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Abstract

We consider buffer management of unit packets with deadlines for a multi-port device with
reconfiguration overhead. The goal is to maximize the throughput of the device, i.e., the number
of packets delivered by their deadline. For a single port or with free reconfiguration, the problem
reduces to the well-known packets scheduling problem, where the celebrated earliest-deadline-
first (EDF) strategy is optimal 1-competitive. However, EDF is not 1-competitive when there is
a reconfiguration overhead. We design an online algorithm that achieves a competitive ratio of
1−o(1) when the ratio between the minimum laxity of the packets and the number of ports tends to
infinity. This is one of the rare cases where one can design an almost 1-competitive algorithm. One
ingredient of our analysis, which may be interesting on its own right, is a perturbation theorem on
EDF for the classical packets scheduling problem. Specifically, we show that a small perturbation
in the release and deadline times cannot significantly degrade the optimal throughput. This
implies that EDF is robust in the sense that its throughput is close to the optimum even when
the deadlines are not precisely known.
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1 Introduction

One of the main criticisms against competitive analysis is that it is unsuitable for studying real-life
scenarios. Suppose one develops an online algorithm with relatively small competitive ratio, say,
a competitive ratio of 1/2. It turns out that this 50% performance loss is unacceptable by many
practical models. Accordingly, when designing online algorithms for such models, the goal should
be to attain a competitive ratio of nearly 1. Unfortunately, there are only few cases in which one
can devise algorithms that achieve almost the same performance as an optimal offline algorithm.
One well-known problem, which admits a 1-competitive online algorithm, is packets scheduling. This
problem concerns with scheduling issues arising in context of network devices such as switches and
routers. In this problem, there is an incoming stream of packets with deadlines. At any point in time,
a pending packet may be transmitted, where the transmission of a packet takes unit time. The goal is
to maximize the number of packets transmitted prior to their deadline time. The celebrated earliest-
deadline-first (EDF) strategy is known to attain optimal throughput for instances of this problem.
However, the above-mentioned scenario overlooks many factors which are of essence in practice. In
particular, it fails to model scheduling issues arising when the network device has multiple outgoing
ports, and there is a reconfiguration overhead for switching between these ports.

This paper deals with overhead issues arising in context of multi-port network devices. The gen-
eral scenario is similar to that of packets scheduling. There is an incoming stream of time-dependent
packets. Each of the packets has a designated outgoing port. The network device maintains an active
outgoing port on which pending packets may be transmitted, and there is a reconfiguration overhead
of unit time taking the network device to switch the active outgoing port. The goal is to maximize
the throughput of transmitted packets, that is, to transmit a maximum number of packets along
their designated output port prior to their deadline time. We present an online algorithm that has a
competitive ratio of nearly 1, for a wide range of practical parameters. Specifically, we demonstrate
that if the ratio between the minimum laxity of the packets and the number of outgoing ports tends
to infinity then our algorithm achieves a competitive ratio of 1− o(1).

We formally model the above-mentioned scenario of buffer management for colored packets with
deadlines as follows. There is an online sequence of packets σ. A packet i ∈ σ is characterized by
a triplet (ri, di, ci), where ri ∈ N+ and di ∈ N+ are the respective release time and deadline time of
the packet, and ci is the color or designated output port of the packet. A packet becomes known to
the system at its release time. The objective is to schedule the packets in a way that maximizes the
number of transmitted packets, while maintaining the following two properties. The first property is
that every scheduled packet i is transmitted during the time frame [ri, di], and the second property
is that there is a time-slot dedicated to a color transition between the transmission of two successive
packets with different colors.

1.1 Our results

The main result of this paper is a deterministic online algorithm that attains a competitive ratio of
1−o(1) when the ratio between the minimum laxity of the packets and the number of outgoing ports
tends to infinity, where the laxity of packet i is defined as di − ri. Our algorithm strikes a balance
between two natural approaches: a strategy that transmits packets whose deadline approaches, and
a strategy which makes an effort to minimize the color transitions. In addition, we prove that the
restrictions imposed by this setting are essential to almost match the optimal offline throughput.
Specifically, we demonstrate that if the number of different colors and the minimum laxity is of the
same order then there is some universal constant α < 1 that bounds the achievable competitive ratio.
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This bound also applies for randomized online algorithms. Finally, we demonstrate that the offline
version of the problem is NP-hard. This result holds even when all laxities are equal.

One ingredient of our analysis, which may be interesting on its own right, is a perturbation
theorem for the fundamental problem of packets scheduling. Interestingly, we prove that a small
perturbation in the release and deadline times of packets cannot induce a major degradation in the
optimal throughput. More precisely, we show that the optimal throughput does not degrade by more
than a multiplicative factor of 1−δ, where δ is the perturbation time divided by the minimum laxity.

1.2 Related work

In the following, we provide a brief overview of two extensively-studied buffer management models:
the bounded delay model, and the FIFO-queue model. Due to the ever-growing line of work in this
context, it is beyond the scope of this writing to do justice and present an exhaustive survey of
all previous work. We refer the reader to the cited papers and the references therein for a more
comprehensive review of the literature.

