
Optimization with uniform size queries

Uriel Feige∗ Moshe Tennenholtz†

May 7, 2015

Abstract

Consider the problem of selecting k items that maximize the value
of a monotone submodular set function f , where f can be accessed
using value queries. It is well known that polynomially many queries
suffice in order to obtain an approximation ratio of 1− 1

e . We consider
a variation on this problem in which the value queries are required to
be of uniform size: each queried set, like the desired solution itself,
must contain k items. We show that polynomially many uniform size
queries suffice in order to obtain an approximation ratio of 1

2 , and that
an approximation ratio of 1+ϵ

2 requires a number of queries that is
exponential in ϵk. For the interesting special case of coverage functions,
we show that an approximation ratio strictly better than 1

2 is attainable
with polynomially many uniform size queries.

The ”uniform size” requirement is motivated by situations in which
a firm may offer a menu of exactly k items to its clients, where k is a
parameter determined by external considerations. Performing a query
corresponds to physically changing the identities of the items offered,
and the reply to the query is deduced by observing the behavior of
clients in response to the change. Queries that involve a number of
items that differs from k may not be desirable due to these external
considerations. In such situations it is natural to ask whether the same
approximation ratios that can be guaranteed by general value queries
can also be obtained by uniform size queries.

1 Introduction

In this work we study a variation on a well known optimization problem,
where our variation is motivated by economic scenarios. The problem is in-
troduced in Section 1.1, whereas some motivation is provided in Section 1.2.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute,
Rehovot. uriel.feige@weizmann.ac.il.

†Technion–Israel Institute of Technology. moshet@ie.technion.ac.il

1

1.1 Max k-submodular

We first recall some standard definitions. Let U be a universe of n items,
and let f : U −→ R≥0 be a nonnegative set function, namely, a function that
assigns to each subset S ⊂ U a nonnegative value f(S) ≥ 0. Function f is
monotone if f(S) ≥ f(T) whenever T ⊂ S, and submodular if f(S)+f(T) ≥
f(S ∪T)+ f(S ∩T) for all S, T ⊂ U . Equivalently, f is submodular if items
have decreasing marginal values in the sense that for every sets T ⊂ S ⊂ U
and every item i ̸∈ S, f(S ∪{i})− f(S) ≤ f(T ∪{i})− f(T). A value query
to f is a set S ⊂ U , and its reply is the value f(S).

The computational problem that we study is the following: given U , a
nonnegative monotone submodular f as above that can only be accessed
using value queries, and a positive integer parameter k, output a set S ⊂ U
of cardinality |S| = k that maximizes f(S), namely f(S) = max|T |=k f(T).
We call this problem max k-submodular, and denote its optimal value by
opt.

The operations available for an algorithm that attempts to solve max
k-submodular are value queries to f , and polynomial time computations
based on the results of these queries. Hence the number of queries is also
required to be polynomial (in n and k).

A ρ-approximation algorithm is an algorithm that is allowed to make
only a polynomial number of queries (polynomial in n and k), and returns
a set T of cardinality k whose value satisfies f(T) ≥ ρ opt. For randomized
approximation algorithms, we require the expected value of their output to
be at least ρ opt.

The problem max k-submodular as described above is well studied. It
is known that a greedy algorithm provides a 1 − 1

e ≃ 0.632 approximation
ratio, and that this is best possible [14, 7].

In this work we modify the above problem by assuming that not all
queries cost the same. Namely, there is a known nonnegative cost function
c : U −→ R associated with queries, and the complexity of an algorithm is
measured in terms of sum of costs of all queries that it makes. Specifically, we
shall assume that c(S) = 1 whenever |S| = k, and c(S) is prohibitively large
if |S| ̸= k (e.g., c(S) = 2n in this case). Hence approximation algorithms
will need to use only value queries for sets of cardinality exactly k, and are
forbidden from asking value queries for sets of other sizes.

2

1.2 Examples

Suppose that a firm can offer a menu with k items, where k is a parameter
governed by some external limitations (such as physical size of menu, or span
of attention of costumers). For example: the firm might be a restaurant, and
the items are dishes on its menu; or the firm might be a physical shop and
the menu includes the items in the shop window; or the firm might be a web
service provider, and the items can be entries on its home page; or the firm
can be a provider of a personal assistant (say, on a mobile phone), which may
provide potential customers with k different persona in the menu list (e.g.
one that optimizes social value, one that optimizes monetary value, etc.).
Suppose further that each potential client desires some subset of items, and
will find a menu satisfactory if and only if the menu contains at least one
desired item. The firm wishes to produce a menu that will satisfy as many
clients as possible. One can readily observe that the function f assigning
to each menu the number of satisfied costumers is a coverage function, and
hence the problem the firm is faced with is max k-coverage, which is a
special case of max k-submodular. In some other embodiment, where e.g.
the customer either likes or dislikes the menu as a whole, the percentage of
satisfied customers for the menu determines the value of the menu, and often
can be modeled by a sub-modular function that is not a coverage function.

The question then becomes how can the firm “learn” the function f
(learn what clients want). A reasonable approach is to do so by an explo-
ration procedure. In a single exploration step, the firm offers an “experi-
mental” menu and estimates based on observed behavior what fraction of
costumers are satisfied by the menu. For example, a client who visited the
web page and chose to click on some link is counted as satisfied and a client
who left the web page without following any of the links is counted as not
satisfied. Hence, such an exploration step, when conducted along a period
of time, can serve as an approximate value query (assuming that the set
of clients who were exposed to the menu is random). Thereafter, the firm
can change the experimental menu and perform an additional exploration
step, thus performing (in effect, and subject to some approximation error)
a sequence of value queries.

Why would different value queries (experimental menus) have different
costs? There can be many reasons. Here is one of them. Suppose that the
firm is already offering a menu with k items, and a consultant to the firm
proposes to experiment with other menus so as to optimize the contents of
the menu. The firm might be willing to give the consultant a chance to
come up with an improved menu, as long as the exploratory phase is not

3

too disruptive to its current business. Temporarily replacing a k item menu
by a much smaller menu might be regarded as being very disruptive (and
hence of high cost), whereas replacing just one item on the existing menu
may be regarded as not disruptive, and hence has low cost. Another reason
is due to competition. Assume that a firm can afford the space/capability
of offering k items, matching the number of items offered by a competitor.
Such a firm might not like to ever offer on its menu a number of items that
is smaller than the number offered by the competitor.

