheduler instead places the processor in

P in the first round. All other moves of the asynchronous scheduler remain legal for the quiescent

10

scheduler, and hence infinite executions for the asynchronous scheduler result in infinite executions

for the quiescent scheduler. �

Our next goal is to get rid of the set E.

Immediate scheduler. The immediate scheduler is similar to the quiescent scheduler, except

that it does not maintain a set E of enabled processors. Instead, in each round it can only select

processors that are currently involved in a collision and move them. It is important to note that in a

round the immediate scheduler does not need to select all processors that are involved in a collision

– it may select a nonempty subset of its choice. An oblivious MC(n,m) protocol is required to

force the immediate scheduler to reach a configuration in which there are no collisions. Conversely,

an immediate scheduler foils a proposed oblivious MC(n,m) algorithm if it can generate an infinite

execution never reaching a configuration in which there are no more collisions.

Proposition 11 The quiescent scheduler and the immediate scheduler are equivalent.

Proof. The immediate scheduler is a special case of the quiescent scheduler (essentially it places

processors in E and moves them at the same round). Hence it remains to show that the immediate

scheduler is at least as strong as the quiescent scheduler. This is equivalent to showing the following

statement: whenever there is an infinite run of the quiescent scheduler, there is also an infinite run

of a quiescent scheduler in which whenever it places a processor in E, it moves it in the same round.

We prove this last statement by a double induction on the round t (increasing) and the number

k of processors that violate this statement in round t (decreasing until k = 0, and thus causing t

to increase). Our inductive proof has the property that some rounds might become empty in the

process (contain no action on behalf of the scheduler). However, despite this, every infinite run

transforms into an infinite run, because the number of processor moves is kept unchanged.

Given a proposed oblivious MC(n,m) algorithm and an infinite execution by the quiescent

scheduler, let t be the first round in which there is a processer added to E and not moved in the

same round, and let k ≥ 1 be the number of such processors in round t. Pick an arbitrary processor

p added to E in round t and not moved in this round. If p is not moved even in any future round,

simply do not put p in E. This decreases k and the inductive step is done. Alternatively, if p is

moved in a future round, say round t′ > t, we consider two cases. In one case there is some round

t” with t < t” ≤ t′ in which p is involved in a collision. In this case, rather than placing p in E in

round t, simply do this in round t” > t instead. This decreases k and the inductive step is done. In

the other case, there is no such round t”. In this case, move p in round t rather than round t′. This

also decreases k by one. Observe that all moves available to the scheduler between rounds t and t′

are still available also after this change in the scheduler, since p could not contribute to enabling

processors within this interval of rounds. �

Having eliminated the sets E and DONE, we now turn our attention to limiting the number

of processors that can be moved in a round.

Pairwise immediate scheduler. This is similar to the immediate scheduler but with the following

restriction. In every round, the pairwise immediate scheduler can select any two processors currently

in collision with each other, and move either one of them, or the other, or both. Equivalently, in

every round either only one processor (involved in a collision) moves, or two processors that share

the same chair.

Proposition 12 The immediate scheduler and the pairwise immediate scheduler are equivalent.

11

Proof. The pairwise immediate scheduler is a special case of the immediate scheduler. Hence it

remains to show that whenever there is an infinite run with the immediate scheduler, there is also

an infinite run with the pairwise immediate scheduler. We prove this last statement by a double

induction on the round t and the number k of processors that move in round t.

Given a proposed oblivious MC(n,m) algorithm and an infinite execution by the immediate

scheduler, let t be the first round in which the moves were not consistent with a pairwise immediate

scheduler and let k be the number of processors that move in round t. There are two cases to

consider. In one case the set SE of processors that moved shared in round t the same chair and

k ≥ 3. Break round t into two rounds, pushing future rounds by one. In the first of them (round

t) move only one of the processors from SE and in the second round (round t + 1) move the rest

(they can still move because there are at least two of them). This completes the inductive step

with respect to t. The other case is that the set SE of processors that moved in round t collided

on at least two different chairs. Pick one of these chairs, say chair c, and let SE(c) be the set of

those processors in SE that in round t collide in chair c. Break round t into two rounds, pushing

future rounds by one. In the first of them (round t) move only those processors in SE(c), and in

the second round (round t+1) move those processors in SE−SE(c). This completes the inductive

step (as either k decreased or t increased). �

The use of the pairwise immediate scheduler (which as we showed is equivalent to the asyn-

chronous scheduler) helps simplify the proofs of theorems 1, 2 and 4. However, for the proof of

Theorem 3 even the pairwise immediate scheduler has too many degrees of freedom. It is true that

it has to pick only one pair of processors to move (and then either move only one or both of them),

but it is still free to pick a pair of its choice (among those pairs that collide). We would like to

eliminate this degree of freedom.

Canonical Scheduler. The canonical scheduler is similar to the pairwise immediate scheduler but

with the following difference. In every round in which there is a collision, one designates a canonical

pair. This is a pair of processors currently in collision with each other, but they are not chosen

by the scheduler, but rather dictated to the scheduler. Given the canonical pair, the scheduler can

move either one of the these processors, or the other, or both. But how is the canonical pair chosen?

In the current paper this does not really matter to us, as long as the choice is deterministic. For

concreteness, we shall assume the following procedure. Consider all pairs of processors and fix an

arbitrary order on them. In a configuration with a collision, the canonical pair is the first pair of

players in the order that share a chair.

We now prove the equivalence of the canonical scheduler with the immediate scheduler (the

proof does not become any simpler if we replace in it immediate scheduler by pairwise immediate

scheduler).

Proposition 13 The immediate scheduler and the canonical scheduler are equivalent.

Proof. The canonical scheduler is a special case of the immediate scheduler. Hence it remains to

show that whenever there is an infinite run of the immediate scheduler, there is also an infinite run

with the canonical scheduler. We prove this last statement by induction on the round t.