In the bounded delay model [21], there is an incoming stream of packets, each of which has
an intrinsic value, and the goal is to maximize the value of the packets transmitted prior to their
expiration time. It is well-known that the EDF strategy is optimal when the values of all packets
are identical. Turning to the arbitrary values case, the best known deterministic online algorithm
has a competitive ratio of about 0.547 [15] (see also [28]), while it is known that no deterministic
online algorithm can achieve a competitive ratio better than 1/φ ≈ 0.618 [20, 9, 3]. Focusing on
the randomized setting, the best online algorithm attains a ratio of 1− 1/e ≈ 0.632 [6, 8], while it
is known that no online algorithm can attain a ratio better than 0.8 [9]. Several additional papers
addressing the bounded delay model or its variants are [27, 10, 7]. Kesselman et al. [21] also initiated
the study of the FIFO-queue model. In this model, there is also an incoming stream of heterogeneous
packets. Nevertheless, packets have no deadlines, they are placed in a limited-size FIFO-queue, and
have to be transmitted according to their arrival order. The main difficulty in this model is to decide
which packets should be accepted to the transmission queue. Some of the many papers studying this
model and its variants are [2, 4, 1, 22, 32, 14, 16].

A concurrent line of work, initiated by Räcke, Sohler and Westermann [30], studied the sorting
buffer problem. An instance of this problem consists of a server, equipped with a finite-capacity
buffer, and an online sequence of requests, each of which corresponds to a point in a metric space.
The goal is to serve all requests in a way that minimizes the total distance traveled by the server.
Note that the server can store requests in the buffer and then serve them in an out-of-order fashion.
One may reinterpret this problem in the context of multi-port devices as follows: there is an incoming
stream of packets that needs to be served, and the goal is to design a scheduling policy which uses a
reordering buffer and minimizes the overall reconfiguration costs. A special case of interest is when
the metric space is uniform, or equivalently, when reconfiguration costs are identical. Several papers
attending to the sorting buffer problem are [13, 25, 12, 24, 23, 5, 17, 11].

1.3 Application to DRAM memory scheduling

Our original impetus for studying the above problem is an application to memory request scheduling
in DRAM systems. Modern DRAM chips are organized into different banks, so that memory requests
destined for different banks can be served in parallel. Each DRAM bank has a two-dimensional
structure, consisting of rows and columns (see, for instance, [31, 29]). Consecutive memory addresses
are located in consecutive columns in the same row. The size of a row varies, but it is usually between
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1-32Kbytes (∼ 32-1024 L2 cache blocks) in commodity DRAMs.
Each bank has a row-buffer, and data can only be read from this buffer. At any given time,

the row-buffer contains a single row. Depending on the access pattern to a bank, a DRAM request
can either be a row-hit, in case the request is to a row that is currently in the row-buffer, or a
row-conflict, if the request is to a row different than the one that is currently in the row-buffer. In
case of a row-hit, the request can simply be executed to the row-buffer. In contrast, in case of a
row-conflict, the request may only be executed after the current row in the row-buffer is written back
to the memory and the requested row is loaded into the row-buffer. On commodity DRAM, row-hit
and row-conflict accesses typically consume 40-50ns and 80-100ns, respectively.1

Today’s microprocessors employ hardware prefetchers to hide long DRAM access latencies (see,
e.g., [26]). If prefetch requests are accurate and fetch data early enough, prefetching can improve
performance. However, a prefetch request is helpful only if it is served (by the DRAM memory)
sufficiently fast so that the processor need not stall. Each prefetch request is therefore effectively
associated with a pre-defined deadline after its release; no benefit results from serving the request
after the deadline. The combination of row-buffer switching costs and the deadlines for DRAM
requests maps to our problem definition. Specifically, we seek to maximize the number of successfully
scheduled prefetch requests. Note that we focus on the one-bank case since every DRAM bank may
be scheduled independently.

1.4 Structure of the paper

In Section 2, we consider the classical packets scheduling problem, and show that a small perturbation
in the release and deadline times cannot significantly decrease the optimal throughput of the sequence.
In Section 3, we describe the online (1−o(1))-competitive algorithm for our problem and its analysis.
In Section 4, we demonstrate that if the number of colors is not small compared with the minimum
laxity of the packets then there is a constant bound on the attainable competitive ratio. Finally,
details omitted from the main part of the paper, including the NP-hardness result for the offline
version, appear in the Appendix.

2 Perturbation Theorem for the Packets Scheduling Problem

In this section, we consider the classical packet scheduling problem in which packets have no colors
(or equivalently, have a single color). Hence, a packet is represented by a release-deadline pair (r, d).
Let OPT(σ) be the throughput of the optimal schedule with respect to σ, that is, the schedule that is
produced by EDF, and let L = mini∈σ{di − ri} denote the minimum laxity of the packets. We show
that a small perturbation of the release and deadline times of the packets in the sequence cannot
significantly degrade the throughput when L is large. This can also be viewed as a perturbation the-
orem on EDF. Specifically, if one schedules the packets according to a perturb EDF, the throughput
is not significantly reduced compared to the throughput of a schedule generated with an exact EDF.

Definition 2.1. An input sequence σ̂ is a λ-perturbation of σ if σ̂ consists of all packets of σ, and
each packet (r̂, d̂) ∈ σ̂ corresponding to packet (r, d) ∈ σ satisfies r̂ − r ≤ λ and d− d̂ ≤ λ.

