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ABSTRACT
Given an arbitrary 2-player game G that we refer to as the
basic game, we propose a notion of a multiplayer invitation
game that proceeds for a fixed number of rounds, where in
each round some player (whose identity is determined by a
scheduler) gets to invite a player of his choice to play a match
of the basic game. The question that we study is how does
the price of stability of the invitation game compare to that
of the basic game. For a wide range of schedulers we prove
a dichotomy result, showing that there are only two types of
basic games, those that we call invitation resistant in which
the price of stability of the invitation version is equal to that
of the basic game, and those that we call asymptotically
efficient in which the price of stability tends to 0 as the
number of rounds grows. 1 In particular, when the basic
game is the prisoners dilemma the game is asymptotically
efficient if and only if the payoff when both players defect is
nonzero.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multiagent systems

Keywords
Prisoners dilemma; multi-player games; sub-game perfect
equilibrium

1. INVITATION GAMES
Theoretical games can be viewed as models of real life in-

teraction among selfish agents. Some aspects of the real life
situation are included in the abstract model, whereas others,
judged not to have significant impact on the applicability of

∗Work done in Microsoft Research, Herzliya.
1In our notation price of stability of 0 is best possible, and 1
is worse possible.
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the abstract mathematical model to the real life motivation,
are abstracted away. In some cases there appears to be a
contradiction between the mathematical conclusions offered
by game theory and real life experience, and this apparent
contradiction can in general be attributed to some aspect of
the real life situation that is not captured by the game theo-
retical model. The purpose of the current work is to consider
one aspect that is typically abstracted away in game theo-
retic models. This aspect is the fact that often it is not the
case that the players involved just happen to be playing the
game, but rather the actual composition of players in the
game is a result of strategic decisions on behalf of the play-
ers themselves. This aspect comes up naturally in diverse
situations. Here are some examples.

1. Games of leisure, such as Bridge. A player may choose
which friends to invite over to a game of Bridge de-
pending on how much he enjoys playing with them.

2. Economic interactions that are modeled as games, such
as bargaining games. A house owner may prefer invit-
ing one plumber over another, depending not only on
the quality of work of the plumber, but also on how
stressful is the experience (game) of reaching agree-
ment on a price.

3. Social interactions, e.g., in the sense of games people
play [5]. People may choose their friends and spouses,
and this affects who the other players will be in their
subsequent social interactions that are modeled as games.

This aspect of having a choice with whom to play is cap-
tured explicitly in some economic models. For example,
models of economic competition between firms involve the
option for clients to choose which firm to do business with.
However, it is our belief that this aspect has ramifications
extending also to games in which this aspect is not tradi-
tionally modeled. To illustrate the effects of this aspect, we
introduce an abstract model that we call invitation games,
which is a variation on the previously studied model of re-
peated games. The main phenomenon that we consider is
that of the effect of the invitation framework on the price of
stability of games.

The price of stability of a given game measures the gap
in welfare between the optimal social outcome of a game
(the one that maximizes the sum of payoffs of the players)
and the strategic outcome of the game (the one obtained in
the most favorable Nash equilibrium). We prove that under
quite mild conditions (for which we provide an exact charac-



terization), this gap tends to 0 in invitation games. 2 Conse-
quently, one may conclude that in the invitation framework
socially optimal outcomes are natural results of selfish be-
havior.

1.1 The model
Consider an arbitrary game G with row player R and col-

umn player C. The payoff matrices for the players will also
be denoted by R and C. Hence if R plays action i and C
plays action j the payoff to R is Ri,j and the payoff to C
is Ci,j . Given G as above and a scheduler S, we define an
invitation version of G, denoted by Gn,S , as follows. There
are n > 2 players denoted by P1, . . . , Pn. The game Gn,S
proceeds sequentially in rounds, starting at round 1. In any
given round t, the scheduler S may either choose to end the
invitation game, or to output an index s ∈ {1, . . . , n}, thus
selecting a player Ps. (We shall shortly provide more details
on how the scheduler makes its choices.) Then in round t,
player Ps gets to invite a player of his choice (say, player
Pq, where q 6= s) to a match, where a match is a game of
G, with Ps playing the role of R and Pq playing the role of
C. Hence the actions available to players in round t are as
follows:

1. Player Ps (selected by the scheduler) has two actions
to perform: to choose an index q 6= s, 1 ≤ q ≤ n, thus
inviting Pq to a match, and to choose an action i for
player R in the game G.

2. Player Pq invited by Ps has one action to perform: to
choose an action j for player C in game G.

3. Every other player Pq′ with q′ 6∈ {s, q} has no action
to perform.

In a given round, let Ps be the player selected by the
scheduler, let Pq be the player invited by Ps, let i be the
action of player Ps in game G, and let j be the action of Pq
in game G. The payoffs for the players are as follows

1. Player Ps gets payoff Rij .

2. Player Pq gets payoff Cij .

3. Every other player Pq′ gets payoff 0.

The total payoff of a player in Gn,S is the sum of his
payoffs over all rounds (when the scheduler ends the game).

In a given round, let Ps be the player selected by the
scheduler, and let Pq be the player invited by Ps. Then the
information revealed to the players at the end of the round
is:

1. Player Ps learns the action played by Pq (and hence
can infer the payoffs of all players in this round).

2. Player Pq learns that he was invited by Ps and the
action of Ps (and hence can infer the payoffs of all
players in this round).

3. In the full information version of the game, also ev-
ery player Pq′ with q′ 6∈ {s, q} learns that the round
took place, and also who Ps and Pq are and what they
played. There are two local information (also referred

2In our notation price of stability of 0 is best possible, and 1
is worse possible.

to as partial information) versions of the game. In
the asynchronous version Pq′ with q′ 6∈ {s, q} learns
nothing (not even that the round took place). In the
synchronous version, Pq′ with q′ 6∈ {s, q} learns that
the round took place, that he himself was neither se-
lected by the scheduler nor invited to a match, but
nothing else.