Notice that the above examples refer to the value obtained as statistics
about an experimental period. In the coverage problem the feedback dis-
cussed is whether a customer likes at least one of the items. This brings the
question of whether we (as optimizers) see the item actually chosen (if any)
by a given customer. This issue is discussed in Section 3.2.

The purpose of the above examples is mainly to illustrate that there are
natural settings in which different value queries have different costs. This
and similar settings motivate our definition of max k-submodular with query
costs. Needless to say, our problem is a mathematical abstraction rather
than a detailed model of reality. Some aspects that may be relevant in
practice are discussed in Section 3.1, whereas others are completely ignored
in this manuscript.

1.3 Results

Throughout this section, the problem max-k-submodular refers to the set-
ting in which only value queries for sets of size k are allowed. We refer to
queries of this form as k-queries.

In Section 2.1 we present a simple local search algorithm, similar to the
interchange heuristic of [14] (the difference is that we explicitly introduce
a parameter ϵ so as to bound the running time). The following theorem
provides performance guarantees for that algorithm (which are basically the
same as in [14]).

Theorem 1 For every ϵ > 0, the local search algorithm with parameter ϵ
approximates max-k-submodular within a ratio of at least k

2k−1+ϵ , and uses

at most O(nk
3 log k
ϵ) k-queries.

The approximation bounds provided in Theorem 1 are best possible for
the local search algorithm, as shown by the following proposition. (Similar
negative results appear also in [14].)

4

Proposition 2 There are instances of max k-coverage (which is a special
case of max k-submodular) on which the local search algorithm might stop at
a solution of value no better than a k

2k−1 fraction of the optimum solution,
regardless of the value of ϵ.

More generally, no algorithm can offer substantial improvement over the
approximation ratio of 1

2 .

Theorem 3 For ϵ ≤ 1
2 , any algorithm that has probability at least 1

2 of
approximating max-k-submodular within a ratio of 1+ϵ

2 must use at least
Ω
(
(ϵnek)

ϵk
)
k-queries.

A natural and well studied subclass of submodular functions is that of
coverage functions. In fact, the example presented in Section 1.2 refers to
a coverage function. The negative example provided in Theorem 3 involves
a submodular function that is not a coverage function. Indeed, we can
show that for max k-coverage an approximation ratio strictly better than
1
2 is achievable using polynomially many k-queries. The algorithm that we
design for this purpose will be referred to as the conditional greedy algorithm.

Theorem 4 There is some ρCG > 1
2 , such that for every k, the conditional

greedy (randomized) algorithm approximates max-k-coverage within a ratio
of at least ρGD, and uses at most polynomially many k-queries.

We do not attempt to compute ρCG exactly. We only show that 0.50004 <
ρCG < 0.582 (for the upper bound see Proposition 8). The lower bound suf-
fices in order to illustrate that max k-coverage can be approximated within
a strictly better ratio than max k-submodular in our context of k-queries.
The upper bound establishes that the conditional greedy algorithm does not
suffice for attaining an approximation ratio of 1− 1

e .

1.4 Related work

Accessing a function via value queries is a common theme in combinatorial
optimization. In some work (e.g., [10]) the query model is used so as to
present general algorithmic results that hold for every function within some
class (e.g., minimization of any submodular function). In algorithmic game
theory settings , the query model is sometimes used in order to overcome
communication bottlenecks. For example, in the maximum welfare problem
(e.g., [13]), bidders are not assumed to communicate their valuation func-
tions (whose description might be exponential in the number of items), but

5

rather to answer value queries with respect to their valuation functions. For
some classes of valuation functions value queries appear to be too weak (so
as to provide a reasonable approximation ratio for the problem at hand),
and one resorts to stronger classes of queries, such as demand queries [3]. In
our context we think of the queries as representing the outcome of a phys-
ical experiment. This is a common view in multiple settings, ranging from
settings quite similar to ours (see for example [15] and references therein),
to very different settings (e.g., a clinical trial can be thought of as a physical
experiment whose purpose it to answer a query). Under this view, it is nat-
ural to assign different costs to different queries. Often, they are physical
costs of the experiment. However, we think of them here as economic costs
associated with exploration, in terms of short term loss in revenue due to
the exploration step, or long term loss in reputation or client basis due to
what appears to an outside observer to be erratic behavior of the firm.

Submodular function maximization under a cardinality constraint (max
k-submodular) is a well studied problem. A simple greedy algorithm achieves
an approximation ratio of 1 − 1

e using O(nk) value queries [14]. As noted
in Section 1.3, an approximation algorithm that is only based on k-queries
(referred to as an interchange heuristic) also appears in [14], though we
remark that there it is introduced not so as to avoid value queries to sets of
size different than k (as we do in our manuscript), but simply because it is
a natural heuristic to study.

Max k-coverage is an extensively studied special case of max k-submodular.
The reader is alerted that the terminology used in this special case is some-
what inconsistent with the terminology for the general case: for max k-
coverage each member of U is referred to as a set of items (or elements),
and a solution is referred to as a collection of k sets, and the value of the
solution is the number of items covered. When the input instance is given
explicitly (as a list of polynomially many sets), the problem can be approx-
imated by a ratio of 1 − 1/e either using the greedy algorithm, or using
rounding of a linear programming relaxation (both algorithms can be found
as exercises in [19]), and obtaining an approximation ratio better than 1−1/e
is NP-hard [7].

Restricting queries to values for sets of size exactly k is a theme that
appears also in the context of linearity testing, when the input is the kth
slice of a supposedly multivariable linear function. See [5] for more details.

Settings such as those described in Section 1.2 refer to a most basic
challenge of fixed menu selection. While menu selection has been discussed
explicitly and experimentally in the Human Computer Interaction (HCI)
community (see e.g. [1] and the references within), and is implicit in methods

6

for vector and feature selection in Machine Learning (see e.g. [11] for an
overview), the most directly relevant work is in the context of contract
menus: menus that are offered in order to optimize a firm/social value where
a buyer selects one of the proposed contracts or none. Indeed, the topic of
finding a fixed size simple optimized contract has been discussed (see e.g.
[17]) following the seminal work of Laffont and Tirole [12]. The notion of
searching by value queries of experimental fixed size menus for an optimal
menu, and doing it efficiently, nicely complements that perspective.

The special case of maximizing k-coverage using only k-queries is studied
in [15], but there the reply model is different from our paper, and conse-
quently the approximation ratio is 1 − 1

e . See more details in Section 3.2.
Extensions of the setting of [15] to more general submodular functions were
studied in [18], which also achieves a 1 − 1

e approximation ratio, but using
general value queries (and not just k-queries).