Given a proposed oblivious MC(n,m) algorithm and an infinite execution by the immediate

scheduler, let t be the first round in which the moves were not consistent with a canonical scheduler.

That is, the canonical pair at round t consists of two processors (say P1 and P2, without loss of

generality) that collide on a chair (say, chair c1), whereas the immediate scheduler moved at least

one processer not from the canonical pair. We consider several cases.

12

Case 1. The immediate scheduler never moves P1 in any round from t onwards. In this case

move P2 in round t. Note that all moves (except for the move just performed, moving P2 away

from c1) performed by the immediate scheduler from round t onwards are still available to this

scheduler (because chair c1 remains occupied). Hence the total number of moves in the schedule

did not change, whereas t increases by one, completing the inductive step. The same argument can

be applied with P1 and P2 exchanged.

Case 2. The immediate scheduler moves P2 out of c1 in a later round than it moves P1. In

this case move P1 in round t. Again, all moves (except for the move just performed, moving P1

away from c1) performed by the immediate scheduler from round t onwards are still available to

this scheduler. The same argument can be applied with P1 and P2 exchanged.

Case 3. The immediate scheduler moves both P1 and P2 out of c1 in the same round t′ ≥ t.

There are two subcases to consider. In one, there is no processor other than P1 and P2 on chair c1
in any of the rounds t, . . . , t′. In this subcase, move P1 and P2 in round t (pushing future rounds by

one). All moves performed by the immediate scheduler from round t to t′ are still available to this

scheduler. The other subcase is that there is some round t ≤ t” ≤ t′ in which some other processor

say P3 is on chair c1. Consider the largest such t”. Move P1 in round t (pushing future rounds

by one) and P2 in round t” + 1 (the round that previous to the pushing of rounds was round t”),

together with whoever else is moved at that round. �

Remark. The results of this section apply also for Renaming and not only for MC. However,

the proofs for Renaming need to be slightly changed. The difference is that in Renaming an

oblivious algorithm fails not only if the scheduler manages to exhibit an infinite execution, but

also if the scheduler manages to make a processor output a value larger than 2k − 1 when k is

the number of participating processors. Modifying the proofs so that they handle also this form of

failure is straightforward, and we omit the details.

3 An oblivious MC algorithm with 2n− 1 chairs

3.1 Preliminaries

In this section we prove the upper bound that is stated in Theorem 1. We start with some

preliminaries. The length of a word w is denoted by |w|. The concatenation of words is denoted

by ◦. The r-th power of w is denoted by wr = w ◦ w . . . ◦ w (r times). Given a word π and a

letter c, we denote by c ⊗ π the word in which the letters are alternately c and a letter from π in

consecutive order. For example if π = 2343 and c = 1 then c⊗π = 12131413. A collection of words

π1, π2, ..., πn is called terminal if no schedule can fully traverse even one of the πi. Note that we

can construct a terminal collection from any MC algorithm just by raising each word to a high

enough power.

We now introduce some of our basic machinery in this area. We first show how to extend

terminal sets of words.

Proposition 14 Let n,m,N be integers with 1 < n < m. Let Π = {π1, . . . πN} be a collection of

m-full words such that

every n of these words form an oblivious MC(n,m) algorithm. (1)

Then Π can be extended to a set of N + 1 m-full words that satisfy condition (1).

13

Proof. Suppose that for every choice of n words from Π and for every initial configuration no

schedule lasts more than t steps. (By the pigeonhole principle t ≤ Ln, where L is the length

of the longest word in Π). For a word π, let π′ be defined as follows: If |π| ≥ t, then π′ = π.

Otherwise it consists of the first t letters in πr where r > |π|/t. The new word that we introduce

is πN+1 = π′1 ◦ π′2 ◦ . . . ◦ π′n. It is a full word, since it contains the full word π1 as a sub-word.

We need to show that every set Π′ of n − 1 words from Π together with πN+1 constitute an

oblivious MC(n,m) algorithm. Observe that in any infinite schedule involving these words, the

word πN+1 must move infinitely often. Otherwise, if it remains on a letter c from some point on,

replace the word πN+1 by an arbitrary word from Π−Π′ and stay put on the letter c in this word.

This contradicts our assumption concerning Π. (Note that this word contains the letter c by our

fullness assumption.) But πN+1 moves infinitely often, and it is a concatenation of n words whereas

Π′ contains only n − 1 words. Therefore eventually πN+1 must reach the beginning of a word πα
for some πα 6∈ Π′. From this point onward, πN+1 cannot proceed for t additional steps, contrary

to our assumption. �

Note that by repeated application of Proposition 14, we can construct an arbitrarily large

collection of m-full words that satisfy condition (1).

We next deal with the following situation: Suppose that π1, π2, ..., πm is a terminal collection,

and we concatenate an arbitrary word σ to one of the words πi. We show that by raising all words

to a high enough power we again have a terminal collection in our hands.

Lemma 15 Let π1, π2, ..., πp be a terminal collection of full words over some alphabet. Let σ be an

arbitrary full word over the same alphabet. Then the collection

(π1)
k, (π2)

k, ..., (πi−1)
k, (πi ◦ σ)2, (πi+1)

k, ..., (πp)
k

is terminal as well, for every 1 ≤ i ≤ p, and every k ≥ |πi|+ |σ|.

Proof. We split the run of any schedule on these words into periods through which we do not

move along the word (πi ◦ σ)2. We claim that throughout a single period we do not traverse a

full copy of πj in our progress along the word (πj)
k. The argument is the same as in the proof

of Proposition 14. By pasting all these periods together, we conclude that during a time interval

in which we advance ≤ |πi| + |σ| − 1 positions along the word (πi ◦ σ)2 every other word (πj)
k

traverses at most |πi| + |σ| − 1 copies of πj . In particular, there is a whole πj in the j-th word in

the collection that is never visited. If the schedule ends in this way, no word is fully traversed, and

our claim holds.