Let us now present more details on the nature of the sched-
uler. Recall that in a given round t the scheduler needs to
decide whether to end the game at that round, and if not,
to decide which player Ps to select. In this work we shall
restrict attention to nonadaptive schedulers, for which both
decisions depend only on the round number t, but do not de-
pend on the history of the game up to this round. (It makes
sense to consider also adaptive scheduler, but this is beyond
the scope of the current paper.) The nonadaptive scheduler
may be either deterministic or randomized, where in the lat-
ter case its decision may also depend on random coin flips.
For a nonadaptive deterministic scheduler, the total number
of rounds in an invitation game is fixed in advance. In this
paper, the total number of rounds of a randomized sched-
ule will be fixed in advance, though we mention here that
one may also consider the so called unknown horizon case
in which the number of rounds is a random variable that
depends on the randomness of the scheduler.

A special case of the nonadaptive deterministic scheduler
is the round robin scheduler, for which the number of rounds
T is divisible by n, and the rounds are partitioned into B =
T/n blocks of consecutive rounds. For any given block, in
round s (for 1 ≤ s ≤ n) within the block, the round robin
scheduler selects player Ps (we say that it is Ps’s turn to
invite). The game Gn,S with a round-robin scheduler and T
rounds is denoted by Gn,T . For round robin schedulers with
local information, there is no essential distinction between
the synchronous version and the asynchronous versions of
the game (because once a player gets to play a match, either
by reaching his turn or by invitation, he gets synchronized
again).

Throughout, given a 2-player game G, we refer to G as
the basic game and to Gn,S (or Gn,T in the case of round
robin scheduler) as the invitation game. Let us clarify that a
nonadaptive scheduler is not a player in the invitation game,
but rather part of the description of the rules of the game.
Hence the scheduler is common knowledge to all players.

1.2 Strategies and solution concepts
Consider a 2-player game G, let AR be the set of actions

available to the row player R and let AC be the set of actions
available to the column player C. A pure strategy for player
R (C, respectively) is a choice of a single action i ∈ AR
(j ∈ AC , respectively). A mixed strategy for player R (C,
respectively) is a probability distribution over actions in AR
(in AC , respectively). A pure Nash equilibrium (pure equi-
librium, for short) is a pair of pure strategies, one for R and
one for C, such that no player can increase his own payoff by
deviating from his prescribed strategy, given that the other
player has not deviated. A mixed Nash equilibrium (mixed
equilibrium, for short) is a pair of mixed strategies, one for
R and one for C, such that no player can increase his own
expected payoff by deviating from his prescribed strategy,
given that the other player has not deviated. A finite game
has at least one equilibrium (possibly mixed).



Given a basic game G, we consider its invitation ver-
sion Gn,S . The notions of pure and mixed strategies ex-
tend naturally to Gn,S , but let us elaborate on this. A
pure strategy for player Pi in the game Gn,S is a function
H −→ ([n] \ {i}, AR, AC) mapping a history H of the game
(the part observable by Pi in case of local information) to an
action in the given round. The action in a round t has three
components. The first component, a choice of an index from
[n] other than i, is the player that Pi would invite in round
t given history H if the scheduler S dictates that it is Pi’s
turn to invite. This aspect of the action can be left empty
if it is not Pi’s turn to invite. The second component is Pi’s
choice of action in the basic game G, if Pi pays the role of
R. Also this aspect of the action can be left empty if it is
not Pi’s turn to invite. The third component is Pi’s choice
of action in the basic game G, if Pi plays the role of C (that
is, if Pi is invited and sees history H). This aspect of the
action can be left empty if it is Pi’s turn to invite. Mixed
strategies are probability distributions over pure strategies.

For invitation games, we assume that every player P wishes
to maximize the expected sum of payoffs that P receives
from all rounds. As in the case of the basic 2-player game
G, an equilibrium for Gn,S is a profile of strategies, one for
each player, such that no player can gain by unilaterally de-
viating from his strategy. However, due to the sequential
aspect of Gn,S , the notion of equilibrium deserves further
discussion. We envision a situation in which prior to the
commencement of Gn,S a profile of n (mixed) strategies is
declared, with the ith strategy associated with player Pi.
The profile of strategies is an equilibrium in the sense that
if all players but one follow their declared strategies, the one
deviating player does not gain by his deviation (compared to
his expected payoff had he followed his declared strategy).
Moreover, the declared profile needs to satisfy the additional
property of subgame perfect equilibrium (see [15]). Namely,
at any point of the game, regardless of the history of the
game up to that point, the strategies when restricted to the
remaining subgame form an equilibrium for that subgame.
This requires strategies to be defined for every possible his-
tory H, including histories that lie outside the equilibrium
path. 3

Convention. The term equilibrium (whether pure or
mixed) for an invitation game will always refer to a sub-
game perfect equilibrium.

1.3 Our results
Given a finite game G, let W+(G) denote the maximum

welfare (sum of payoffs for all players) of an outcome of G,
and let W−(G) denote the minimum welfare of an outcome
of G. For example, if G is a basic two player game, then
W+(G) = maxij [Rij +Cij ] and W−(G) = minij [Rij +Cij ].

Definition 1. The price of anarchy (PoA) of a finite
game G is 0 if W+(G) = W−(G), and otherwise

PoA(G) = max
N

W+(G)−WN (G)

W+(G)−W−(G)

where N ranges over all (mixed) equilibria of G (recall also
that if G is an invitation game, the equilibria need to be
3One may think of deviations of players from their declared
strategies as being accidental rather than deliberate. The
declared strategy needs to include information on how play-
ers intend to act also in situations in which there were pre-
vious accidental deviations.

subgame perfect), and WN denotes the expected welfare in
equilibrium N . The price of stability (PoS) of a game G
is 0 if W+(G) = W−(G) and otherwise

PoS(G) = min
N

W+(G)−WN (G)

W+(G)−W−(G)
.