2 Proofs

2.1 Approximating max k-submodular using k-queries

We show that for every ϵ, an approximation ratio of k
2k−1−ϵ can be obtained

with polynomially many k-queries.
We refer to two sets T and T ′ as neighbors if both sets have the same

cardinality (|T | = |T ′|), and T ′ can be obtained from T by one swap (namely
|T\T ′| = |T ′\T | = 1). A set T will be called a local ϵ-maximum (with respect
to function f) if for every neighboring set T ′ one has (1 + ϵ

k2
)f(T) ≥ f(T ′).

Observe that k(n − k) k-queries suffice in order to check whether T of size
k is a local ϵ-maximum, and provide a witness T ′ if not.

To address the problem max k-submodular, we propose the following
algorithm that uses only k-queries.

1. Start with an arbitrary set T with |T | = k.

2. If T is a local ϵ-maximum, return T .

3. Else, let T ′ be the neighbor of T of highest f value. Repeat the
algorithm with T ′ replacing T .

We refer to the above algorithm as the local search algorithm. We alert
the reader that other local search algorithms have been used in the context
of submodular optimization (for example, to maximize nonmonotone sub-
modular functions, see [8]), but they may differ from our algorithm in the
way they define the neighborhood of a set.

7

Lemma 5 Let f be a nonnegative monotone submodular set function. Let
S denote the set of cardinality k of highest f(S). When the local search
algorithm ends, f(T) ≥ k

2k−1+ϵf(S).

Proof. By submodularity of f , there is an item x ∈ T such that f(T \{x}) ≥
k−1
k f(T), and an item y ∈ S such that f((T \ {x}) ∪ {y}) ≥ k−1

k f(T) +
f(S)− k−1

k
f(T)

k = f(T)(1− 2
k +

1
k2
)+ f(S)

k . Let us denote T \ {x})∪{y} by T ′.
Then due to local ϵ-maximality of T we have that (1 + ϵ

k2
)f(T) ≥ f(T ′) ≥

f(T)(1− 2
k + 1

k2
) + f(S)

k implying that 2k−1+ϵ
k2

f(T) ≥ f(S)
k . �

Lemma 6 The local search algorithm stops after at most O(k
2 log k
ϵ) itera-

tions.

Proof. Let S denote the set of cardinality k of highest f(S). By submodu-
larity, there is an item x ∈ S with f(x) ≥ f(S)/k. Moreover, for every set T
there is a neighboring set T ′ that contains x. Furthermore, by monotonicity
of f , for this T ′ we have f(T ′) ≥ f(x). If follows that after one iteration the
set T held by the local search algorithm has value satisfying f(T) ≥ f(S)/k.
Thereafter, it takes at most O(k2/ϵ) iterations to double the value of f(T).
The number of iterations cannot exceed O(k2 log k/ϵ), as otherwise f(T)
will exceed f(S). �

We now prove Theorem 1
Proof. The claim regarding the value of the solution follows from Lemma 5,
and the claim regarding the number of k-queries follows from Lemma 6,
combined with the fact that a single iteration of the local search algorithm
can be implemented using O(nk) k-queries. �

2.2 Hardness results

We now prove Proposition 2.
Proof. Consider an instance of max k-coverage with n = k(2k − 1) items,
arranged in a matrix with k rows and 2k−1 columns. Each row is a set (with
2k − 1 items), and each one of the first k columns is a set (with k items).
The optimal solution is composed of the k rows, and has value k(2k − 1).
The collection of first k columns is a locally optimal solution (which the
local search algorithm may start with and then immediately end, regardless
of the value of ϵ), and its value is k2. The ratio between the two is k

2k−1 . �

8

Proof of Theorem 3.
Proof. For ϵ in the range 1

k ≤ ϵ < 1, let ρ = 1+ϵ
2 . For simplicity, assume that

ρ divides k. Consider the following instance. There are k good items and n−k
bad items. For every 0 ≤ g ≤ k and 0 ≤ b ≤ n−k and any set T that contains

g good items and b bad items, we define f(T) = min
[
k, ρb+ gmax[k−ρb

k , ρ]
]
.

Write f as f = min[k, f ′] with f ′(T) = ρb+gmax[k−ρb
k , ρ]. Monotonicity

and submodularity of f are inherited from f ′, because they are preserved
under taking a minimum with a nonnegative constant (k, in our case).

To see that f ′ is monotone, one easily observes that adding a good item to
a set cannot decrease its value. Likewise, adding a bad item to a set increases
the contribution of the bad items by ρ, and decreases the contribution of
each good item by at most ρ

k . As there are at most k good items, there
cannot be a net decrease.

Observe that when b ≥ k/ρ the value of f is k, and then the marginal
value of each additional item is 0. Hence to show that f is submodular, it
suffices to show that f ′ is submodular when its domain is restricted to have
k/ρ bad items (and k good items). For a set T , the marginal value of an
additional good item depends only on the number of bad items in T , and
cannot increase when the number of bad items grows. The marginal value
of an additional bad item is ρ− g ρ

k (when b < k/ρ, and 0 otherwise) which
is independent of b and decreasing in g. Hence f ′ is submodular over its
restricted domain.

Having established that f is nonnegative, monotone and submodular,
we consider the number of k-queries required in order to approximate max
k-submodular well. For this we suppose that the items are permuted at
random so that a-priori, the algorithm cannot distinguish between good
and bad items.

The set of k good items has value k, and this is optimal.
Every set of k items that contains at least 1−ρ

ρ k = 1−ϵ
1+ϵk bad items has

value ρk. We say that a q-query is informative if it returns a value larger
than ρk. The fraction of k-queries that are informative is precisely the
probability that a random set of k items contains more than 2ϵ

1+ϵk good

items. For notational convenience, denote δ = 2ϵ
1+ϵ . Then this probability is

at most: (
k

δk

)(
k

n− k

)δk

≃
(

ek

δ(n− k)

)δk

≤
(
ek

ϵn

)ϵk

where the last inequality holds when 2ϵ(n−k)
1+ϵ ≥ ϵn, or equivalently, when

9

k ≤ 1−ϵ
2 n. This last inequality can indeed be assumed, because if it does

not hold (and ϵ ≤ 1
2 as in the statement of the theorem), then ϵn

ek ≤ 1 and
there is nothing to prove in the theorem.