So let us consider what happens when a schedule makes ≥ |πi| + |σ| steps along the word

(πi ◦σ)2. We must reach at some moment the start of πi in our traversal of the word (πi ◦σ)2. But

our underlying assumption implies that from here on, no word can fully traverse the corresponding

πk (including πi). Again, no word is fully traversed, as claimed. �

Lemma 15 yields immediately:

Corollary 16 Let π1, π2, ..., πp be a terminal collection of full word over some alphabet, and let

πp+1, πp+2, ..., πn be arbitrary full words over the same alphabet. Then the collection

(π1 ◦ π2 ◦ ... ◦ πn)2, (π1)
k, (π2)

k, ..., (πi−1)
k, (πi+1)

k, ..., (πp)
k

is terminal as well. This holds for every 1 ≤ i ≤ p and k ≥
∑n

i=1 |πi|.

This is a special case of Lemma 15 where σ = πi+1 ◦ . . . πn ◦ π1 . . . ◦ πi−1.

14

3.2 The MC(n, 2n− 1) upper bound

The proof we present shows somewhat more than Theorem 1 says. We do this, since the scheduler

can “trade” a player P for a chair c. Namely, he can keep P constantly on chair c. This allows

the scheduler to move any other player past c-chairs. In other words this effectively means the

elimination of chair c from all other words. This suggests the following definition: If π is a word

over alphabet C and B ⊆ C, we denote by π(B) the word obtained from π by deleting from it the

letters from C \B.

Our construction is recursive. An inductive step should add one player (i.e., a word) and two

chairs. We carry out this step in two installments: In the first we add a single chair and in the

second one we add a chair and a player. Both steps are accompanied by conditions that counter

the above-mentioned trading option.

Proposition 17 For every integer n ≥ 1

• There exist full words s1, s2, ..., sn over the alphabet {1, 2, ..., 2n− 1} such that

s1(A), s2(A), ..., sp(A) is a terminal collection for every p ≤ n, and every subset

A ⊆ {1, 2, ..., 2n− 1} of cardinality |A| = 2p− 1.

• There exist full words w1, w2, ..., wn over alphabet {1, 2..., 2n}, such that

w1(B), w2(B), ..., wp(B) is a terminal collection for every p ≤ n, and every subset

B ⊆ {1, 2, ..., 2n} of cardinality |B| = 2p− 1.

The words s1, s2, ..., sn in Proposition 17 constitute a terminal collection and are hence an

oblivious MC(n, 2n− 1) algorithm that proves the upper bound part of Theorem 1. In the rest of

this section we prove Proposition 17.

Proof.

As mentioned, the proof is by induction on n. For n = 1 clearly s1 = 11 and w1 = 1122 satisfy

the conditions.

In the induction step we use the existence of s1, s2, ..., sn to construct w1, w2, ..., wn. Likewise

the construction of s1, s2, ..., sn+1 builds on the existence of w1, w2, ..., wn.

The transition from w1, w2, ..., wn to s1, s2, ..., sn+1:

To simplify notations we assume that the words w1, w2, ..., wn in the alphabet {2, 3, ..., 2n+ 1}
(rather than {1, 2, ..., 2n}) satisfy the proposition. Let k :=

∑
|wi| and define:

s1 : = 1⊗ ((w1 ◦ w2 ◦ ... ◦ wn)2(2n+1))

∀i = 2, . . . n+ 1 si : = (wi−1)
k(2n+1) ◦ 1

Fix a subset A ⊆ {1, 2, ..., 2n + 1} of cardinality |A| = 2p − 1 with p ≤ n + 1, and let us show

that s1(A), s2(A), ..., sp(A) is a terminal collection. There are two cases to consider:

We first assume 1 /∈ A. This clearly implies that p ≤ n (or else A = {1, 2, ..., 2n + 1} and in

particular 1 ∈ A). In this case the collection is:

s1(A) : = ((w1(A) ◦ w2(A) ◦ ... ◦ wn(A))2(2n+1))

∀i = 2, . . . p si(A) : = (wi−1(A))k(2n+1)

15

By the induction hypothesis, the collection w1(A), w2(A), ..., wp−1(A), wp(A) is terminal. We

apply Corollary 16 and conclude that

(w1(A) ◦ w2(A) ◦ ... ◦ wn(A))2, (w1(A))k, (w2(A))k, ..., (wp−1(A))k

is terminal as well. But the si are obtained by taking (2n + 1)-th powers of these words, so that

s1(A), s2(A), ..., sp(A) is terminal as needed.

We now consider what happens when 1 ∈ A.

We define F1 := (w1(A) ◦w2(A) ◦ ... ◦wn(A))2 and for for j > 1, let Fj := (wj−1(A))k. We refer

to Fi as the i-th block. In our construction each word has 2n+ 1 blocks, ignoring chair 1.

At any moment throughout a schedule we denote by O1 the set of players in {P2, P3, ..., Pp} that

currently occupy chair 1. We show that during a period in which the set O1 remains unchanged,

no player can traverse a whole block. The proof splits according to whether O1 is empty or not.

Assume first that O1 6= ∅, and pick some i > 1 for which Pi occupies chair 1 during the current

period. As long as O1 remains unchanged, Pi stays on chair 1, so the words that the other players

repeatedly traverse are as follows: For P1 it is

w1(A\{1}) ◦ w2(A\{1}) ◦ ... ◦ wn(A\{1})

and for Pj with p ≥ j 6= i ≥ 2 it is

wj−1(A\{1})

We now show that no player can traverse a whole block (as defined above). Observe that the

collection {wν(A\{1})|ν = 1, . . . , p−1} (including, in particular the word wi−1(A\{1})) is terminal.

