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Abstract

We consider allocation of indivisible items to agents with additive
valuations and equal entitlements. We show that if there are only two
possible item values, then there is an allocation that gives every agent
a bundle of value at least her maximin share.

1 Introduction

We consider allocation of a set M of m indivisible items to a set N of n
agents with equal entitlement. Throughout this short note we only consider
the setting in which every agent i ∈ N has an additive valuation function vi.
An allocation A = (Ai, . . . , An) is a partition of M into n disjoint bundles,
where agent i receives bundle Ai. An MMSi partition is a partition of M into
n disjoint bundles Bi

1, . . . , B
i
n that maximizes minj vi(B

i
j). This last value is

referred to as the maximin share of agent i, and is denoted by MMSi. An
MMS allocation is an allocation that gives every agent i a bundle of value
at least MMSi. There are allocation instances with additive valuations for
which no MMS allocation exists [5, 4].

Let S be the support for item values, in the sense that for every agent
i and item ej it holds that vi(ej) ∈ S. We seek sufficient conditions on S
under which an MMS allocation always exists. One such sufficient condition
is when S = {0, 1, 2} [2]. Here we present an additional sufficient condition.
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Theorem 1 For every two values a < b, if valuation functions are additive
and all item values are either a or b, then an MMS allocation exists, and can
be found in polynomial time.

We present two examples for instances addressed by Theorem 1.

Example 2 Consider two agents with the same valuation function, and five
items of values 3,3,2,2,2. An MMS allocation needs to give both items of
value 3 to the same agent, and the remaining items to the other agent. In
contrast, an allocation that balances the number of items of value b (in this
example, b = 3) that different agents receive is not an MMS allocation.

Example 3 Consider two agents and six items, of values 3,3,3,3,3,3 for
agent 1 (MMS1 = 9), and values 5,5,3,3,3,3 for agent 2 (MMS2 = 11). An
MMS allocation needs to give at least three items to agent 2. In contrast, an
allocation that maximizes Nash Social Welfare (the product of values received
by agents) is not an MMS allocation (it will give only two items to agent 2,
because 12 · 10 ≥ 13 · 9).

2 The proof

Throughout, we shall assume that the instance has the identical ordering
(IDO) property, namely, for every agent i and two items ej and ek, if j < k
then vi(ej) ≥ vi(ek). By results of [3], IDO can be assumed without loss
of generality. Namely, for additive valuations, any allocation algorithm that
produces MMS allocations for IDO instances can be transformed into an
algorithm that produces MMS allocations for arbitrary (not necessarily IDO)
instances. Moreover, if the former algorithm runs in polynomial time, so does
the latter algorithm.

We now prove Theorem 1.
Proof. Some details of the proof depend on whether a ≥ 0 (in which case
valuations are non-negative and items are goods) or a < 0 (in which case
either all items are chores, or some are goods and some are chores, a setting
referred to as mixed manna).

The proof of the theorem is by induction on n. For n = 1, the theorem
trivially holds. For the inductive step, n ≥ 2, and we may assume that the
theorem holds for all instances in which the number of agents is n− 1.
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Given an instance I with n ≥ 2 agents, let i ∈ N be the agent for which
vi(M) is largest (breaking ties arbitrarily). As there are only two item values,
this also implies that MMSi is largest. We may assume that MMSi 6= 0,
as otherwise giving agent i all the items is an MMS allocation (agent i gets
non-negative value, whereas other agents get 0 value, which is at least as high
as their MMS). In the ordered sequence of items, i has the longest prefix of
items of value b. Call this prefix pb(i). Let B1, . . . , Bn be a partition of M
into bundles, such that vi(Bj) ≥MMSi for every j ∈ [n].

• If a ≥ 0, then without loss of generality, we assume that B1 is the bun-
dle containing the smallest number of items (breaking ties arbitrarily).
Hence |B1| ≤ m

n
. Note that |B1| ≥ 1, as MMSi in this case is strictly

positive.

• If a < 0, then without loss of generality, we assume that B1 is the bun-
dle containing the largest number of items (breaking ties arbitrarily).
Hence |B1| ≥ m

n
.

Let nb (na, respectively) denote the number of items in B1 that have value
b (value a, respectively) according to vi. That is: nb = |{e ∈ B1 | vi(e) = b}|
and na = |{e ∈ B1 | vi(e) = a}|. Necessarily na, nb ≥ 0 and na + nb ≥ 1.

Allocate to agent i the last nb items in pb(i) (each such item has vi value
b), and the last na items (each such item has vi value a). Hence i gets
value at least MMSi, as she gets a bundle of value equal to vi(B1). In fact,
for simplicity of terminology and without loss of generality, we assume that
indeed B1 was composed of precisely those items that we give to i.

Consider the instance I ′ that remains (without agent i and the items of
B1). It has only n− 1 agents. We claim that for every agent (except i that
already got her MMS), her MMS in I ′ (partitioning M ′ to n− 1 bundles) is
at least as high as her MMS in I. Given the claim, the theorem follows by
applying the inductive hypothesis.

We now prove the claim. Consider an arbitrary agent j, and let pb(j)
denote the prefix of items in I of value b with respect to vj. Recall that
pb(i) ≥ pb(j). There are two cases to consider.

Some item of pb(j) is allocated to i. In this case i and j agree on the
values of all items, except possibly for those in B1. Hence vi(Bk) = vj(Bk)
for each of the remaining bundles Bk, with 2 ≤ k ≤ n. As MMSj ≤MMSi

(implied by pb(j) ⊆ pb(i)), it follows that B2, . . . , Bn form a partition of the
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items of I ′ in which the value of each bundle to agent j is at least her original
MMSj. Hence MMSj in I ′ is not smaller than MMSj in I.

No item of pb(j) is allocated to i. In this case, according to vj, all items
of B1 have value a.

• If a ≥ 0 then |B1| ≤ m
n

. The MMSj partition of M contains a bundle
B with at least m

n
items. For such a bundle B we have that:

– vj(e) ≥ vj(e
′) for every e ∈ B and e′ ∈ B1.

– |B| ≥ |B1|.
– B contains only items of non-negative value.

The above three conditions imply that for entitlement 1
n−1 , the MSSj

value for the set M \ B1 is at least as large as the MMSj value for
the set M \ B. As the MMSj in the latter case is no smaller than
MMSj for the original input instance I (because B is a bundle in the
corresponding MMSj partition), the same holds for the former case.

• If a < 0 then |B1| ≥ m
n

. In this case we take B to be a bundle (from
agent j’s MMS partition) with at most m

n
items. We have that:

– vj(e) ≥ vj(e
′) for every e ∈ B and e′ ∈ B1.

– |B| ≤ |B1|.
– B1 contains only items of negative value.

The proof now proceeds as in the case a ≥ 0.

Finally, we note that the proof of the theorem provides a polynomial time
algorithm for computing the MMS allocation. For the agent i with highest
vi(M), compute an MMSi partition (this can be done in polynomial time
because there are only two item values). If MMSi = 0, give all items to
agent i. If MMSi 6= 0, then of all bundles in the MMSi partition, if a ≥ 0,
give i the bundle with the smallest number of items, and if a < 0, give i the
bundle with the largest number of items. Continue in an inductive manner
with the instance that remains (with fewer items, and one less agent). �
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