Hence for a random permutation over items, the probability that at least
one of the first 1

2(
ϵn
ek)

ϵk k-queries is informative is at most 1
2 . As we may

assume without loss of generality that the last query of an algorithm is its
final output (once an algorithm decides on its output, it can always ask
it as a query as well), an algorithm with fewer than 1

2(
ϵn
ek)

ϵk k-queries has
probability at most 1

2 of obtaining an approximation better than ρ = 1+ϵ
2 .

�

2.3 An algorithm for max k-coverage

In this section we consider max k-coverage, which is a common special case
of max k-submodular. For max k-coverage we shall use here terminology
and notation that is consistent with that used for max k-submodular, even
though this notation is nonstandard for coverage functions.

Let U be a universe of n items, and let f : U −→ R be a nonnegative set
function, namely, a function that assigns to each subset S ⊂ U a nonnegative
value f(S) ≥ 0. For f to be a coverage function, there should be a set M
of m elements (these elements need not be physical elements, but rather
a mental aid to the way coverage functions are defined), and a collection
of n subsets Si ⊂ M , for 1 ≤ i ≤ n. Item i ∈ U corresponds to set Si

(item i covers the elements of set Si), and its value under f is the number
of elements that Si covers. Namely, f(i) = |Si|. More generally, given a
set S ⊂ U of items, its value is the number of elements covered by the
respective sets, namely f(S) = |

∪
i∈S Si|. A coverage function as defined

above is always monotone and submodular.
Max k-coverage is the following computational problem: given U , a

coverage function f as above, and a positive integer parameter k, out-
put a set S ⊂ U of cardinality |S| = k that maximizes f(S), namely
f(S) = max|T |=k f(T). We denote its optimal value by opt.

In our setting f can only be accessed using k-queries. Namely, a query
is a set S ⊂ U with |S| = k, and the answer to the query is f(S). We
emphasize that the set M of elements is not explicitly accessible via queries.
In particular, the number m of elements is not given as part of the input to
the problem, and it need not be related to the number n of items (e.g., m
might be exponential in n). Our goal is to approximate max k-coverage using
a number of queries that is polynomial in n and k. We propose an algorithm,

10

that is referred to as conditional greedy, that achieves an approximation
strictly greater than 1/2.

To describe the algorithm, let as introduce some notation. Given an
item i ∈ U , a set T ⊂ U with i ̸∈ T and |T | ≤ k − 1, we let fk(i|T) denote
the expected value of a random set S of cardinality k, conditioned on S
containing T and i (the other items are chosen uniformly at random from
U \ (T ∪ {i})). Namely, fk(i|T) = ES|(T∪{i})⊂Sf(S).

Given i and T , our algorithm would like to query the value of fk(i|T). We
refer to this as a conditional query. Our query model does not allow one to
ask these conditional queries directly. However, it is possible to implement
an approximate conditional query (up to any desired level of accuracy) using
k-queries.

Proposition 7 Given a desired accuracy parameter η > 0 and tolerable
failure probability δ > 0, and given i and T with i ̸∈ T and |T | ≤ k − 1, the

conditional query fk(i|T) can be simulated by making
log 1

δ
η2

k-queries. With

probability 1 − δ, the result one obtains will approximate fk(i|T) within an
additive error of O(η opt).

Proof. Generate
log 1

δ
η2

sets S of size k, where each such set S contains

i, T , and k − 1 − |T | additional distinct items sampled without repetition
independently at random. Perform one k-query for each such set S, and
return the average the replies as the reply to the conditional query fk(i|T).
As the value of each k-query is bounded between 0 and opt, the proposition
follows from standard application of upper bounds (such as the Chernoff
bound) on the probability of large deviations from the average. �

To simplify the presentation, we shall describe the algorithm as if it
performs conditional queries. Proposition 7 implies that such an algorithm
can be implemented using only k-queries. For the implementation to provide
guarantees that are within additive ϵopt of the guarantees provided by true
conditional queries, it suffices to set η = ϵ

k (and then the accumulated error

throughout the algorithm is at most ηk ≤ ϵ), and δ = n−O(1) (so that a union
bound implies that with high probability all polynomially many conditional
queries made by the algorithm are accurate within η). We remark that there
are ways of improving the efficiently of the implementation (one k-query S
can participate in the implementation of k− |T | conditional queries, one for
each i ∈ (S \ T); one can adapt the algorithm to run with a smaller value
of δ, using principles as in [9]) but these issues will not be discussed in this
paper.

11

The conditional greedy algorithm has k iterations. It enters iteration ℓ
for 1 ≤ ℓ ≤ k with a set Tℓ−1 ⊂ U of cardinality ℓ − 1, derived from the
previous iteration. Initially, T0 is the empty set. At iteration ℓ, the algorithm
adds to Tℓ−1 the item with highest conditional value, thus deriving the new
set Tℓ.

Below is a more structured description of the conditional greedy al-
gorithm.

1. T0 is the empty set.

2. Repeat for ℓ = 1 up to k:

(a) For each i ∈ (U \Tℓ−1), perform the conditional query fk(i|Tℓ−1).
Let i∗ ∈ (U \Tℓ−1) be the item with highest fk(i

∗|Tℓ−1), breaking
ties arbitrarily.

(b) Update Tℓ = Tℓ−1 ∪ {i∗}.

3. Output Tk.

The conditional greedy algorithm can be shown to be equivalent to
starting with a distribution over uniformly random solutions to the max
k-coverage problem, in which each item is chosen independently with equal
probability, and then derandomizing this random solution using the method
of conditional expectations [6, 16]. Often, such derandomization is done so
as to obtain a single solution whose quality is at least as good as the aver-
age quality of solutions in the starting distribution. In our context, we want
to achieve more, because there are no guarantees on the average quality of
solutions in the starting distribution. Indeed, our analysis will provide guar-
antees on the the quality of the final solution that do not hold with respect
to the initial distribution. A previous example in which the method of con-
ditional expectations offers guarantees better than the original distribution
appears in [2] in the context of max directed cut. The results in [4] for max
SAT can also be viewed in this way.

For max k-submodular, the conditional greedy algorithm will not give an
approximation ratio strictly above 1

2 , as is evident from Theorem 3. How-
ever, as we shall see, for max k-coverage it does. Providing a tight analysis of
the approximation ratio offered by the conditional greedy algorithm appears
difficult, so here we shall limit ourselves to establishing that the approxima-
tion ratio, which we denote as ρCG, is strictly above 1

2 , and strictly below
1− 1

e (which is the approximation ratio of the standard greedy algorithm).
We start by presenting an example showing that ρCG < 1− 1

e .