This follows from the induction hypothesis, because |A\{1}| = 2p− 2, and because the property of

being terminal is maintained under the insertion of new chairs into words. Applying Corollary 16

to this terminal collection implies that this collection of blocks is terminal as well.

We turn to consider the case O1 = ∅. In this case player 1 cannot advance from a none-1

chair to the next none-1 chair, since the two are separated by the presently unoccupied chair 1.

We henceforth assume that player P1 stays put on chair c 6= 1, but our considerations remain

valid even if at some moment player P1 moves to chair 1. (If this happens, he will necessarily

stay there, since O1 = ∅). We are in a situation where players P2, P3, ..., Pp traverse the words

w1(A\{1, c}), w2(A\{1, c}), ..., wp−1(A\{1, c}) (chair c which is occupied by player P1 can be safely

eliminated from these words). But |A\{1, c}| = 2p − 3, so by the induction hypothesis no player

can traverse a whole wi(A\{1, c}), so no player can traverse a whole block.

We just saw that during a period in which the set O1 remains unchanged, no player can traverse

a whole block.

Finally, assume towards contradiction that Pj fully traverses sj for some index j, and consider

the first occurrence of such an event. It follows that Pj has traversed 2n+ 1 blocks, so that the set

O1 must have changed at least 2n+ 1 times during the process. However, for O1 to change, some

Pi must either move to, or away from a 1-chair in si. But 1 occurs exactly once in si, so every Pi
can account for at most two changes in O1, a contradiction.

The transition from s1, s2, ..., sn to w1, w2, ..., wn:

We assume that the words s1, s2, ..., sn in the alphabet {2, 3, ..., 2n} satisfy the proposition. Let

k :=
∑
|si| and define:

16

w1 : = 1⊗ ((s1 ◦ s2 ◦ ... ◦ sn)2(2n+1))

∀i = 2, . . . , n wi : = (si−1)
k(2n+1) ◦ 1

Fix a subset B ⊆ {1, 2, ..., 2n} with |B| = 2p− 1. Then

w1(B) = 1⊗ ((s1(B) ◦ s2(B) ◦ ... ◦ sn(B))2(2n+1))

∀i = 2, . . . , p wi(B) = (si−1(B))k(2n+1) ◦ 1

are exactly the same as in the previous transition just by replacing s with w and A with B (in this

case the induction hypothesis is on si and we prove for wi). So exactly the same considerations

prove that w1(B), w2(B), ..., wm(B) is a terminal collection. �

4 The oblivious Renaming(n, 2n− 1) algorithm

The ideas developed to solve the musical chairs problem and prove Theorem 1 turn out to yield as

well an answer to the oblivious Renaming problem and a proof of Theorem 2. The rules are the

same as in the MC problem, except that the scheduler cannot select the initial positions, and every

word is started at its first letter. In order to prove Theorem 2 we should construct a collection

of full words ΠN = {s1, s2, ..., sN} over the alphabet [2N − 1] such that for every n ≤ N and for

every set of n words from ΠN the following holds: Every schedule that starts from the first letter

in each of these words reaches a safe configuration and all players only visits chairs from the set

{1, . . . , 2n− 1}.
We note that our construction yields very long words - triply exponential in N . It is an

interesting challenge to accomplish this with substantially shorter words.

Proof.[Theorem 2] By Proposition 14 and Theorem 1, we can construct for each 1 ≤ i, n ≤ N a

word πi,n that is [2n−1]-full such that every set of n words in the set {πi,n|i = 1, . . . , N} constitute

an oblivious MC(n, 2n− 1) protocol.

We show that with a proper choice of the exponents l1, . . . , lN , the Theorem holds with the

words si = πl1i,1 ◦ π
l2
i,2 ◦ . . . ◦ π

lN
i,N .

The theorem follows if we can show that for every 1 ≤ n ≤ N and every subset J ⊆ [N]

of cardinality |J | = n the following holds: In every possible schedule that starts each word in

{sj |j ∈ J} from its first letter, no player reaches a position beyond the subword πlnj,n. Consider any

point in such a schedule. Say that player Pj (for some j ∈ J) is leading if it currently resides in the

stretch πlnj,n of sj . Otherwise, we say that j is trailing. We observe that during a period of time in

which no trailing player changes position, no leading player can traverse a complete copy of πj,n.

To see this, consider an arbitrary MC schedule with the words {πj,n|j ∈ J}. We start this schedule

as follows: Every leading player maintains his position from the original renaming schedule and

every trailing player stays put on the same chair that he is currently occupying. (Such a chair can

be found in the word πj,n since it is [2n − 1]-full). The claim follows since the words {πj,n|j ∈ J}
constitute an oblivious MC(n, 2n− 1) protocol.

It follows that no leading player Pj can traverse more than
∑

ν<n,i∈J\{j} |πi,ν |lν copies of πj,n
in sj . Our claim follows if we choose lj that is larger than this integer.

�

17

5 Oblivious MC algorithms via the probabilistic method

We start with an observation that puts Theorems 3 and 4 (as well as Theorem 1) in an interesting

perspective. The expected number of pairwise collisions in a random configuration is exactly(
n
2

)
/m. In particular, when m � n2, most configurations are safe (namely, have no collisions).

Therefore, it in not surprising that in this range of parameters n random words would yield an

oblivious MC(n,m) algorithm. However, when m = O(n), only an exponentially small fraction of

configurations are safe, and the existence of oblivious MC(n,m) algorithms is far from obvious.