Theorem 2.2. Suppose σ̂ is a λ-perturbation of σ then OPT(σ̂) ≥ (1− 2λ/L) ·OPT(σ).
1Notice that due to the existence of the row-buffer, modern DRAMs are not truly random access (i.e., having equal

access time to all locations in the memory array).
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Proof. In what follows, we argue about the case that σ̂ is a 1-perturbation of σ. We demonstrate
that an optimal EDF schedule for σ having throughput τ can be adjusted to be feasible for σ̂, while
maintaining a throughput of at least (L − 2)/L · τ . This implies that the optimal schedule for σ̂
has at least as large throughput. The lemma follows by viewing the λ-perturbation as a series of
1-perturbations, and employing the above-mentioned argument λ times. Particularly, one should pay
attention that after 1-perturbation of some input sequence, its minimum laxity may decrease by 2;
one resulting from the perturbation in the deadline times, and one resulting from the perturbation
in the release times. Therefore, after λ applications of the above-mentioned argument, the resulting
schedule has a throughput of at least(

L− 2λ

L− 2λ + 2
. . .

(
L− 4
L− 2

(
L− 2

L
· τ

))
. . .

)
=

L− 2λ

L
· τ .

Let ρ be the optimal EDF schedule of the input sequence σ, having a throughput of τ . We
partition ρ into super-blocks, each of which is a maximum consecutive sequence with no idle time.
Then, we apply the subsequent arguments separately to each of these super-blocks. We begin by
demonstrating that each super-block can be adjusted to satisfy the perturbed deadline times. For
this purpose, consider the partition of a super-block into consecutive blocks, each consisting of L
successive time-slots. Let us focus on one of these blocks, and let t1 < · · · < tk be the collection
of time-slots in which there are packets which are no longer feasible for transmission due to the
perturbation of the deadline times. We adjust the schedule of this block by dropping the packet in
time-slot t1, and relocating each packet in time-slot ti+1 to time-slot ti, for any i ∈ [k− 1]. Figure 1
provides a schematic illustration of this modification process. One should notice that the resulting
schedule is feasible with respect to the perturbed deadline times. This follows from the fact that
each packet, which was infeasible for transmission, was either dropped or relocated to a strictly prior
time-slot. Moreover, note that each relocated packet is still transmitted after its release time as its
transmission time decreased by no more than L − 1, whereas the minimum laxity of a packet is L.
Focusing on the throughput, it is easy to see that no more than one packet was dropped in each
partition block. In fact, one can reinforce the last observation, and to additionally claim that no
packet was dropped from the first partition block. This claim holds since the first partition block
spans the time frame [1, L], but the deadline time of any packet is at least L + 1. Consequently, no
more than bτ/Lc packets were dropped during this modification process, and hence, the throughput
of the new schedule is at least τ ′ = (L− 1)/L · τ .

Now, we may assume that the optimal EDF schedule of the input sequence that incorporates
the perturbation of the deadline times has a throughput of at least τ ′. We turn to adjust this
schedule to satisfy the perturbed release times. Essentially, this can be done in a similar way
to that of the perturbed deadline times. In this case, the last packet in each partition block is
dropped, and packets are relocated to a strictly later time-slot. It seems worthy to note that now,
a packet may be dropped from the first partition block, but can be spared from the last partition
block as the last infeasible packet may be relocated to the end of the schedule while maintaining
deadline-feasibility. Correspondingly, we obtain that the throughput of the new schedule is at least
(L − 2)/(L − 1) · τ ′ = (L − 2)/L · τ . The (L − 2)/(L − 1) term results by recalling that the initial
schedule has a minimum laxity of L− 1 (and not necessarily L).

3 Online Scheduling for Colored Packets

In this section, we design a deterministic online algorithm that achieves a competitive ratio of 1−o(1)
when the number of different packet colors is asymptotically small with respect to the minimum laxity
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Figure 1: The modification of the schedule with respect to the perturbed deadline times.

of the packets. It is worthy to note that this setting is essential to design a (1 − o(1))-competitive
algorithm, as established in Section 4. Let C = |{ci : i ∈ σ}| be the number of different packet colors,
and recall that L = mini∈σ{di − ri} is the minimum laxity of the packets.

We begin by observing that several natural greedy algorithms fail to attain near-optimal through-
put in the above-mentioned setting. In particular, if we schedule packets by providing priority to
packets with lower deadlines (as done by EDF), or alternatively, if we give priority to packets with the
same color as the color of the currently transmitted packet, then we cannot attain a competitive ratio
better than 1/2. These results hold even when C = o(L). Further details appear in Appendix A.

3.1 The algorithm

In light of the insufficiency of the natural algorithms to achieve a competitive ratio of 1 − o(1), it
seems essential for a good strategy to strike a balance between transmitting packets whose deadline
approaches, and transmitting packets whose color is identical to the current active color. We present
a deterministic online algorithm that realizes this insight. The algorithm attains a competitive ratio
of 1 − 4

√
C/L. In particular, this implies that it attains almost optimal throughput for instances

having C = o(L).
Algorithm balanced-greedy (BG), formally described in Figure 2, works in phases, each of which

spans a time frame of K =
√

CL time-slots. Every phase is logically built from a collection step,
followed by a scheduling step. Specifically, during the collection step, the algorithm accumulates all
the packets released in the phase, and during the scheduling step, the algorithm sets a transmission
schedule for the K time-slots of the next phase.
Analysis. To establish the correctness of the algorithm, we need to demonstrate that the output
schedule ρ is feasible. Specifically, one needs to prove that every scheduled packet i is transmitted
during the time frame [ri, di], and that there is a color transition between the transmission of any
two successive packets with different colors.