12

Proposition 8 There are examples on which the approximation ratio ρCG

achieved by the conditional greedy algorithm is no better than 0.582.

Proof. Consider a universe M of m = 8
5k

2 elements, arranged in a matrix
with k rows and 8

5k columns. In the coverage function f , the items 1 to k
(that compromise the optimal solution) each covers one row of the matrix.
We refer to them as the optimal items. Hence opt = m. In addition, there
are items k+1 up to 8

5k that each covers the elements in its own numbered
column (item i for k+1 ≤ i ≤ 8

5k covers the elements of column i). We refer
to them as decoy items. Finally, there are n − 8

5k additional items, which
each cover k random elements in the first k columns of the matrix. We refer
to them as the main items, and assume that n is some large polynomial in
k (and specifically n > k2).

Observe that a random set of k − 1 items will most likely be composed
only of main items. Consequently, it can be shown that the marginal contri-
bution of main items will be roughly k

e , the marginal contribution of optimal
items will be roughly 1

ek + 3
5k < 0.97k, and the marginal contribution of

decoy items will be essentially k. Hence in its first iteration the conditional
greedy algorithm will pick a decoy item. Similarly, it can be shown that
in the first 3k

5 rounds, only decoy items will be chosen, exhausting the list
of decoy items. Regardless of what the algorithm picks in the remaining
rounds, the total number of elements covered will be at most k2, giving an
approximation ratio of 5

8 < 1 − 1
e . In fact, in the last 2k

5 rounds the algo-
rithm is likely to select main items rather than optimal ones (their marginal
contributions are similar, but there are many more main items than decoy

ones), and these items will cover only roughly k2
(
1− (1− 1

k)
2k
5

)
≃ 0.33k2

elements. Hence the approximation ratio will be roughly 0.33+0.6
1.6 < 0.582.

Further details are omitted. �

The example given in the proof of Proposition 8 has slackness in it: the
number of columns can be increased from 8k

5 to nearly (2− 1
e)k; moreover,

as iterations progress smaller decoy items suffice. Removing the sources of
slackness will result in an improved upper bound on ρCG, but we have not
tried to calculate an exact numerical value for the improved upper bound.

We now establish that ρCG ≥ 1
2 + ϵ for some ϵ > 0 independent of k, n

and m. More concretely, our proof will show that ρCG > 0.50004.
Notation and terminology used in the proof. Our proof is partly

based on case analysis. As such, we shall consider four different events.
With each event we shall associate certain parameters. We use the following
conventions in naming these parameters. A parameter ϵi refers to fraction of

13

elements covered, whereas a parameter δi refers to fraction of rounds. The
subscript i refers to the event number (e.g., ϵ1 is associated with Event 1).
The values of the parameters (all in the range (0, 1)) will be instantiated
towards the end of the proof. (Our instantiation is not optimal: a better
optimized instantiation will lead to a stronger lower bound on ρCG.)

Let O ⊂ M denote the elements covered by an optimal solution, with
opt = |O|. For a set T of items, let f(T) denote the set of elements covered
by T , and let |f(T)| denote their number. Let Tℓ denote the set of items
held by the conditional greedy algorithm after round ℓ. Let Rℓ = f(Tℓ) \
f(Tℓ−1) denote the set of newly covered elements by the item selected by
the conditional greedy algorithm in round ℓ. Hence we need to show that∑k

ℓ=1
|Rℓ|
opt ≥ 1

2 + ϵ, or in other words, that on average (over 1 ≤ ℓ ≤ k)
|Rℓ|
opt ≥ 1

2k + ϵ
k .

For each element j of O \ f(Tℓ−1), let yj denote the probability that
none of k − ℓ items chosen at random from U \ Tℓ−1 cover element j. Let
Yℓ =

1
opt

∑
j∈O\f(Tℓ−1)

yj .

We alert the reader that the definition above of yj (and consequently
of Yℓ) is a key definition in our proof. Some subtleties associated with
this definition are pointed out in parenthetical remarks in the proofs of
propositions 9 and 10.

Event 1. For some ℓ it holds that Yℓ ≤ 1
2 − ϵ1.

Proposition 9 If Event 1 happens, then ρCG ≥ 1
2 + ϵ1.

Proof. As the conditional greedy algorithm is equivalent to derandomiza-
tion using the method of conditional expectations, its final output has value
at least as large as the expected value of any distribution encountered in
intermediate rounds. Given Tℓ−1, the expected value of a random set of k
items that contains Tℓ−1 is at least (1 − Yℓ)opt, because each element j of
O is either already covered by Tℓ−1, or else has probability at least 1− yj of
being covered by the additional k−ℓ+1 random items (the probability is at
least 1− yj rather than exactly 1− yj because yj is computed with respect
to only k − ℓ additional random items). For Yℓ ≤ 1

2 − ϵ1 the proof follows.
�

Event 2. There are more than δ2k rounds in which Yℓ ≥ 1
2 + ϵ2.

Proposition 10 If Event 2 happens and Event 1 does not happen then
ρCG ≥ 1

2 + δ2ϵ2 − ϵ1.

14

Proof. Since the optimal solution contains k items that cover all elements
of O, it must be that one of the items of the optimal solution, if selected,
would contribute a marginal value of at least Yℓ

k opt. (Here we point out
a subtlety in our definitions. Let i be an item belonging to the optimal
solution but not to Tℓ−1, and let Ri,ℓ denote those elements that i contains
that are not already covered by Tℓ−1. Let Yi,ℓ =

∑
j∈Ri,ℓ

yj . Then if Yi,ℓ > 0,
the marginal contribution of item i to Tℓ−1 is not just Yi,ℓ, but in fact
strictly larger. The reason for the strict inequality is that yj is computed
by considering the random event of selecting k − ℓ items at random from
U \Tℓ−1, whereas for the marginal contribution of i we need to consider the
random event of selecting k− ℓ items at random from U \ (Tℓ−1 ∪ {i}). The
latter random event gives strictly larger marginal value for i, because the
realizations that it excludes are realizations that lead to i having no marginal
value.) The conditional greedy rule then implies that indeed |Rℓ|

opt ≥ Yℓ
k .