5.1 Full words with O(n) chairs, allowing repetitions

Theorem 3 can be thought of as a (nonconstructive) derandomization of the randomized MC algo-

rithm in which players choose their next chair at random (and future random decisions of players

are not accessible to the scheduler). Standard techniques for derandomizing random processes in-

volve taking a union bound over all possible bad events, which in our case corresponds to a union

bound over all possible schedules. The asynchronous scheduler has too many options (and so does

the immediate scheduler), making a union bound too wasteful. For this reason, we shall consider

in this section the canonical scheduler, which is as powerful as the asynchronous scheduler (see

Section 2.5). In every unsafe configuration, the choice of canonical pair is deterministic and the

canonical scheduler has only three possible moves to choose from, which makes it viable to use a

union bound. We now prove Theorem 3.

Proof. Each of the N words is chosen independently at random as a sequence of L chairs, where

each chair in the sequence is chosen independently at random. We show that with high probability

(probability tending to 1 as the value of the constant c grows), this choice satisfies Theorem 3.

It is easy to verify that in this random construction, with high probability, all words are full. To

see this note that the probability that chair j is missing from word i is ((m−1)/m)L. Consequently,

the probability that a word chosen this way is not full is ≤ m((m−1)/m)L. Therefore, the expected

number of non-full words is ≤ m · N · ((m − 1)/m)L. But with our choice of parameters m = 7n

and L = cn logN , we see that m ·N · ((m− 1)/m)L = o(1), provided that c is large enough.

In our approach to the proof we keep track of all possible schedules. To this end we use “a

logbook” that is the complete ternary tree T of depth L rooted at r. Associated with every node

v of T is a random variable Xv. The values taken by Xv are system configurations. For a given

choice of words and an initial system configuration we define the value of Xr to be the chosen

initial configuration. Every node v has three children corresponding to the three possible next

configurations that are available to the canonical scheduler at configuration Xv.

Another important ingredient of the proof is a potential function (defined below) that maps

system configurations to the nonnegative reals. It is also convenient to define an (artificial) “empty”

configuration of 0 potential. Every safe configuration has potential 1, and every non-empty unsafe

configuration has potential > 10. If the node u is a descendant of v and the system configuration

Xv is safe, then we define Xu to be the empty configuration.

We thus also associate with every node of T a nonnegative random variable P = Pv that is

is the potential of the (random) configuration Xv. The main step of the proof is to show that if

v1, v2, v3 are the three children of v, then
∑3

i=1 E(Pvi) ≤ rE(Pv) for some constant r ≤ 0.99. (Note

that this inequality holds as well if Xv is either safe or empty). This exponential drop implies that

E(
∑

v is a leaf of T

(Pv)) =
∑

v is a leaf of T

E(Pv) = o(1)

18

provided that L is large enough. This implies that with probability 1 − o(1) (over the choice of

random words) all leaves of T correspond to an empty configuration. In other words every schedule

terminates in fewer than L steps.

We turn to the details of the proof. A configuration with i occupied chairs is defined to have

potential xn−i, where x > 1 is a constant to be chosen later. In a nonempty configuration the

potential can vary between 1 and xn−1, and it equals 1 iff the configuration is safe.

Consider a configuration of potential xn−i (with i < n), where the canonical pair is (α, β). It

has three children representing the move of either α or β or both. Let us denote ρ = i/m and

ρ′ = (i − 1)/m. When a single player moves, the number of occupied chairs can stay unchanged,

which happens with probability ρ. With probability 1 − ρ one more chair will be occupied and

the potential gets divided by x. Consider next what happens when both players move. Here

the possible outcomes (in terms of number of occupied chairs) depend on whether there is an

additional player γ currently co-occupying the same chair as α and β. It suffices to perform

the analysis in the less favorable case in which there is no such player γ, as this provides an

upper bound on the potential also for the case that there is such a player. With probability (ρ′)2

both α and β move to occupied chairs and the potential gets multiplied by x. With probability

ρ′(1 − ρ′) + (1 − ρ′)ρ = (ρ + ρ′)(1 − ρ′) the number of occupied chairs (and hence the potential)

does not change. With probability (1− ρ′)(1− ρ) the number of occupied chairs grows by one and

the potential gets divided by x.

It follows that if v is a node of T with children v1, v2, v3 and if the configuration Xv is unsafe and

nonempty then
∑3

i=1 E(Pvi) ≤ E(Pv)(2ρ+ 2(1− ρ)/x+ (ρ′)2x+ (ρ+ ρ′)(1− ρ′) + (1− ρ)(1− ρ′)/x).

Recall that x > 1 and ρ′ < ρ < 1. This implies that the last expression increases if ρ′ is replaced

by ρ, and thereafter it is maximized when ρ attains its largest possible value q = (n − 1)/m. We

conclude that

3∑
1

E(Pvi) ≤ E(P)(2q + 2(1− q)/x+ q2x+ 2q(1− q) + (1− q)2/x).

We can choose q = 1/7 and x = 23/2 to obtain
∑3

i=1 E(Pvi) ≤ rE(Pv) for r < 0.99. This guarantees

an exponential decrease in the expected sum of potentials and hence termination, as we now explain.

It follows that for every initial configuration the expected sum of potentials of all leaves at

depth L does not exceed xn−1 (the largest possible potential) times rL. On the other hand, if

there is at least one leaf v for which the configuration Xv is neither safe nor empty, then the sum

of potentials at depth L is at least x > 1. Our aim is to show that with high probability (over

the choice of N words), all runs have length < L: (i) For every choice of n out of the N words,

(ii) Each selection of an initial configuration, and (iii) Every canonical scheduler’s strategy. The n

words can be chosen in
(
N
n

)
ways. For every n words, there are Ln possible initial configurations.

The probability of length-L run from a given configuration is at most xn−1rL, where x = 23/2 and

r < 0.99. Therefore our claim is proved if
(
N
n

)
· xn−1rL ≤ o(1). This inequality clearly holds if we

let L = cn logN with c a sufficiently large constant. This completes the proof of Theorem 3.