Definition 1 is a natural variation on previous definitions
of PoA and PoS [9, 14, 1], though we alert the reader that
we took the liberty of rearranging some aspects of previous
definitions. According to Definition 1, a price of anarchy (or
stability) of 0 is best possible (no price needs to be paid),
whereas a price of 1 is worst possible (all welfare is lost). In
contrast, earlier work defines PoA and PoS (when payoffs are

nonnegative) as maxN
W+(G)
WN (G)

and minN
W+(G)
WN (G)

, in which

case a price of anarchy (or stability) of 1 is best possible,
whereas a price of ∞ is worst possible.

Proposition 1. For every finite 2-person game G, every
n ≥ 3 and every non-adaptive scheduler S, the following
holds for the invitation games.

1. PoA(Gn,S) ≥ PoA(G).

2. PoS(Gn,s) ≤ PoS(G).

For simplicity, the following definition, and consequently
some of our results, are stated for a round robin schedule.
Extensions of these results to other nonadaptive schedules
(including randomized ones) appear in Section B.1.

Definition 2. We say that a finite 2-player game G is
invitation-resilient if for every n ≥ 3, for every T ≥ 1, in ev-
ery subgame perfect equilibrium of the invitation game Gn,T
with a round robin schedule, in every match the correspond-
ing two players play an equilibrium strategy for G.

Definition 3. We say that a finite 2-player game G is
asymptotically-efficient if for every n ≥ 3, the price of stabil-
ity of the invitation game Gn,T with a round robin schedule
tends to 0 as T grows. Namely, PoS(Gn,T )→ 0 as T →∞.

Our main theorem provides a dichotomy for invitation
games.

Theorem 2. Let G be an arbitrary finite 2-player game,
and let Gn,T be its corresponding full information invitation
game with a round robin schedule and n ≥ 3. Then either
G is invitation resilient and then Pos(Gn,T ) = PoS(G) for
every T , or G is asymptotically efficient (PoS(Gn,T ) tends
to 0 as T grows).

The proof of Theorem 2 implies the following somewhat
paradoxical corollary.

Corollary 3. Given a basic game G, let G− be the basic
game obtained by reducing the payoff of every player in each
outcome by a fixed universal constant (say, by 1). There is
such a pair of basic games G and G− for which the corre-
sponding invitation games have the following property: G−n,T
has a subgame perfect equilibrium in which every player has
higher payoff than the payoff of every player in every sub-
game perfect equilibrium of Gn,T .



Given the payoff matrices of a two player game G that is
asymptotically-efficient, the proof of Theorem 2 shows that
there is an NP-witness (a proof polynomial in the size of the
payoff matrices of G) certifying that G is asymptotically-
efficient. However, finding such a witness need not be com-
putationally easy.

Proposition 4. Given the payoff matrices of the two play-
ers in a game G, the computational problem of determining
that G is asymptotically-efficient is NP-complete.

For games that are not invitation resilient, the price of
anarchy offers a wide range of behaviors, unlike the price of
stability (that necessarily tends to 0 as T grows).

Proposition 5. Consider arbitrary 0 ≤ ε < δ ≤ 1. Then
there is a finite 2-player game G for which PoA(G) = ε,
and PoA(Gn,S) tends to δ as the number of rounds grows.
(Gn,S is the full information invitation game with an arbi-
trary nonadaptive schedule.)

1.4 Related work
In our setting there is a basic game that is repeatedly

played in the context of an invitation game, and as a re-
sult rational players might not play the equilibrium strat-
egy in particular instances of the basic game. A similar
phenomenon was previously illustrated in the context of re-
peated games, in which a basic game is repeated a fixed
number of times, each time with the same set of players. We
refer to this phenomenon as the repeated games principle,
and it states that for certain classes of games, any feasible
and individually rational payoff vector of the one-shot ba-
sic game can be approximated by the average payoff in a
perfect equilibrium of a repeated game with a sufficiently
long (but finite) horizon. Some special cases of the repeated
game principle were presented in [7] using so called trigger
strategies, and a characterization of the class of 2-player ba-
sic games for which the repeated game principle holds is
presented in [4]. Our Proposition 12 in Section B.1 is im-
plied by this characterization. We note however that the
repeated games principle does not apply to all games, and
in particular not to the game of prisoner’s dilemma. The
class of 2-player games for which the price of stability tends
to 0 in the invitation version strictly contains the class of
games for which the repeated games principle holds.

Despite the failure of the repeated games principle for
the game of prisoners dilemma, various other explanations
were suggested as to why players might choose to cooperate
(hence play out of equilibrium) in repeated versions of this
game. One aspect that may lead to cooperation is an un-
known horizon – the players do not know how many times
the game will be repeated. Technically, this allows to cir-
cumvent the issue of backward induction. See [12] for a com-
plete treatment of this issue. An alternative explanation is
offered (in a different context, but can easily be adapted to
the prisoners dilemma) in [13]: players are willing to settle
for a perfect ε-equilibrium (no player can gain more than ε
by unilaterally deviating) instead of a perfect equilibrium.
In repeated prisoners dilemma, cooperating in every game
and defecting only if the other player previously deviated is
an ε-equilibrium.

A different kind of explanation of how cooperation emerges
in games of prisoners dilemma is demonstrated in [3, 2]: in
a mixed population in which different players come up with

their own strategies (not necessarily rational in the game
theoretic sense), there is empirical evidence showing that
some strategies that allow for cooperation perform better on
average (when a player is matched for a sequence of games
with a random player from the population) than the strat-
egy of always defecting. If preference of either cooperation
or defection is viewed as a hereditary property, then those
strategies that do well on average have an evolutionary ad-
vantage, and hence become common.

The notion of price of anarchy was formally defined in [9,
14], and price of stability was formally defined in [1]. We
note that we slightly change the standard definitions of these
concepts so that the value ranges between 0 (no price) and 1
(as bad as it can get).