Lemma 3.1. Algorithm BG generates a valid schedule.

Proof. By the construction of the schedule, it follows that there is a color transition between the
transmission of any two consecutive packets with different colors, and that every packet is transmitted
after its arrival. Hence, we are left to argue that every packet is transmitted before its deadline.
Consider some scheduled packet i. Notice that the deadlines modification during the collection step
ensures that the deadline of each packet is aligned with the end time of some phase. Consequently,
if it is feasible to transmit i during a specified time-slot of some phase then it is feasible to transmit
it in any of the time-slots of that phase. This implies that the reordering applied to the K-length
prefix of the EDF schedule during the scheduling step does not change its feasibility.
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Let ρ be an empty output schedule.
In each phase ` = 1, 2, . . . do
The collection step: Collect all packets released in time frame (K(` − 1),K`]. Modify the
deadline of each collected packet (r, d, c) from d to K · bd/Kc.
The scheduling step: Let S` be the collection of packets appearing in the K-length prefix of
the current EDF schedule of pending packets (i.e., packets arrived at phases 1 to ` that were not
already transmitted or dropped), and let S`

j ⊆ S` denote the subset of packets having color cj .
Append the output schedule ρ with the K-length schedule ρ`, constructed as follows:

• ρ` initially consists of all packets of S`
1 scheduled consecutively, then all packets of S`

2

scheduled consecutively, and so on.

• ρ` is altered to have a color transition between each two successive color groups S`
j , S

`
j+1: if

the overall length of the schedule is less than K then a dedicated color transition time-slot
is added after the last packet of S`

j and before the first packet of S`
j+1; otherwise, the last

packet of S`
j is dropped and replaced by a color transition.

• ρ` is affixed with idle time-slots, so its length will be exactly K.

Figure 2: Algorithm BG.

We now turn to analyze the performance guarantee of the algorithm. We begin by introducing
some notation and terminology:

• Let ρ(σ) denote the output schedule of algorithm BG with respect to input sequence σ. Note
that the output sequence consists of two types of time-slots: productive time-slots in which
packets are transmitted, and non-productive time-slots, which are either idle time-slots or color
transition time-slots. Lastly, we call ρ(σ) a lazy schedule if it consists of at least one idle
time-slot besides the first K time-slots which are always idle.

• Let ON(σ) and OPT(σ) denote the throughput of the schedule generated by algorithm BG
and the optimal schedule with respect to σ, respectively.

• Let LEN(σ) be the length of the output schedule generated with respect to σ, that is, ρ(σ).
Moreover, let IDLE(σ) and TRANS(σ) be the number of idle time-slots and color transition
time-slots of ρ(σ), respectively. Notice that LEN(σ) = ON(σ) + IDLE(σ) + TRANS(σ).

We proceed by proving that if the length of the schedule generated by algorithm BG is sufficiently
short then it has near-optimal throughput.

Lemma 3.2. Algorithm BG achieves a competitive ratio of 1−
√

C/L, when the length of its gen-
erated schedule is less than L.

Proof. Recall that the deadline time of any packet is no less than L + 1. Accordingly, we know
that no packet was discarded due to its deadline. In particular, this implies that the sole reason that
some packet was dropped was to capacitate a color transition. However, no more than C packets
may be dropped in each phase, and if a packet is dropped then there must be at least K−C packets
transmitted during this phase. Consequently, the relative throughput of the algorithm in each phase
is at least (K − C)/K = 1−

√
C/L, where the equality holds since K =

√
CL.
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In the following, we establish that algorithm BG also has near-optimal throughput when the
generated schedule is long. We begin with the following lemma which demonstrates that for purpose
of analysis, it is sufficient to consider input sequences for which algorithm BG generates non-lazy
output schedules.

Lemma 3.3. It is sufficient to analyze the performance guarantee of algorithm BG with respect to
input sequences for which it generates non-lazy schedules.

Proof. Consider some input sequence σ for which the output schedule ρ(σ) is lazy, and let us assume
without loss of generality that an idle time-slot appears in the time frame corresponding to phase
` > 1. Let 〈σ1, σ2〉 be a partition of σ such that σ1 consists of all packets released during the first
`− 1 phases, and σ2 consists of the remaining packets. The fact that there is an idle time-slot in the
time frame corresponding to phase ` ensures that no packet of σ1 is scheduled after that phase. In
particular, this implies that ρ(σ1) is identical to the `-phases prefix of ρ(σ). Furthermore, one can
easily validate that when one drops the first K idle time-slots of ρ(σ2) then the resulting schedule
is identical to the suffix of ρ(σ) that excludes the first ` phases. Thus, the performance guarantee
of algorithm BG with respect to at least one of {σ1, σ2} must bound the performance guarantee of
the algorithm with respect to σ. It is clear that one can inductively apply the above-mentioned
argument with respect to σ1 or σ2 in case ρ(σ1) or ρ(σ2) are lazy. Hence, there is an input sequence
for which algorithm BG generates a non-lazy schedule that bounds the performance guarantee of the
algorithm with respect to σ.