Hence
∑k

ℓ=1
|Rℓ|
opt ≥

∑k
ℓ=1

Yℓ
k . Event 1 not happening implies that Yℓ ≥ 1

2−ϵ1

in every round, whereas Event 2 implies that Yℓ ≥ 1
2 + ϵ2 for at least δ2k

rounds. Hence
∑k

ℓ=1
Yℓ
k ≥ 1

2 − ϵ1 + δ2ϵ2, as desired. �

The above two propositions imply (after an appropriate instantiations
of the parameters) that either an approximation ratio of 1

2 + ϵ is achieved
via events 1 or 2, or else we may assume that Yℓ ≃ 1

2 in almost all rounds.

As argued above, the greedy rule implies that |Rℓ| ≥ opt
Yℓ−1

k . The

assumption Yℓ−1 ≃ 1
2 implies a lower bound of ≃ opt

2k on |Rℓ|. The next
observation that we make is that Rℓ (for typical ℓ) can be assumed to contain
only a negligible amount of items not from O. Event 3 gives a precise
definition of the failure of this assumption. The choice of constant 1/10 in
the definition of Event 3 is to some extent arbitrary (though coordinated
with the choice 0.9 in the statement of Corollary 14), and was done so as
not to introduce too many uninstantiated parameters in the proof.

Event 3. Among the first k/10 rounds there are δ3k rounds in which
Rℓ contains at least

ϵ3
k opt elements not from O.

Proposition 11 If Event 3 happens and Event 1 does not happen then
ρCG ≥ 1

2 + 9ϵ3δ3
19 − ϵ1

10 .

Proof. Suppose that Event 3 happens. Then f(Tk/10) contains at least

ϵ3δ3opt elements not from O. Consider now rounds ℓ > k
10 . If in any such

round Yℓ ≤ 1
2 + 10ϵ3δ3

19 then an argument similar to Proposition 9 implies

that ρCG ≥ 1
2 − 10ϵ3δ3

19 + ϵ3δ3 =
1
2 + 9ϵ3δ3

19 .

15

Hence we may assume that Yℓ ≥ 1
2 + 10ϵ3δ3

19 for all ℓ > k
10 . Also, given

that Event 1 does not happen then Rℓ ≥ (1
2k − ϵ1

k)opt for every round ℓ,

implying that |f(Tk/10)| ≥ (12 − ϵ1)
opt
10 . Combining these two facts together,

an argument similar to Proposition 10 implies that ρCG ≥ 1
2+

9
10

10ϵ3δ3
19 − ϵ1

10 =
1
2 + 9ϵ3δ3

19 − ϵ1
10 . �

Hence we deduce that typically |Rℓ ∩O| ≃ opt
2k , and |Rℓ \O| is negligible

in comparison. We will next argue that almost all those elements j covered
by Rℓ are elements that had negligible probability to be covered by a random
set S of k − 1 items that includes Tℓ−1.

Event 4. Among the first k
10 rounds there are at least δ4k rounds for

which
∑

j∈Rℓ∩O yj ≤ (1
2k − ϵ4

k)opt.

Proposition 12 Suppose that δ4 ≥ δ3 and that ϵ4 > ϵ1+ϵ3. Then if events 1
and 3 do not happen then neither does Event 4.

Proof. Suppose that Event 4 happens and Event 3 does not. Then δ4 ≥ δ3
implies that there is some round ℓ for which

∑
j∈Rℓ∩O yj ≤ (1

2k −
ϵ4
k)opt and

Rℓ contains at most ϵ3
k opt elements not from O. Hence the marginal value

contributed by including the item that corresponds to Rℓ in the random set
S is at most (1

2k − ϵ4
k + ϵ3

k)opt.
Suppose that Event 1 does not happen. Then in every round, there must

be an item of marginal value at least (1
2k − ϵ1

k)opt. The conditional greedy
rule implies that 1

2k − ϵ4
k + ϵ3

k ≥ 1
2k − ϵ1

k , implying that ϵ4 ≤ ϵ1 + ϵ3. �

We now instantiate the values of the parameters with two goals in mind.
One is to ensure that if any of the events 1 to 4 happens, then ρCG ≥ 1

2 + ϵ.
The other is to ensure that if none of the events 1 to 4 happens, then also
in this case ρCG ≥ 1

2 + ϵ. The δi parameters are instantiated to values that
are anticipated to be useful for establishing the second goal (though are not
necessarily optimized for this goal). Based on the values of the δi parameters
we instantiate the values of the ϵi parameters to be essentially the smallest
possible that suffice for the first goal. The values of the ϵi parameters are
expressed as a function of ϵ, where ϵ will be instantiated later.

• ϵ1 = ϵ.

• δ2 =
1
20 .

• ϵ2 = 40ϵ.

• δ3 = δ4 =
1

400 .

16

• ϵ3 = 928.9ϵ

• ϵ4 = 930ϵ.

Given the above parameters, if Event 1 happens the Theorem 4 follows
from Proposition 9, because ϵ1 = ϵ. If Event 1 does not happen but Event 2
happens then the theorem follows from Proposition 10, because δ2ϵ2−ϵ1 = ϵ.
If Event 1 does not happen and Event 3 happens the theorem follows from
Proposition 11 because 9ϵ3δ3

19 − ϵ1
10 > ϵ. If neither Event 1 nor Event 3

happen, then Proposition 12 with our setting of the parameters implies that
also Event 4 does not happen.

From now on we assume that none of the events 1 to 4 happen. The
above shows that for our setting of the parameters, this assumption can be
made without loss of generality, because when it does not hold the theorem
is proved. To orient the reader, let us now present a plan of how the proof
of Theorem 4 might be completed, given the assumption.

Event 2 not happening implies that there is a round among the first k
20

rounds for which Yℓ ≤ 1
2 + 40ϵ. Thereafter, Event 4 not happening implies

that Yℓ decreases by 1
2k − 930ϵ

k in every round up to round k/10, except

for at most k
400 rounds. Hence by round k/10 the value of Yℓ is at most

1
2 + 40ϵ− (k

20 − k
400)(

1
2k − 930ϵ

k) = 1
2 − 19

800 + 16835ϵ
200 . Setting ϵ = 1

4000 implies
that Yk/10 <

1
2−ϵ, contradicting the assumption that Event 1 does not hold.

However, the above argument is flawed for the following reason. For an
element j ∈ (O\f(Tℓ)), the value of yj increases from round ℓ to round ℓ+1,
because in round ℓ + 1 one less random item is chosen, and then element
j has higher probability of remaining uncovered. To complete the proof,
we need to account for this effect. We make a short digression to prove an
inequality (Corollary 14) that will be used for this purpose.