Our NP-hardness result (Proposition 4) has several pre-
decessors with related results [10, 6], and implicitly follows
from them. For completeness, we present a short proof of
this proposition, using a characterization of Motzkin and
Straus [11] of the size of the maximum independent set in
a graph. This characterization has been previously used in
NP-hardness proofs for so called evolutionary stable strate-
gies, see [8].

2. SUBGAME PERFECT EQUILIBRIA OF
INVITATION GAMES

Let G be an arbitrary finite 2-player game played between
the row player R and the column player C. In a given match
of G, we say that the players play an equilibrium strategy if
their (mixed) strategies are in equilibrium. Proposition 1 is
an immediate corollary of the following proposition, whose
proof appears in Section A.

Proposition 6. Let G be an arbitrary finite 2-player game,
and let Gn,T be its corresponding invitation game with full
information and a non-adaptive scheduler. Consider an ar-
bitrary equilibrium for G. Then there is a subgame perfect
equilibrium for Gn,T for which in every match both players
(participating in the match) play the given equilibrium for
the respective basic game G.

Note that with an adaptive scheduler and r 6= 0, Propo-
sition 6 need not hold. Suppose for example that R has a
single dominating strategy in G that gives R payoff r > 0
and gives C payoff 0. Suppose that the adaptive scheduler
makes P1 the inviting player in round 1, and depending on
P1’s action in round 1, decides whether P1 will continue to
be the inviting player in all future rounds (this happens if
P1 does not play his dominating strategy in round 1), or
will never again be the inviting player (this happens if P1

does play his dominating strategy in round 1). Then if the
number of rounds is sufficiently large, P1 will not play his
dominating strategy in round 1.

Theorem 7. Let G be an arbitrary finite 2-player game,
and suppose that there is some value r such that in every
equilibrium of G the expected payoff for R is r and the ex-
pected payoff for C is 0. Let Gn,T be its corresponding invi-
tation game with full information and a non-adaptive sched-
uler. Then in every subgame perfect equilibrium for Gn,T , in
every match both players (participating in the match) play
an equilibrium strategy for the respective basic game G.

Proof. Consider an arbitrary equilibrium for Gn,T . We
use backwards induction to show that in every match both



players play an equilibrium strategy for G. The base case is
that of the last round. Let P the inviting player in round T .
The first component of the action of P is a choice of player
to invite. Let Q be this player. Regardless of the identity
of P and Q, the subgame that one is left with is a match of
G. By subgame perfection, in this match the players need
to play an equilibrium strategy.

Consider now an arbitrary round t, and let P be the invit-
ing player in that round. By our induction hypothesis, in
every future round the respective matched players play equi-
librium strategies. This implies that in future rounds the
expected payoff for inviting players is always r, and the ex-
pected payoff for invited players is always 0. Hence players
are indifferent to being invited in future rounds. Likewise,
in future rounds inviting players are indifferent as to who
they invite. Hence nothing that P does in round t effects
his expected payoff in future rounds. This means that the
match in round t is played without concern of the future,
and subgame perfection implies that the match is played
without concern of the past. Hence regardless of the iden-
tity of player Q invited by P in round T , the in a subgame
perfect equilibrium of Gn,T the players P and Q play an
equilibrium strategy for G in round t.

The maximum welfare of a game G is defined as W+(G) =
maxij [Rij + Cij ]. In a given match of G, we say that the
players play a maximum welfare strategy if R plays i and C
plays j satisfying the equality above.

Theorem 8. Let G be an arbitrary finite 2-player game,
and let Gn,T be its corresponding full information invitation
game with a round robin schedule. Suppose that either one
of the following holds:

1. There is some value c 6= 0 and an equilibrium of the
basic game G in which the expected payoff for C is c.

2. There are two values r 6= r′ and two equilibria for the
basic game G, in one of which the expected payoff for
R is r and in the other it is r′. (It suffices to consider
the case that in both equilibria for G the expected payoff
for C is 0, as other cases are handled by 1 above.)

Then there is some positive integer ` such that for every
T there is a subgame perfect equilibrium for Gn,T in which
in all but `n matches the players play a maximum welfare
strategy (and in other matches players play an equilibrium
strategy).

A complete proof of Theorem 8 appears in Section B. Here
we only sketch the main principles used in the proof. The
set of all rounds is broken into the main set of rounds which
includes the first T − `n rounds, and the auxiliary set of
rounds which includes the last `n rounds. The intention is
that in the subgame perrfect equilibrium players will play a
maximum welfare strategy in the main set of rounds. Players
have no incentive to deviate because if they do they will get
“punished” in the auxiliary set of rounds. The nature of the
punishment depends on properties of equilibria of the basic
games.

1. If there is an equilibrium of the basic game G in which
the expected payoff for C is c > 0, then deviating play-
ers are punished by not being invited by other players
in the auxiliary rounds, and hence not collecting a pay-
off of c.

2. If there is an equilibrium of the basic game G in which
the expected payoff for C is c < 0, then deviating
players are punished by being invited by other players
in the auxiliary rounds, and consequently suffering a
negative payoff of c.

3. If there is an “inferior” equilibrium for the basic game
G in which the expected payoff for R is r and a ”su-
perior” equilibrium in which the expected payoff for R
is r′ > r, then a deviating player is punished by other
players playing the inferior equilibrium whenever in-
vited by the deviating player, rather than the superior
equilibrium.

For more details regarding how the above principles can
be implemented within a subgame perfect equilibrium, see
the full proof in Section B.

It is convenient to think of a strategy for a player in an
invitation game as composed of two components. One is the
invitation strategy, specifying who a player invites when it
is his turn to invite, and the other is the G-strategy spec-
ifying what to play in matches of G. We say that an in-
vitation strategy in nonadaptive if it depends only on the
round number but not of the history of the matches that
the player played. In our proof of item 1 of Theorem 8 play-
ers use adaptive invitation strategies, whereas in the proof
of item 2 players use nonadaptive invitation strategies.