We proceed by lower-bounding the throughput of the algorithm. The following lemma argues
the throughput of the algorithm is nearly the length of the generated schedule.

Lemma 3.4. ON(σ) ≥ (
1− 2

√
C/L

) · LEN(σ).

Proof. In what follows, we establish two claims that may be used, in conjunction with the facts
that ON(σ) = LEN(σ)− IDLE(σ)− TRANS(σ) and K =

√
CL, to prove the lemma.

Claim I: IDLE(σ) ≤ LEN(σ) ·K/L. By Lemma 3.3, we may assume that ρ(σ) is non-lazy. Therefore,
the only idle time-slots in ρ(σ) are the first K time-slots, and hence, IDLE(σ) = K. In addition, by
Lemma 3.2, we may assume that LEN(σ) ≥ L, which implies that K ≤ K · LEN(σ)/L.
Claim II: TRANS(σ) ≤ LEN(σ) · C/K. Notice that there are at most dLEN(σ)/Ke − 1 phases
in which algorithm BG transmits packets. Note that the −1 term results from the fact that the
algorithm does not transmit any packet during the first phase. Since there are no more than C color
transitions in each phase, we obtain that TRANS(σ) ≤ C · (dLEN(σ)/Ke − 1) ≤ C · LEN(σ)/K.

We now turn to prove that the length of the schedule is almost equivalent to the throughput of
the optimal schedule. We first define two input sequence σ′ and σ̃, which are modifications of σ. The
input sequence σ′ consists of all packets in σ, but alters the color of packets to some fixed color c′

(or equivalently, no color at all). Specifically, each packet (r, d, c) ∈ σ defines a packet (r, d, c′) ∈ σ′.
The input sequence σ̃ consists of all packets in σ such that a packet (r, d, c) ∈ σ gives rise to a packet
(K · dr/Ke, K · bd/Kc, c′) ∈ σ̃, where c′ is a some fixed color as before. Essentially, all packets in σ̃
have the same color, and the release and deadline times of each packet in σ̃ are aligned with start/end
time of the corresponding phase in a way that the span of each packet is fully contained in the span
of that packet according to σ. Remark that the span of a packet (r, d, c) is the time frame [r, d].

Lemma 3.5. LEN(σ) = OPT(σ̃).
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Proof. Recall that a K-length prefix of the EDF schedule of pending packets is considered at the
end of any phase, and utilized to construct the schedule of the subsequent phase. Let us focus on
the ordered concatenation of these K-length EDF sub-schedules, and argue that this concatenated
schedule is identical to the schedule generated by EDF with respect to σ̃, excluding its initial K
idle time-slots. For this purpose, we consider the algorithm’s EDF sub-procedure, and prove that it
experiences the packets as if their release and deadline times were determined by σ̃. Observe that
each packet may be scheduled by the algorithm in a phase later than its arrival phase. Taking the
EDF sub-procedure point of view, this implicitly corresponds to a modification of the release time of
each packet to the start time of the next phase, similarly to the alteration of the release time realized
in σ̃. Turning to the deadlines, the algorithm explicitly modifies them in an identical way to that
done in σ̃.

Now, notice that the length of the schedule generated by the algorithm, excluding the initial K
idle time-slots, is equal to the overall lengths of all EDF sub-schedules considered by the algorithm.
This implies, in conjunction with the previous-mentioned argument, that the length of the schedule
generated by the algorithm is equal to the length of the schedule generated by EDF with respect to
σ̃. The lemma follows by recalling that EDF generates optimal schedules for instances in which all
packets have the same color.

A crucial step in the analysis is to notice that σ̃ is a K-perturbation of σ′, and the colors of all
packets are identical. Hence, by using Theorem 2.2 we obtain the following corollary.

Corollary 3.6. OPT(σ̃) ≥ (
1− 2

√
C/L

) ·OPT(σ′).

We are now ready to prove the main theorem of this section.

Theorem 3.7. Algorithm BG attains a competitive ratio of at least 1− 4
√

C/L.

Proof. Using the previously stated results, we obtain that

ON(σ) ≥
(
1− 2

√
C/L

)
· LEN(σ)

=
(
1− 2

√
C/L

)
·OPT(σ̃)

≥
(
1− 2

√
C/L

)2
·OPT(σ′)

≥
(
1− 4

√
C/L

)
·OPT(σ) .

The first inequality results from Lemma 3.4. The equality follows from Lemma 3.5. The second
inequality holds by Corollary 3.6. Finally, the last inequality follows as σ′ is alike σ, but all packets
have the same color. This implies that any schedule feasible for σ is also feasible for σ′, and thus,
OPT(σ′) ≥ OPT(σ).