2.3.1 An inequality concerning drawing balls from an urn

Suppose that one draws at random without repetition k balls out of an urn
that contains n ≥ k balls, where p balls in the urn are black and n − p
balls are white. Let W denote the event that all k balls are white, and
let PW (n, k, p) denote its probability. Using this notation, PW (n − 1, k −
1, p) is the probability of W , conditioned on the first ball being white. Let
∆(n, k, p) = PW (n − 1, k − 1, p) − PW (n, k, p) denote the increase in the
probability of W gained by the first ball being white. Observe that if n <
p + k then PW (n, k, p) = 0 and ∆(n, k, p) = 0. Likewise, if p = 0 then
PW (n, k, p) = 1 and ∆(n, k, p) = 0. Hence we shall assume that 0 < p ≤
n− k.

17

Proposition 13 Using the notation above, ∆(n, k, p) ≤ (1+o(1)) 1
ek regard-

less of p, where the o(1) term tends to 0 as k grows.

Proof. PW (n, k, p) =
(n−p

k)
(nk)

= (n−p)k
(n)k

, where (a)b for integers a > b > 0 is

shorthand notation for a!
(a−b)! . Likewise, PW (n− 1, k − 1, p) =

(n−p−1)k−1

(n−1)k−1
=

n
n−pPW (n, k, p). Hence ∆(n, k, p) = p

n−pPW (n, k, p) =
p(n−p−1)k−1

(n)k
.

We wish now to determine the value of p that maximizes ∆(n, k, p) =
p(n−p−1)k−1

(n)k
. Changing p to p+1 we get that ∆(n, k, p+1) =

(p+1)(n−p−2)k−1

(n)k
.

It follows that:

∆(n, k, p+ 1)−∆(n, k, p) =
(p+ 1)(n− p− 2)k−1 − p(n− p− 1)k−1

(n)k

=

(
p+ 1

n− p− 1
− p

n− p− k

)
(n− p− 1)k

(n)k
= (n− kp)

(n− p− 2)k−2

(n)k

Hence ∆(n, k, p) increases with p as long as p < n
k , and decreases with

p for p > n
k . The maximum is attained when p ≃ n

k , and then ∆(n, k, p) =
p(n−p−1)k−1

(n)k
≤ p

n(1−
1
k)

k−1 ≃ 1
ek . �

Corollary 14 Let k0 be sufficiently large, and let k ≥ k0 be arbitrary subject
to the constraint k0 ≥ 0.95k. Choose an integer k′ uniformly at random in
the range [k0 − k

20 , k0], and let n′ > k′ and p be arbitrary. Then in the
setting of Proposition 13, E[∆(n′, k′, p)] ≤ 0.4

k , where expectation is taken
over choice of random k′.

Proof. Proposition 13 implies that ∆(n′, k′, p) ≤ (1 + o(1)) 1
ek′ , and hence

E[∆(n′, k′, p)] ≤ (1 + o(1))E[1
ek′]. The expectation of 1

k′ is 20
∫ k0
k0− k

20

1
xdx ≤

20
∫ 0.95k
0.9k

1
xdx = 20

k ln 95
90 . Hence:

E[∆(n′, k′, p)] ≤ (1 + o(1))
1

e

20

k
ln

95

90
≤ 0.4

k

for sufficiently large k (so that rounding up to 0.4 absorbs the o(1)). �

18

2.3.2 Back to the analysis of the conditional greedy algorithm

Let us consider how the value yj for a yet uncovered (by Tℓ−1) element j ∈ O
is computed in round ℓ. Let n′ = n− ℓ+ 1 denote the number of items not
in Tℓ−1, and let k′ = k − ℓ denote the number of random items that need
to be added to Tℓ−1 in order to compute yj . Let p denote the number of
items in U \ Tℓ−1 that cover element j. Then yj is precisely PW (n′, k′, p)
from Section 2.3.1. If the item chosen in round ℓ does not cover element
j, then the value of yj in round ℓ + 1 (which we denote by y′j) will be
precisely PW (n′−1, k′−1, p) from Section 2.3.1. Let ∆j denote the increase
in yj , namely, ∆j = y′j − yj . This is precisely ∆(n′, k′, p) from Section 2.3.1.
Corollary 14 then implies that for a window of width k/20 lying in the range
[0.9k, k], on average over the choice of k′ in this window, ∆j ≤ 0.4

k .
We can now return to the proof plan outlined before Section 2.3.1.

Event 2 not happening implies that there is a round ℓ∗ among the first
k
20 rounds for which Yℓ∗ ≤ 1

2 + 40ϵ. Thereafter, Event 4 not happening im-
plies that Yℓ decreases by

1
2k −

930ϵ
k in every round up to round k/10, except

for at most k
400 rounds. In each of these rounds Corollary 14 contributes to

Yℓ a possible increase of at most 0.4
k . Hence by round ℓ = ℓ∗ + k

20 ≤ k
10 the

value of Yℓ is at most

1

2
+ 40ϵ− (

k

20
− k

400
)(

1

2k
− 930ϵ

k
) +

k

20

0.4

k
=

1

2
− 3

800
+

16835ϵ

200

Setting ϵ = 1
24000 implies that Yℓ <

1
2 − ϵ, contradicting the assumption that

Event 1 does not hold.
The above completes our proof for Theorem 4.

3 Discussion

In this work we considered the problem max k-submodular and showed that
the best approximation ratio guaranteed by polynomial time algorithms that
use only k-queries is 1

2 + o(1) (where the o(1) term tends to 0 as k grows),
which is not as good as the ratio 1 − 1

e that is achievable if general value
queries are allowed. This shows that in settings in which “small” queries (to
sets much smaller than k) are more costly than k-queries (see example in
Section 1.2), the benefits that small queries provide in reducing the number
of queries may more than compensate for their higher costs.

We also showed that max k-coverage can be approximated within a ratio
strictly better than max k-submodular, in our setting in which only k-queries

19

are allowed. We remark that in many other settings (e.g., if the function
f is described explicitly, or if arbitrary value queries are allowed), the best
approximation ratios for both problems are the same.

3.1 Robustness of our results

One may ask whether our results are robust to small changes in the model.
One change is to enlarge the set of uniform size queries to queries that
involve sets of cardinality k′ for all (1− ϵ′)k ≤ k′ ≤ (1+ ϵ′)k (where ϵ′ > 0 is
some small constant). Naturally, the positive results (Theorem 1) still hold.
We point out that the main negative result, Theorem 3, still holds as well
(with some correction factor that depends on ϵ′).