We remark that even though Theorem 8 is stated for the
full information setting, its proof applies without change also
to the local information setting.

We now prove Theorem 2.

Proof. Theorem 7 provides a sufficient condition for a
finite 2-player game to be invitation resilient. This condi-
tion states that there is some value r such that in every
equilibrium of G the expected payoff for R is r and the ex-
pected payoff for C is 0. Theorem 8 handles all those games
for which this sufficient condition does not hold and claims
that in all cases the game is asymptotically efficient.

The price of anarchy does not provide the same sort of
dichotomy provided by the price of stability. We now prove
Proposition 5.

Proof. Consider a basic game G with two pure strategies

per player with payoff matrices R =

(
0 1−δ

2
0 0

)
and C =(

1− ε 1−δ
2

1− ε 1

)
. We have W+(G) = 1 and PoA(G) = ε

(in an equilibrium C must not play the second column as
then R plays only the first row). For the invitation version
of G, consider the equilibrium in which every player has a
designated partner that he invites, as long as the designated
partner agrees to play the ( 1−δ

2
; 1−δ

2
) cell, and switches to

an alternative partner once the designated partner deviates.
As the number of rounds grows, all but a constant number
of rounds (the constant depending on ε, δ) are played with
1− δ welfare.

2.1 Prisoners dilemma as the basic game
Prisoners dilemma (PD) is a symmetric 2-player game. A

player has two actions: defect (denoted here as 0) and coop-
erate (denoted here as 1). Defecting is a dominant action,
but if both players cooperate they get a higher payoff than
if they both defect. Hence we have R10 < R00 < R11 < R01.



Corollary 9. Let PD be the prisoners dilemma game
and consider subgame perfect equilibria of the correspond-
ing invitation game PDn,T with a round robin scheduler.

1. When the dominant payoff satisfies R00 = 0 then in
every subgame perfect equilibria of the invitation game
PDn,T , in all matches both players defect.

2. When the dominant payoff satisfies R00 6= 0 then there
is a value of ` that depends only on PD such that for
every T , the invitation game PDn,T has a subgame
perfect equilibria for which in all but `n matches both
players cooperate.

Proof. Item 1 is a special case of Theorem 7. If 2R00 ≥
R01 +R10 then item 2 is a special case of (item 1 of) Theo-
rem 8. If 2R00 < R01 +R10 then item 2 is technically not a
special case of (item 1 of) Theorem 8, but it can be proved
in exactly the same way in which item 1 of Theorem 8 is
proved.

2.2 A paradox for invitation games
One readily observes that Corollary 9 implies Corollary 3.

Proof. Let G be the prisoners dilemma game with pay-
offs R10 = −2, R00 = 0, R11 = 2, R01 = 4 (where 0 sig-
nifies defect and 1 signifies cooperate). By item 1 of Corol-
lary 9, in every subgame perfect equilibrium players always
defect, and hence every player receives total payoff of 0. The
game G− is the prisoners dilemma with payoffs smaller by 1,
namely R10 = −3, R00 = −1, R11 = 1, R01 = 3. Taking
` ≥ 2, the proof of item 2 of Corollary 9 shows (when n is
even) a subgame perfect equilibrium in which every player
Pi gets payoff of 2(T/n− `)R11 +2`R00. Taking the number
of blocks T/n to be at least five, the corollary is proved.
(With extra work the proof can be extended also to the case
that n is odd, but details are omitted.)

Corollary 3 has a paradoxical flavor. The basic games
G and G− are the same game up to a fixed additive shift
of payoffs. For the corresponding invitation games, if the
number of matches that a player Pi participates in is fixed
in advance to mi (e.g., because players use nonadaptive in-
vitation strategies) then the shift in payoffs for Pi between
Gn,T and G−n,T is just the fixed constant mi. The aspect
that makes the proof of Corollary 3 possible is the use of
adaptive invitation strategies, by which one player threatens
to change the value of mi if Pi deviates from the proposed
equilibrium strategies.

2.3 Constant sum basic games
It is instructive to see what our results imply for the case

that the basic game G is a constant sum game. By the
minimax theorem, there are values r and c such that in all
equilibria for G the expected payoff for R is r and the ex-
pected payoff for C is c (in a 0-sum game r = −c). In the
special case that c = 0, Theorem 7 implies that in every sub-
game perfect equilibrium, in all matches both players play
their minimax strategies. However, if c 6= 0, Theorem 7
no longer applies. Indeed, arguments similar to those ap-
pearing in the proof of Theorem 8 can be used in order to
design a 0-sum game G and a subgame perfect equilibrium
for the corresponding invitation games Gn,T in which in all
but the last few matches players do not play their minimax
strategies.

2.4 Computational complexity
It is well known that for many natural restrictions on Nash

equilibria, finding a Nash equilibrium satisfying these re-
strictions is NP-hard [10, 6]. In Lemma 10 we present yet
another proof of such a result, that we shall use in order to
prove Proposition 4.

Given a graph G, consider the following 2-player game
that we refer to as the k-clique game. The payoff matrix
A for the row player has n + 1 rows and n columns. The
top n by n submatrix is the adjacency matrix of a graph G.
All the entries of the bottom row are k−1

k
. For the column

player, the top n by n submatrix is the identity matrix, and
the bottom row is all 0.

Lemma 10. If G has a clique of size k, then there is a
Nash equilibrium for the k-clique game in which the support
for the row player has at least k rows, and the expected payoff
for the column player is positive. If G does not have a clique
of size k, then in all Nash equilibria the support for the row
player is the last row, his payoff is k−1

k
, and the payoff for

the column player is 0.

Proof. If S is a maximal clique of size at least k, then
both players playing uniformly over S gives a Nash equilib-
rium with payoff 1 − 1/|S| for the row player and 1/|S| for
the column player. This proves the first part of the theorem.