4 Lower Bounds for Colored Packets Scheduling

In this section, we demonstrate that the restrictions imposed by the setting described in Section 3
are essential to almost match the optimal offline throughput. Specifically, we prove that there is no
hope that a deterministic or randomized online algorithm can generate a schedule whose throughput
is close to the optimal offline outcome, when the number of different colors is large with respect to
the minimum laxity. We begin by presenting an simple lower bound of 1/2 on the competitive ratio
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of any deterministic online algorithm using an input sequence having C = 2 and L = 0. However,
one may be left wondering if this lower bound is an artifact of the degenerated minimum laxity,
and hence, it is possible to achieve better competitive ratio for larger values of L. Moreover, one
may think that randomization can help. Therefore, we later prove a constant lower bound on the
achievable competitive ratio of any deterministic or randomized online algorithm for any value of L,
as long as C = Ω(L). Hence, our requirement that C = o(L) is essential.

Theorem 4.1. No deterministic online algorithm can achieve a competitive ratio better than 1/2.

Proof. Consider some online algorithm, and let (1, 1, c1) and (1, 1, c2) be two packets released at the
first time-step with immediate deadline and different colors. Let us assume without loss of generality
that the algorithm transmits the packet with color c1 in the first time-slot. Subsequently, the packet
(2, 2, c2) arrives. Clearly, the algorithm cannot transmit it since a color transition is required. This
implies that the throughput of the schedule generated by the algorithm is exactly 1, whereas an the
optimal schedule could transmit the two packets of color c2. Notice that in case that the algorithm
does not schedule any packet in the first time-slot, similar arguments apply. The lemma follows by
noticing that we may use this building block repeatedly. Specifically, we use this block in time-slots
1 and 2, then leave time-slot 3 free for a possible color transition, use this block again in time-slots
4 and 5, and so on.

Theorem 4.2. No deterministic or randomized online algorithm can attain a competitive ratio better
than some constant α < 1 for any L, when C = Ω(L). Specifically, α ≤ 1− C/(8L) when C ≤ L/2,
and α ≤ 15/16, otherwise.

Proof. We begin by constructing a packets sequence σ. We assume without loss of generality that
C ≤ L/2 since otherwise, one may use packets with only C = L/2 colors, and obtain a lower bound
of at least 1−C/(8L) = 15/16. The sequence σ consists of C packets with distinct colors c1, . . . , cC

whose release and deadline times are 1 and L+C, respectively. Furthermore, σ also consists of L−C
packets which are released at time-step C and have a laxity of L, that is, their deadline time is L+C.
These packets are partitioned into C/2 groups, each having 2(L − C)/C packets, where all packets
in each group have the same color, and groups have distinct random colors from {c1, . . . , cC}.

Consider a random algorithm. One may assume without loss of generality that this algorithm
transmits some C/2 packets during the first C time-slots. This assumption is justified since it is
always better to schedule some packets than leave idle time-slots. Notice that in expectation C/4 of
the packets that were not transmitted during that time frame have the same color as packets released
at time-step C. Note that the best thing the algorithm can do is to pair each of these packets with
the group of packets having the same color, and transmit them consecutively. This can be done
during a time frame of C/4 · (1 + 1 + 2(L− C)/C) = L/2 time-slots (e.g., between time-slots C + 1
and C + L/2), where it takes C/4 · (1 + 2(L − C)/C) time-slots to transmit all these packets and
additional C/4 time-slots for color changes. In addition, the algorithm may transmit the remaining
C/4 groups of packets during a time frame of C/4 · (1 + 2(L− C)/C) = L/2− C/4 time-slots (e.g.,
between time-slots C + L/2 + 1 and 3C/4 + L), and an additional (C/4)/2 = C/8 distinct-colored
packets up to time L + C. Consequently, we obtain that the expected number of packets that the
algorithm transmitted is L− C/8.

Now, the optimal schedule can transmit all L packets. This schedule transmits the C/2 packets
released at time-step 1, which do not have a color matching group released at time-step C, during
the first C time-slots. On the following L time-slots, it transmits all the remaining packets by pairing
each packet released at time-slot 1 with the group of packets having the same color, and transmitting
them consecutively. Accordingly, we attain a lower bound of α ≤ (L− C/8)/L = 1− C/(8L).
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5 Concluding Remarks

Non-unit reconfiguration overhead. Recall that our model assumes that both the transmission
of a packet and a color transition takes identical amount of time. One natural question to ask is
what happens in case that the transmission of a packet is still unit, but a color transition takes
W units of time. It turns out that algorithm BG can be easily refined to deal with this scenario
while achieving a competitive ratio of 1−O

(√
CW/L

)
. This implies that it obtains almost optimal

throughput for instances having CW = o(L). The key modifications required in the algorithm are
to set K =

√
CWL, and to update the alteration of each sub-schedule to have a color transition of

length W between any two successive color groups. Further details are deferred to the full version
of this paper.
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A Why Some Natural Strategies Fail?

In the following, we study two natural greedy algorithms, and prove that both of them fail to attain
near-optimal throughput even when C = o(L). In particular, we establish that neither algorithm
has a competitive ratio better than 1/2.

We begin by considering a natural modification of the EDF strategy to our setting. We refer to
this modified strategy as MEDF. At any point in time, it transmits a pending packet with minimal
deadline time. In case that the packet to be transmitted has a different color than the current active
color then it is discarded, and the corresponding time-slot is dedicated to a color transition. When
there are several pending packets with minimal deadline time, MEDF arbitrarily transmits one of
them, say a packet with a “minimal color”. The following lemma establishes that MEDF is an optimal
1/2-competitive online algorithm for the general problem, i.e., when no assumptions are made with
respect to the input instances. Note that the optimality of MEDF follows from Theorem 4.1, which
argues that no deterministic online algorithm can achieve a competitive ratio better than 1/2.