�

A careful analysis of the proof of Theorem 3 shows that it actually works as long as m
n >

4 + 2
√

2 = 6.828... It would be interesting to determine the value of lim infn→∞
m
n for which n

long enough random words over an m-letter alphabet constitute, with high probability, an oblivious

MC(n,m) protocol.

19

5.2 Permutations over O(n) chairs

The argument we used to prove Theorem 3 is inappropriate for the proof of Theorem 4. Theo-

rem 4 deals with random permutations, whereas in the proof of Theorem 3 we use words of length

Ω(n log n). (Longer words are crucial there for two main reasons: To guarantee that words are

full and to avoid wrap-around. The latter property is needed to guarantee independence.) Indeed

in proving Theorem 4 our arguments are substantially different. In particular, we work with a

pairwise immediate scheduler, and unlike the proof of Theorem 3, there does not appear to be any

significant benefit (e.g., no significant reduction in the ratio m
n) if a canonical scheduler is used

instead.

We first prove the special case N = n of Theorem 4.

Theorem 18 If m ≥ cn where c > 0 is a sufficiently large constant, then there is a family of n

permutations on [m] which constitute an oblivious MC(n,m) protocol.

We actually show that with high probability, a set of random permutations π1, . . . , πn has the

property that in every possible schedule the players visit at most L = O(m logm) chairs. Our

analysis uses the approach of deferring random decisions until they are actually needed. For each

of the mn possible initial configuration, we consider all possible sequences of L locations. For each

such sequence we fill in the chairs in the locations in the sequence at random, and prove that the

probability that this sequence represents a possible schedule is extremely small – so small that even

if we take a union bound over all initial configurations and over all sequences of length L, we are

left with a probability much smaller than 1.

The main difficulty in the proof is that since L � m some players may completely traverse

their permutation (even more than once) and therefore the chairs in these locations are no longer

random. To address this, we partition the sequence of moves into L/t blocks, where in each block

players visit a total of t locations. We can and will assume that t divides L. We take t = δm for

some sufficiently small constant δ, and n = εm, where ε is a constant much smaller than δ. This

choice of parameters implies that within a block, chairs are essentially random and independent.

To deal with dependencies among different blocks, we classify players (and their corresponding

permutations) as light or heavy. A player is light if during the whole schedule (of length L) it visits

at most t/ logm = o(t) locations. A player that visits more than t/ logm locations during the whole

sequence is heavy. Observe that for light players, the probability of encountering a particular chair

in some given location is at most 1
m−o(t) ≤

1+o(1)
m . Hence, the chairs encountered by light players

are essentially random and independent (up to negligible error terms). Thus it is the heavy players

that introduce dependencies among blocks. Every heavy player visits at least t/ logm locations, so

that nh, the number of heavy players does not exceed nh ≤ (L logm)/t = O(log2m). The fact that

the number of heavy players is small is used in our proof to limit the dependencies among blocks.

The following lemma is used to show that in every block of length t the number of locations

that are visited by heavy players is not too large. Consequently, sufficiently many locations are

visited by light players. In the lemma we use the following notation. A segment of k locations in

a permutation is said to have volume k − 1. Given a collection of locations, a chair is unique if it

appears exactly once in these locations.

Lemma 19 Let nh ≤ m/ log2m and let δ > 0 be a sufficiently small constant. Consider n random

permutations over [m]. Select any nh of the permutations and a starting location in each of them.

Choose next intervals in the selected permutations with total volume t′ for some t/10 ≤ t′ ≤ t. With

probability 1− o(1) for every such set of choices at least 4t′/5 of the chairs in the chosen intervals

are unique.

20

Proof. We first note that we will be using the lemma with nh = O(log2 n). Also, if a list of letters

contains u unique letters (i.e., they appear exactly once) and r repeated letter (i.e., appearing at

least twice), then it has d = u+r distinct letters and length λ ≥ u+2r. In particular d ≤ (λ+u)/2.

There are
(
n
nh

)
ways of choosing nh of the permutations. Then, there are mnh choices for

the initial configuration. We denote by si the volume of the i-th interval, so that
∑nh

i=1 si = t′.

Therefore there are
(
t′+nh−1
nh−1

)
≤ mnh ways of choosing the intervals with total volume t′. Since the

volume of every interval is at most t′ we have that the probability that a particular chair resides

at a particular location in this interval is at most 1/(m − t′). This is because the permutation is

random and at most t′ chairs appeared so far in this interval. Therefore the probability that a

sequence of t′ labels involves less than 0.9t′ distinct chairs is at most(
m

0.9t′

)(
0.9t′

m− t′

)t′
≤

(em
0.9t′

)0.9t′ (0.9t′

m− t′

)t′
≤ et′

(
m

m− t′

)0.9t′ (t′

m− t′

)0.1t′

≤ 4t
′
(2δ)0.1t

′ � e−t
′
.

Explanation: The set of chairs that appear in these intervals can be chosen in
(
m

0.9t′

)
ways. The

probability that a particular location in this union of intervals is assigned to a chair from the chosen

set does not exceed 0.9t′

m−t′ . In addition m/(m− t′) ≤ (1 + δ), t′/(m− t′) ≤ 2δ and δ is a very small

constant.

Now we take a union bound over all choices of nh permutations, all starting locations and all

collection of intervals with total volume t′. It follows that the probability that there is a choice of

intervals of volume t′ that span ≤ nh permutations and contain fewer than 9t′/10 distinct chairs is

at most

m3nhe−t
′

= o(1).

In the above notation λ = t′ and d ≥ 0.9t′ which yields u ≥ 0.8t′ as claimed. �

Since the conclusion of this lemma holds with probability 1− o(1) we can assume that our set

of permutations satisfies it. In particular, in every collection of intervals in these permutations

with total volume t
10 ≤ t

′ ≤ t that reside in O(log2m) permutations there are at least 4t′/5 unique

chairs.