We shall refer to a Nash equilibrium in which the row
player plays row n+ 1, the payoff for the row player is k−1

k
and the payoff for the column player is 0, as a standard equi-
librium. If S is a maximal clique of size smaller than k, then
the row player playing row n+1 and the column player play-
ing uniformly over S gives a standard equilibrium. To prove
the second part of the theorem it remains to show that if
G has no clique of size k, there is no non-standard equilib-
rium. Suppose for the sake of contradiction that there is
a non-standard equilibrium. Let xi be the probability that
the ith column is played in this equilibrium, and let S be
the support for the mixed strategy for the column player
(namely, S = {i|xi > 0}). S must also be in the support for
the row player (otherwise the payoff for one of the strategies
of the column player is 0, implying that this is the payoff for
all the column player’s strategy, implying that only row n+1
is played, and hence this is a standard equilibrium). Being
in the support of an equilibrium, all rows of S give the row
player the same expected payoff, and it must be at least k−1

k
(otherwise the row player plays row n + 1 instead). Let y
range over nonnegative vectors whose entries sum to 1, and
let M be the adjacency matrix of G. We have thus estab-
lished that maxy y

TMy ≥ k−1
k

, by taking y = (x1, . . . xn).
The well known Motzkin-Straus theorem [11] implies that G
contains a k-clique.

We now prove Proposition 4.

Proof. As implied by the proof of Theorem 2, a game
is asymptotically efficient if and only if at list one of the
two conditions listed in Theorem 8 holds. Each of these
condition has a short witness (exhibiting the respective Nash
equilibria) certifying that it holds (if it indeed holds). Hence
the problem of determining that a game is asymptotically
efficient is in NP. Lemma 10 implies that determining that
a game is asymptotically efficient is NP-hard, because for
the k-clique game is equivalent to determining whether the
underlying graph has a k-clique.
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APPENDIX
A. PROOF OF PROPOSITION 6

In this section we prove Proposition 6.

Proof. Fix an arbitrary equilibrium for G. Let r (c,
respectively) be the expected payoff of R (C, respectively) in
this equilibrium. We say that a player plays his equilibrium
strategy in G if he plays the strategy that corresponds to
this given fixed equilibrium.

Consider the following profile of strategies for the players.
For every i, when it is player’s Pi turn to invite, he always in-
vites player Pi+ (regardless of the history up to this round),
where i+ signifies addition in cyclic order, and its inverse i−

signifies subtraction in cyclic order. (This choice of using
the function i+ is arbitrary and was made for concreteness.)
In every match (regardless of the history), both players play
their equilibrium strategies.

Let mi be the number of rounds in which Pi is the invit-
ing player under the nonadaptive schedule. Then under the
profile of strategies specified above, for each player Pi his ex-
pected payoff is rmi+cmi− . Unilaterally deviating from the
above strategy will not increase the expected payoff of Pi.
Hence the profile of strategies is an equilibrium. It is sub-
game perfect, as can be shown by backward induction.

B. PROOF OF THEOREM 8
For the proof of Theorem 8, we define various parameters

of G:
The maximum welfare. W+(G) = maxij [Rij + Cij ].

For this optimal choice of ij that results in W+(G) (if there
are several possible pairs of strategies i, j that lead to maxi-
mum welfare, fix one pair arbitrarily) we denote the respec-
tive payoffs by r∗ = Rij and c∗ = Cij . In a given match of
G, we say that the players play a maximum welfare strategy
if R plays i and C plays j as above.

The maximum difference.
DR(G) = maxii′j [Rij −Ri′j ]. DC(G) = maxijj′ [Cij −Cij′ ].
D(G) = max[DR(G), DC(G)]. The parameter D(G) pro-
vides an upper bound on how much a player can gain (in a
single game of G) by replacing one strategy by another.

We now prove Theorem 8.

Proof. The proof involves a case analysis, but there is
a common thread to all cases. Assume for simplicity that
n is even. (After the proof we sketch how this assumption
can be removed.) Arrange all players in disjoint pairs. Two
players of the same pair will be called partners. We shall
also have another arrangement of players in pairs, for which
two players in the same pair are fallback partners. (For every
player, his partner and fallback partners are different.)

Suppose that there is an equilibrium of G in which the
expected payoff of C is c > 0, and let r denote the expected
payoff of R in this equilibrium. Let ` be such that c` ≥
max[D(G), r − r∗], and choose T such that T/n > `. We
propose the following subgame perfect equilibrium for Gn,T .
In equilibrium:

1. Every inviting player always invites his partner.

2. In every match in the first T/n − ` blocks the players
play the maximum welfare strategy.

3. In every match in the last ` blocks the players play the
equilibrium strategy.

We now describe how players respond to situations in
which other players deviate from equilibrium:

1. If a player is invited by any player other than his part-
ner, on that match he plays the equilibrium strategy.

2. If a player P observes a deviation by his partner Q in
any of the matches that are (or should have been) held
between them (either Q inviting a player other than
P , or Q not playing the deterministic maximum wel-
fare strategy in the first blocks, or Q not playing the



equilibrium strategy in the last blocks), then P never
invites Q again. Instead P invites his fallback partner
and plays the equilibrium strategy. Moreover, if Q in-
vites P after Q has deviated, P plays the equilibrium
strategy.

For subgame perfect equilibrium, we need to also describe
how a player reacts to his own deviations from equilibrium.
This represents what other players “believe” that this player
will do, though of course once deviating, the player might
deviate again. In our subgame perfect equilibrium strategy:

• If a player P previously deviated, then whenever it is
P ’s turn to invite he invites his partner, and in every
match P plays the equilibrium strategy for G.

If all players follow the above equilibrium strategy, every
player receives expected payoff (T/n− `)W+(G) + `(c+ r).
A player has nothing to gain from unilaterally deviating. In
the last ` blocks only equilibrium strategies for G are played.
If a player deviates in any of the first T/n−` blocks, he gains
at most D(G) (if the deviation was in a play of G against
his partner) or at most expected r− r∗ (if the deviation was
by inviting a player other than his partner), and loses an
expected payoff of at least c`, by not being invited in the
last ` blocks. The net gain is not positive. The equilibrium
is subgame perfect because once a player deviates, all his
games are played in an equilibrium for G, and backward
induction applies.