Lemma A.1. MEDF attains a competitive ratio of 1/2.

Proof. Consider some input sequence σ. Let ALG denote the throughput of the schedule generated
by MEDF with respect to σ, and let ALG′ be the throughput of the EDF schedule with respect to
σ, that is, the schedule generated when one assumes that all packets have the same color. Moreover,
let OPT be the throughput of the optimal schedule. It is clear that ALG′ ≤ 2ALG since MEDF uses
the EDF schedule, and drops no more than one packet in any two consecutive time-slots. Now, recall
that EDF generates schedules having optimal throughput with respect to input instances in which
all packets have the same color. This implies, in conjunction with the simple fact that any schedule
for a given instance is a valid schedule for the same instance in which all colors are identical, that
OPT ≤ ALG′.
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We now establish that even if one only considers input instances having C = o(L), MEDF cannot
achieve a competitive ratio better than 1/2.

Theorem A.2. The competitive ratio of MEDF cannot be better than 1/2, even when C = o(L).

Proof. Let us consider an input instance in which the laxity of all packets is identical. Specifically,
the packets sequence is σ = 〈(1, c1), (1, c2), . . . , (L, c1), (L, c2)〉, where a pair (r, c) stands for a packet
whose release time is r, its color is c, and its deadline is r + L. Figure 3 provides a schematic
description of the schedule generated by MEDF, and the optimal schedule. In particular, MEDF
generates an initial EDF schedule in which it alternately transmits a packet with color c1 and a packet
with color c2. However, due to the color transition requirement, every second packet is dropped, and
thus its throughput is L. On the other hand, an optimal schedule can transmit all packets except
one, and yield a throughput of 2L − 1. This implies that the competitive ratio of MEDF cannot
be better than 1/2 + 1/(4L − 2). Notice that one may select any L → ∞, and thus the theorem
follows.

1

(1, c1) (L, c1) (2, c2)

L L + 1 L + 2 2L

1 2 3 4 2L− 1 2L

(L, c1)(2, c1)(1, c1)

. . . . . .

. . .

(L, c2)

Figure 3: The schedule generated by MEDF (above), and an optimal schedule (below). Note that
grayed boxes indicate non-productive time-slots (e.g., color transition time-slots).

Essentially, the main drawback of MEDF is that it may generate schedules in which many packets
are dropped. We proceed by considering the color-greedy (CG) strategy. At any point in time, this
strategy transmits a pending packet whose color is identical to the current active color. It is clear
that this strategy addresses the main drawback of MEDF. However, as demonstrated below it cannot
be better than 1/2 competitive even when C = o(L).

Theorem A.3. The competitive ratio of CG cannot be better than 1/2, even when C = o(L).

Proof. Similarly to the proof of Theorem A.2, consider an input instance having the same laxity for
all packets. Specifically, the packets sequence is σ = 〈(1, c2), (2, c1)L−2, (2, c2), . . . , (L + 2, c2)〉. Here,
the notation (r, c)k stands for k packets of the type determined by the pair (r, c). Figure 4 provides
a schematic description of the schedule generated by CG, and the optimal schedule. Essentially, CG
repetitively transmits packets with color c2, and therefore fails to transmit any of the packets with
color c1 before their deadline. Accordingly, its throughput is L + 2. On the other hand, an optimal
schedule can transmit all packets, and attain a throughput of 2L. This implies that the competitive
ratio of CG cannot be better than 1/2 + 1/L. Note that one may select any L →∞, and hence the
theorem follows.

B NP-hardness of the Offline Problem

In what follows, we show that the offline version of buffer management for colored packets with
deadlines in which the sequence of packets is known in advance is NP-hard. To this end, we exhibit
a reduction from 3-Partition, as defined below, to the buffer management problem.
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1

(1, c2)

L + 2

(L + 2, c2)

(L + 2, c2)

1 L

(2, c1)

L− 1 L + 1 2L + 2

(1, c2)(2, c1)

. . .. . .

. . . . . .

2

Figure 4: The schedule generated by CG (above), and an optimal schedule (below). Note that grayed
boxes indicate non-productive time-slots.

Definition B.1. (3-Partition) Given a multiset S = {a1, a2, . . . , an} of n = 3m positive integers,
determine if S can be partitioned in to m subsets S1, S2, . . . , Sm each of size 3 such that sum of the
numbers in each subset is equal.

Theorem B.2. ([19, 18]) 3-Partition is strongly NP-complete, i.e, NP-complete even when the
integers {a1, a2, . . . , an} are bounded by a polynomial in n. Let A =

∑n
i=1 ai and B = A/m. The

problem remains NP-complete even if each number ai is restricted to (B/4, B/2).

Using a reduction from the 3-Partition problem, we obtain the following NP-hardness result.

Theorem B.3. Given a sequence σ = {(ri, di, ci)} of packets characterized by release time ri, dead-
line time di, and color ci, it is NP-hard to determine if all the packets in the sequence can be
transmitted during their respective time frames [ri, di]. Further, the problem remains NP-hard even
if the laxities of all packets are equal.