As already mentioned, we break the sequence of L locations visited by players into blocks of

t locations each. We analyze the possible runs by considering first the breakpoints profile, namely

where each block starts and ends on each of the n words. There are mn possible choices for the

starting locations. If, in a particular block player i visits si chairs, then
∑n

i=1 si = t. Consequently

the parameters s1, . . . , sn can be chosen in
(
t+n−1
n

)
≤ 2t+n ways. There are L/t blocks, so that

the total number of possible breakpoints profiles is at most mn(2t+n)L/t ≤ mn22L (here we used

the fact that t > n). Clearly, by observing the breakpoints profile we can tell which players are

light and which are heavy. We recall that there are at most O(log2m) heavy players, and that the

premise of Lemma 19 can be assumed to hold.

Let us fix an arbitrary particular breakpoints profile β. We wish to estimate the probability

(over the random choice of chairs) that some legal sequence of moves by the pairwise immediate

scheduler yields this breakpoints profile β. Let B be an arbitrary block in β. Let p(B) denote

the probability over choice of random chairs and conditioned over contents of all previous blocks in

β that there is a legal sequence of moves by the pairwise immediate scheduler that produces this

block B.

Lemma 20 For p(B) as defined above we have that p(B) ≤ 8−t.

21

Proof. The total number of chairs encountered in block B is n� t (for the initial locations) plus t

(for the moves). Recall that the set of heavy players is determined by the block-sequence β. Hence

within block B it is clear which are the heavy players and which are the light players. Let th (resp.

t` = t− th) be the number of chairs visited by heavy (resp. light) players in this block. The proof

now breaks into two cases, depending on the value of th.

Case 1: th ≤ 0.1t. Light players altogether visit n+t` chairs (n initial locations plus t` moves).

If u of these chair are unique, then they visit at most (n+ t` + u)/2 distinct chairs. But a chair in

this collection that is unique is either: (i) One of the n chairs where a player terminates his walk,

or, (ii) A chair that a light player traverses due to a collision with a heavy player, and there are

at most th of those. Consequently, the number of distinct chairs visited by light players does not

exceed (n+ t` + n+ th)/2 = t/2 + n.

Fix the set S of t/2 + n distinct chairs that we are allowed to use. There are
(

m
n+t/2

)
choices

for S. Now assign chairs to the locations one by one, in an arbitrary order. Each location has

probability of at most (1 +o(1))n+t/2m of receiving a chair in S. Since we are dealing here with light

players, we have exposed only o(m) chairs for each of them (in B and in previous blocks of β), and

as mentioned above, this can increase the probability by no more that a 1 + o(1) factor.

Hence the probability that the segments traversed by the light players contain only n + t/2

chairs is at most

(
m

n+t/2

) (
(1 + o(1))n+t/2m

)t`
≤
(

em
n+t/2

)n+t/2
2t`
(
n+t/2
m

)t`
≤ (2e)t

(
n+t/2
m

)(t`−th)/2−n
≤ (2e)t(t/m)t/4 < 8−t.

Here we used that th + t` = t, th ≤ 0.1t, tl ≥ 0.9t and n� t� m.

Case 2: th ≥ 0.1t. Let us reveal first the chairs visited by the heavy players. By Lemma 19, we

find there at least 4th/5 unique chairs. In order that the heavy players traverse these chairs, they

must be visited by light players as well. Hence the t` locations visited by light players must include

all these 0.8th pre-specified chairs. We bound the probability of this as follows. First choose for

each of the 0.8th pre-specified chairs a particular location where it should appear in the intervals

of light players. The number of such choices is ≤ t0.8th` . As mentioned above the probability that a

particular chair is assigned to some specific location is (1+o(1))/m. Therefore the probability that

0.8th pre-specified chairs appear in the light intervals is at most t0.8th` ((1 + o(1))/m)0.8th . Thus the

probability that a schedule satisfying the condition of the lemma exists is at most

t0.8th` ((1 + o(1))/m)0.8th ≤ (2t/m)0.8th ≤ (2t/m)t/15 < 8−t,

where we used that n� t� m. �

Lemma 20 implies an upper bound of p(B)L/t = 8−L on the probability there is a legal sequence

of moves by the pairwise immediate scheduler that gives rise to breakpoints profile β. Taking a

union bound over all block sequences (whose number is at most mn22L ≤ 6L, by our choice of

L = Cm logm for a sufficiently large constant C), Theorem 18 is proved.

Observe that the proof of Theorem 18 easily extends to the case that there are N = mO(1)

random permutations out of which one chooses n. We simply need to multiply the number of

possibilities by Nn, a term that can be absorbed by increasing m, similar to the way the term mn

is absorbed. In Lemma 19 we need to replace
(
n
nh

)
by
(
N
nh

)
, and the proof goes through without

any change (because nh is so small). This proves Theorem 4.

22

5.3 Explicit construction with permutations and m = O(n2)

In this section we present for every integer d ≥ 1 an explicit collection of nd permutations on

m = O(d2n2) such that every n of these permutations constitute an oblivious MC(n,m) algorithm.

This proves Theorem 5.

We let LCS(π, σ) stand for the length of the longest common subsequence of the two permuta-

tions π and σ, considered cyclically. (That is, we may rotate π and σ arbitrarily to maximize the

length of the resulting longest common subsequence). The following easy claim is useful.

Proposition 21 Let π1, . . . , πn be permutations of {1, . . . ,m} such that LCS(πi, πj) ≤ r for all

i 6= j. If m > (n− 1)r, then in every schedule none of the πi is fully traversed.