Suppose now that there is no equilibrium of G in which
the expected payoff of C is strictly positive, but there is an
equilibrium of G in which the expected payoff of C is c < 0.
Let r denote the expected payoff of R in this equilibrium.
Let ` be such that c` ≥ max[D(G), r − r∗], and choose T
such that T/n > `. We propose the following equilibrium
for Gn,T . In equilibrium:

1. In the first T/n− ` blocks every inviting player always
invites his partner.

2. In the last ` blocks every inviting player always invites
his fallback partner.

3. In every match in the first T/n − ` blocks the players
play the maximum welfare strategy.

4. In every match in the last ` blocks the players play the
equilibrium strategy.

We now describe how players respond to situations in
which other players deviate from equilibrium:

1. If a player is invited by any player other than his part-
ner, on that match he plays the equilibrium strategy
for G.

2. If a player P observes a deviation by his partner Q
in any of the matches that are (or should have been)
held between them in the first T/n − ` blocks (either
Q inviting a player other than P , or Q not playing
the deterministic maximum welfare strategy), then P
invites Q in all his remaining turns (including in the
last ` blocks) and plays the equilibrium strategy for G.
Moreover, if Q invites P after Q has deviated, P plays
the equilibrium strategy for G.

We need to also describe how a player reacts to his own
deviations from equilibrium. In our subgame perfect equi-
librium strategy:

1. If a player P previously deviated then whenever it is
P ’s turn to invite he invites his fallback partner, and
in every match P plays the equilibrium strategy for G.

If all players follow the above equilibrium strategy, every
player receives expected payoff (T/n− `)W+(G) + `(c+ r).
A player has nothing to gain from unilaterally deviating. In
the last ` blocks only equilibrium strategies for G are played.
If a player deviates in any of the first T/n−` blocks, he gains
at most D(G) (if the deviation was in a play of G against
his partner) or at most expected r − r∗ (if the deviation
was by inviting a player other than his partner), and loses
an expected payoff of at least c`, by being invited by his
partner in the last ` blocks. The net gain is not positive.
The above equilibrium is subgame perfect because once a
player deviates, all his games are played in an equilibrium
for G, and backward induction applies.

We now turn to prove item 2 of Theorem 8. Namely, the
expected payoff of C is 0 in all equilibria for G, and there
are two different equilibria, the inferior one in which the
expected payoff of R is r, and the superior one in which the
expected payoff of R is r′ > r. Let ` be such that (r′−r)` ≥
max[D(G), r − r∗], and choose T such that T/n > `. We
propose the following subgame perfect equilibrium for Gn,T .
In equilibrium:

1. Every inviting player always invites his partner.

2. In every match in the first T/n − ` blocks the players
play the maximum welfare strategy.

3. In every match in the last ` blocks the players play the
superior equilibrium strategy.

We now describe how players respond to situations in
which other players deviate from equilibrium:

1. If a player is invited by any player other than his part-
ner, on that match he plays the inferior equilibrium
strategy.

2. If a player P observes a deviation by his partner Q
in any of the matches that are (or should have been)
held between them (either Q inviting a player other
than P , or Q not playing the deterministic maximum
welfare strategy in the first blocks, or Q not playing
the superior equilibrium strategy when playing as C in
the last blocks), then in future rounds P continues to
invite Q. In matches with Q: if P is inviting he plays
the superior equilibrium, and if Q is inviting P plays
the inferior equilibrium.

We need to also describe how a player reacts to his own
deviations from equilibrium. In our subgame perfect equi-
librium strategy, a player P who previously deviated:

1. Always invites his partner and plays the inferior equi-
librium.

2. When invited by his partner, P plays the superior equi-
librium.

3. When invited by a player other than his partner, P
plays the inferior equilibrium.

If all players follow the above strategy, every player re-
ceives expected payoff (T/n− `)W+(G) + `r′. A player has
nothing to gain from unilaterally deviating. In the last `
blocks invited players get 0 payoff, whereas and inviting
player P gets payoff r, except for payoff of r′ > r when



inviting their partner (conditioned on P not deviating ear-
lier). If a player deviates in any of the first T/n− ` blocks,
he gains at most D(G) (if the deviation was in a play of
G against his partner) or at most expected r − r∗ (if the
deviation was by inviting a player other than his partner),
and loses an expected payoff of at least (r′ − r)`, by getting
payoff r instead of r′ in the last ` blocks. The net gain is
not positive. The above equilibrium is subgame perfect be-
cause once a player deviates, all his games are played in an
equilibrium for G, and backward induction applies.

We presented the proof of Theorem 8 only for the case
that n is even. We sketch how the proof of Theorem 8
can be extended to the case that n is odd. Because n is
odd, we cannot partition all players into pairs, and instead
we partition all but three of the players into pairs, and the
remaining three players form a triple (P1, P2, P3). In odd-
numbered blocks, every player in the triple considers the
player among the triple that follows him (in cyclic order) to
be his partner, and the player that precedes him to be his
auxiliary partner. In even-numbered blocks, every player in
the triple considers the player that precedes him to be his
partner, and the player that follows him to be his auxiliary
partner. In two consecutive blocks (an odd block followed by
an even block) we can identify three pairs of rounds, where in
each such pair two players of the triple consider each other
to be their partner, and the remaining player to be their
auxiliary partner. Hence each player in the triple is in a
situation equivalent to having one partner in one set of T/2
pairs of rounds (each player in the partnership invites in one
round within a pair), and a different partner in a different
set of T/2 pairs of round. The proof of Theorem 8 extends
to this setting (with the modification that each player in the
triplet is involved in 2` blocks of an equilibrium strategy for
G, instead of only ` blocks).