Proof. Let S = {a1, a2, . . . , an} be an instance of 3-Partition with n = 3m. Recall that A =
∑n

i=1 ai

and B = A/m. Note that A is divisible by m, since otherwise the 3-Partition instance S is trivially
infeasible. Set D = (B + 6)m. Construct a packet sequence σ with the following packets. Observe
that the laxity of all packets is exactly D.

• Dummy Packets: D− 1 packets with parameters (0, D, Red) and D− 1 packets with param-
eters (2D− 1, 3D− 1, Blue). The intent of Red and Blue packets is to occupy all the time-slots
between (0, D − 1) and (2D, 3D − 1) respectively.

• Bin Markers: m pairs of packets {Pi, P
′
i : 0 ≤ i ≤ m− 1} with

Pi = (i · (B + 6) + 1, i · (B + 6) + D + 1, Ci)
P ′

i = (i · (B + 6) + D + 1, i · (B + 6) + 2D + 1, Ci)

Note that the pairs Pi, P
′
i are of the same color, and the release time of P ′

i matches the deadline
of Pi. Thus, a pair of packets {Pi, P

′
i} can be transmitted consecutively only if Pi is transmitted

at its deadline, and P ′
i is transmitted in the next time-slot. If every pair {Pi, P

′
i} is transmitted

in consecutive time-slots, then it would divide the remaining time-slots between [D + 1, 2D] in
to intervals (bins) of length B + 4. Hence, these packets are referred to as bin markers.

• Main Packets: For each number ai in the 3-Partition instance S, introduce ai packets with
parameters (D, 2D, ci).
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Completeness Let S1, S2, . . . , Sm denote a feasible 3-Partition of the instance S with the i-th set
Si is given by Si = {ai1 , ai2 , ai3}. It is easy to see that the following is a feasible schedule that
transmits all the packets of the sequence σ within their deadline.

• Transmit the Red packets in the first D− 1 time-slots, followed by a color transition time-slot.

• For i = 0 to m− 1 do

– Transmit packets Pi, P
′
i in time-slots i · (B +6)+D, i · (B +6)+D +1, followed by a color

transition time-slot.

– In the B + 3 time-slots from i · (B + 6) + D + 3 to (i + 1) · (B + 6) + D, Transmit the ai1

packets of color ci1 , perform a color transition, transmit ai2 packets of color ci2 , perform a
color transition, and finally transmit ai3 packets of color ci3 , followed by a color transition.

• Transmit the Blue packets in the D − 1 time-slots between (2D, 3D − 1)

Soundness Let us suppose there is a feasible schedule to transmit all the packets in the sequence
σ. The total number of packets in the sequence σ is given by

Number of Packets(σ) = 2 · (D − 1) + 2m +
∑

i

ai = 2D − 2 + 2m + Bm = 3D − 4m− 2

The number of colors in the sequence σ is given by 2 + m + n = 4m + 2. Recall that in order to
transmit packets of k different colors, the schedule requires at least k−1 color transitions. Hence, any
feasible schedule that transmits all packets require at least 4m+1 color transitions. This implies that
any schedule that transmits all packets requires at least 3D− 4m− 2 + 4m + 1 = 3D− 1 time-slots.
Now, notice that the latest deadline in the packet sequence is 3D− 1. Therefore, a feasible schedule
that transmits all packets necessarily uses exactly 4m + 1 color transitions. Consequently, we can
conclude that the schedule transmits all packets of the same color together.

This implies that the schedule transmits the bin marker pairs {Pi, P
′
i} of color Ci together.

By our choice of release and deadline times of Pi, P
′
i , this forces Pi to be transmitted in time-slot

i · (B + 6) + D and P ′
i in time-slot i · (B + 6) + D + 1. The D − 1 Red packets are to be scheduled

together before the deadline of D. Due to the scheduling of packets P0, P
′
0, time-slot D is used

for a color transition. Hence, the Red packets are all scheduled in the first D − 1 time-slots. For
each 0 ≤ i ≤ m − 2, there are B + 4 time-slots between the transmissions of bin markers {Pi, P

′
i}

and {Pi+1, P
′
i+1}. The time-slot after the transmission of {Pi, P

′
i} and before the transmission of

{Pi+1, P
′
i+1} are used for color transitions. Consider the remaining B + 2 free time-slots between

bin markers {Pi, P
′
i} and {Pi+1, P

′
i+1}. The only packets that can be transmitted in these time-slots

are the main packets of color ci for some i. Recall that all the ai packets of color ci are transmitted
together, and each ai is strictly between B/4 and B/2. Hence, packets of at most three different colors
are transmitted in these B+2 time-slots. Furthermore, each of these B+2 time-slots is used either for
a transmission or a color transition. Thus, exactly three different colors ci1 , ci2 , ci3 are transmitted,
with two color transitions needed in between. This would also imply that ai1 + ai2 + ai3 = B.
Finally, for 0 ≤ i ≤ m − 2, if ci1 , ci2 , ci3 are the colors of main packets transmitted between bin
markers {Pi, P

′
i} and {Pi+1, P

′
i+1}, then let Si+1 = {ai1 , ai2 , ai3}. Let Sm = S − ∪m−1

i=1 Si. From the
above argument, it is clear that the sets {Si} form a feasible 3-Partition of the instance S.

15