Proof. By contradiction. Consider a schedule in which one of the permutations is fully traversed,

say that π1 is the first permutation to be fully traversed. Each move along π1 reflects a collision

with some other permutation. Hence there is a permutation πi, i > 1 that has at least m/(n − 1)

agreements with π1. Consequently, r ≥ LCS(π1, πi) ≥ m
(n−1) , a contradiction. �

This yields an inexplicit oblivious MC(n,m) algorithm with m = O(n2), since (even exponen-

tially) large families of permutations in [m] exist where every two permutations have an LCS of

only O(
√
m). We omit the easy details. On the other hand, we should notice that by [4] this

approach is inherently limited and can, at best yield bounds of the form m ≤ O(n3/2).

We now present an explicit construction that uses some algebra.

Lemma 22 Let p be a prime power, let d be a positive integer and let m = p2. Then there is

an explicit family of (1 − o(1))md permutations of an m-element set, where the LCS of every two

permutations is at most 4d
√
m.

Proof. Let F be the finite field of order p. Let M := F × F, and m = p2 = |M|. Let f be

a polynomial of degree 2d over F with vanishing constant term, and let j ∈ F. We call the set

Bf,j = {(x, f(x) + j)|x ∈ F} a block. We associate with f the following permutation πf of M: It

starts with an arbitrary ordering of the elements in Bf,0 followed by Bf,1 arbitrarily ordered, then

of Bf,2 etc. A polynomial of degree r over a field has at most r roots. It follows that for every two

polynomials f 6= g as above and any i, j ∈ F, the blocks Bf,i and Bg,j have at most 2d elements in

common. There are (p− 1) · p2d−1 = (1− o(1))md such polynomials. There are p blocks in πf and

in πg, so that LCS(πf , πg) ≤ 4dp, as claimed.

�

6 Discussion and Open Problems

In this paper we introduced the notion of oblivious distributed algorithms. Our main results

concern the design of oblivious MC algorithms. We showed that m ≥ 2n − 1 chairs are necessary

and sufficient for the existence of an oblivious MC algorithm with n processors. However, our

construction involves very long words. It is interesting to find explicit constructions with m = 2n−1

chairs and substantially shorter words.

In other ranges of the problem we can show, using the probabilistic method, that oblivious

MC(n,m) algorithms exist with m = O(n) and relatively short full words. We still do not have

explicit constructions of such protocols. We would also like to determine lim inf mn such that n

random words over an m letter alphabet tend to constitute an oblivious MC(n,m) algorithm.

23

Computer simulations strongly suggest that for random permutations, a value of m = 2n − 1

does not suffice. On the other hand, we have constructed (details omitted from this manuscript)

oblivious MC(n, 2n − 1) algorithms using permutations for n = 3 and n = 4 (for the latter the

proof of correctness is computer-assisted). For n ≥ 5 we have neither been able to find such systems

(not even in a fairly extensive computer search) nor to rule out their existence.

A self contained proof of the m ≥ 2n − 1 lower bound will appear in a subsequent paper.

The following question remains open: What is the smallest m for which there are collections of

N = m + 1 (not necessarily full) words such that every min[n,N] of them form an oblivious MC

algorithm when starting at the initial chair of each word. Our proof that m ≥ 2n− 1 assumes that

the scheduler is allowed to pick an arbitrary initial state on each word.

We do not know how hard it is to recognize whether a given collection of words constitute an

oblivious MC algorithm. This can be viewed as the problem whether some digraph contains a

directed cycle or not. The point is that the digraph is presented in a very compact form. It is not

hard to place this problem in PSPACE, but is it in a lower complexity class, such as co-NP or P?

There are interesting foundational questions related to different models in distributed comput-

ing. We have defined here the Output Negotiation (ON) model, and showed that it is properly

included in the read/write model. It follows by definition that the oblivious model is included in

the ON model. It would be interesting to know whether this last inclusion is proper.

References

[1] Attiya H., Bar-Noy A., Dolev D., Peleg D., and Reischuk R.. Renaming in an asynchronous environment.
J. ACM, 37(3):524–548, 1990.

[2] Afek Y., Attiya H., Fouren A., Stupp G., and Touitou D., Long-Lived Renaming Made Adaptive,
PODC-99, 91-103.

[3] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic Snapshots of Shared Memory.
Journal of the ACM, 40(4):873-890, 1993.

[4] Beame P., Blais E., and Ngoc D., Longest common subsequences in sets of permutations,
http://arxiv4.library.cornell.edu/abs/0904.1615?context=math

[5] Dijkstra, Edsger W., Self-stabilizing systems in spite of distributed control, Communications of the
ACM 1974, 17 (11): 643???644

[6] Dolev S., Self-Stabilization, MIT Press, ISBN 0-262-04178-2

[7] Dolev D., Lynch N. A., Pinter S., Stark E. W., and Weihl W. E., Reaching Approximate Agreement in
the Presence of Faults. Symposium on Reliability in Distributed Software and Database Systems 1983:
145-154

[8] Gafni E. Read-Write Reductions. ICDCN 2006: 349-354

[9] Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int’l Symposium on Distributed Computing
(DISC’05), Springer Verlag LNCS #3724, pp. 63–77, 2005.

[10] Gafni E., Rajsbaum R., Raynal M. and Travers C., The Committee Decision Problem. Proc. 8th Latin
American Theoretical Informatics (LATIN’06), Springer-Verlag LNCS #3887, pp. 502-514, 2006.

[11] Gafni E., Raynal M., and Travers C., Test & Set, Adaptive Renaming and Set Agreement: a Guided
Visit to Asynchronous Computability. SRDS 2007: 93-102

24

[12] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149, 1991.

[13] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Journal of the
ACM, 46(6):858-923, 1999.

[14] Lamport L., On interprocess communication, Part 1: Models, Part 2: Algorithms. Distributed Com-
puting, 1(2):77-101, 1986.

25