A different form of robustness alluded to in the example in Section 1.2
is tolerating inexact replies to queries. That is, in reply to a query S, the
reply r might not be exactly r = f(S), but rather some value chosen by an
adversary but satisfying (1− ϵ′)f(S) ≤ r ≤ (1+ ϵ′)f(S) (where again ϵ′ > 0
is some small constant). Here the negative results (Theorem 3) obviously
continue to hold. We point out that the positive results, Theorem 1 and
Theorem 4, require ϵ′ to be considerable smaller than 1/k, because the
algorithms (local search and conditional greedy) need to observe a change
in value when one out of k items in a set is replaced.

3.2 Max k-coverage

The following question remains open:

Question 15 Using only k-queries and polynomial time computations, is
an approximation ratio of 1− 1

e achievable for max k-coverage?

If the answer is negative, it would be interesting to determine where
between 1

2 and 1− 1
e the best approximation ratio for max k-coverage lies.

In the context of max k-coverage it is natural to consider a query model
that allows for more informative answers to the queries. Recall that in the
example from Section 1.2, a query corresponds to offering a menu of items,
and a reply is the (empirically observed) fraction of clients that are satisfied
by the menu. In some contexts, it is natural to assume that the firm can
also observe which item the satisfied client chooses from the menu. Casting
this in the setting of a value query (whose answer is the average behavior of
a large set of clients), the reply to a query (a set) is a vector of probabilities
specifying what fraction of clients chose each item in the menu. We call
such replies vector replies (in contrast to the standard scalar replies). One

20

may ask whether having vector replies to k-queries helps in improving the
approximation ratio for max k-coverage. The answer may depend on how
one models the clients: if a client has several desirable items on a menu,
which one of the items will the client choose?

One possible client model assumes that the items on the menu are or-
dered (say, from top to bottom), every client scans the menu in this order
and chooses the first desirable item that he encounters (if there is a desir-
able item). This model was previously studied in [15], who show that the
standard greedy algorithm for max k-coverage can be implemented in this
model, giving an approximation ratio of 1− 1

e .
A different client model assumes that each client has his own preference

order among his desirable items, and given a menu, chooses the desirable
item of his highest preference. In this client model the standard greedy
algorithm no longer works. Moreover, the negative example of Proposition 2
extends to this model. In the proof of Proposition 2, the clients are the cells
of the matrix, the menu items are the k rows and the first k columns, the
desirable items for a client are his column (if the client is in the first k
columns) and his row. Hence each client desires either one or two items.
For those clients that desire two items, suppose that their preference is such
that they prefer the column item over the row item. Then the set of first k
columns will be a menu on which the vector reply will be k

(2k−1)k for every

item, and the same will hold for every neighboring menu (that contains k−1
columns and one row).

Of course, one may consider other client models as well. The absence of
one client model that is clearly more natural than the others suggests that
the scalar reply model is more fundamental than the vector reply model
(fewer assumptions need to be justified), and hence this is the model con-
sidered in our paper. (This discussion of reply models relates to max k-
coverage. For max k-submodular the scalar reply model is the standard
model, and it is not clear whether a vector reply model even makes sense.)

Acknowledgements

This work was partly done in Microsoft Research, Herzeliya, Israel. The
work of the first author was supported in part by the Israel Science Founda-
tion (grant No. 621/12) and by the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation (grant No. 4/11).

21

References

[1] Bailly, G., Oulasvirta, A., Brumby, D. P., and Howes, A. 2014.
Visual search and selection time in linear menus. In CHI’14.

[2] Bar-Noy, A. and Lampis, M. 2012. Online maximum directed cut.
J. Comb. Optim. 24(1), 52–64.

[3] Blumrosen, L. and Nisan, N. 2009. On the computational power of
demand queries. SIAM J. Comput. 39(4), 1372–1391.

[4] Chen, J., Friesen, D. K., and Zheng, H. 1999. Tight bound on john-
son’s algorithm for maximum satisfiability. J. Comput. Syst. Sci. 58(3),
622–640.

[5] David, R., Dinur, I., Goldenberg, E., Kindler, G., and Shinkar,
I. 2015. Direct sum testing. In ITCS-2015. 327–336.

[6] Erdos, P. and Selfridge, J. 1973. Online maximum directed cut.
Journal of Combinatorial Theory, Series A 14(3), 298–301.

[7] Feige, U. 1998. Threshold of lnn for approximating set cover. J.
ACM 45(4), 634–652.

[8] Feige, U., Mirrokni, V. S., and Vondrak, J. 2011. Maximizing non-
monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153.

[9] Feige, U., Raghavan, P. Peleg, D., and Upfal, E. 1994. Comput-
ing with Noisy Information. SIAM J. Comput. 23(5), 1001–1018.

[10] Grotschel, M., Lovasz, L., and Schrijver, A. 1981. The ellipsoid
method and its consequences in combinatorial optimization. Combinator-
ica 1(2), 169–197.

[11] Guyon, I. and Elisseeff, A. 2003. An introduction to variable and
feature selection. Journal of Machine Learning Research 3, 169–197.

[12] Laffont, J.-J. and Tirole, J. 1986. Using cost observation to reg-
ulate firms. Journal of Political Economy 94, 169–197.

[13] Lehmann, B., Lehmann, L. J., and Nisan, N. 2006. Combinato-
rial auctions with decreasing marginal utilities. Games and Economic
Behavior 55(2), 270–296.

22

[14] Nemhauser, G., Wolsey, L., and Fisher, M. 1978. An analysis of
approximations for maximizing submodular set functions – I. Mathemat-
ical Programming 14, 265–294.

[15] Radlinski, F., Kleinberg, R., and Joachims, T. 2008. Learning
diverse rankings with multi-armed bandits. In ICML-2008. 784–791.

[16] Raghavan, P. 1988. Probabilistic construction of deterministic algo-
rithms. J. Comput. Syst. Sci. 37(2), 130–143.

[17] Rogerson, W. P. 2003. Simple menus of contracts in cost-based
procurement and regulation. The American Economic Review 93(3), 919–
926.

[18] Streeter, M. J., Golovin, D., and Krause, A. 2009. Online
learning of assignments. In NIPS-2009. 1794–1802.

[19] Williamson, D. P. and Shmoys, D. B. 2011. The Design of Ap-
proximation Algorithms. Cambridge University Press.

23