B.1 Extensions to other schedules
Theorem 8 shows how invitation games naturally lead to

situations in which individual matches are not played in an
equilibrium for the basic game. The statement of the theo-
rem assumes a round robin schedule. However, variants of
the theorem easily extend to other schedules. One natural
schedule to consider is what we call the random schedule: in
every round the inviting player is chosen uniformly at ran-
dom, independently of all other events. Theorem 8 extends
as is to this schedule.

Corollary 11. Let G be an arbitrary finite 2-player game,
and let Gn,T be its corresponding full information invitation
game with the random schedule. Suppose that either one of
the following holds:

1. There is some value c 6= 0 and an equilibrium of the
basic game G in which the expected payoff for C is c.

2. There are two values r 6= r′ and two equilibria for the
basic game G, in one of which the expected payoff for
R is r and in the other it is r′.

Then there is some positive integer ` such that for every
T there is a subgame perfect equilibrium for Gn,T in which
in all but `n matches the players play the maximum welfare
strategy (and in other matches players play an equilibrium
strategy).

Proof. The proof follows from that of Theorem 8 essen-
tially with no change, because players are assumed to be ex-
pectation maximizers. Within every block of n matches, the
round robin schedule lets every player invite exactly once,
whereas the random schedule lets every player invite once in
expectation. As expectation maximizers are concerned only
with expectation, the arguments in the proof of Theorem 8
carry over to the case of a random scheduler.

Recall that the proof of Theorem 8 applies not only in the
full information setting, but also to the local information set-
ting (both in the synchronous version and the asynchronous
version). The proof of Corollary 11 as stated need not apply
in the local information setting. Extending Corollary 11 so
that it does apply in the local information setting is beyond
the scope of this paper.

Returning to deterministic schedules, Theorem 8 need not
hold as stated for arbitrary nonadaptive schedules, due to
the fact that some players might invite less often than others.
However, the main qualitative message of Theorem 8 still
holds, namely, some matches may be governed by welfare
considerations irrespective of consistency with equilibria for
the basic game. We demonstrate this in two propositions for
which we only sketch the proofs (as they follow principles
similar to the proof of Theorem 8). Proposition 12 concerns
the second class of basic games considered in Theorem 8. For
that class, the proof applies even in the two player repeated
game setting (without the need of an invitation setting),
and is sketched mainly for completeness, as similar results
already appeared in [7, 4]. This class of basic games does
not include the prisoners dilemma.

Proposition 12. Let G be an arbitrary finite 2-player
game, and let GT be its T -fold repeated setting. Let c denote
the maximum possible payoff for C (the largest entry in C’s
payoff matrix). Suppose that among the equilibria for the
basic game G, there is a superior equilibrium in which the
expected payoffs for R and C are (r1, c1), and an inferior
equilibrium in which the expected payoffs for R and C are
(r2, c2), with r1 > r2 (there are no restrictions on the values
of c1 and c2). Then there is some positive integer ` depend-
ing only on G such that if T > `, there is a subgame perfect
equilibrium for GT in which there is a match in which the
payoff for C is c.

Proof. The proposed equilibrium for GT when no player
deviates is as follows. In the first round, the players play the
pure strategies that give C payoff c. In all future rounds the
players play the superior equilibrium. If R deviates in the
first round, then in all rounds the players play the inferior
equilibrium. No other deviation affects future play of the
players.

We sketch the proof of why this is a subgame perfect equi-
librium. A unilateral deviation of C gains nothing for C,
because in every round C is playing a best response. A
unilateral deviation of R in round 1 may gain in round 1,
but causes R to suffer the inferior equilibrium in all future
rounds, instead of the superior equilibrium, hence losing
(r1− r2)`. In all other rounds R gains nothing by deviating,
because he is playing a best response.

Proposition 12 extends to the case when the roles of R
and C are reversed. Namely, when r denotes the maximum
possible payoff for R and c1 > c2, there is a subgame perfect



equilibrium for GT in which there is a match in which the
payoff for R is r.

Proposition 13 corresponds to the first class of games
considered in Theorem 8 (which does include the prison-
ers dilemma if the payoff for defect-defect is nonzero). This
proposition does require the invitation setting and at least
three players.

Proposition 13. Let G be an arbitrary finite 2-player
game, and let Gn,S be its corresponding full information in-
vitation game with schedule S. Let r denote the maximum
possible payoff for R (the largest entry in R’s payoff matrix).
Suppose that there is some value c 6= 0 and a distinguished
equilibrium of the basic game G in which the expected payoff
for C is c. Then there is some positive integer ` depending
only on G such that if the number of rounds in schedule S
is larger than `n, there is a subgame perfect equilibrium for
Gn,S in which in some match the inviting player gets payoff
r.

Proof. Given S, there is a player (say, P ) that invites
in more than ` rounds. Fix some arbitrary other player Q.

Suppose that c > 0. Then we propose the following sub-
game perfect equilibrium, All players always invite Q, and
Q always invites P . In all matches the distinguished equi-
librium is played, except for the first match among those in
which it is P ’s turn to invite. In that match between P and
Q they play the pure strategies that give R a payoff of r. If
Q deviates from this strategy in this particular match, then
P never invites Q again, and instead invites some other de-
fault player P ′ and they play the distinguished equilibrium.
No other deviation results in a change of strategy of players.

We sketch the proof of why this is a subgame perfect equi-
librium. A unilateral deviation of any player other than Q
gains nothing for that player, because in every round the
player is playing a best response. A unilateral deviation of
Q in the first match in which Q is invited by P may result in
Q gaining in that round, but causes Q to not be invited by
P in future rounds, losing a payoff of c`. In all other rounds
Q gains nothing by deviating, because he is playing a best
response.

If c < 0 the same principles as above apply, except for
exchanging Q for Q′ (and Q′ for Q) in the rounds in which
P invites, except for P ’s first turn.


