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Abstract

We consider the problem of maximizing welfare when allocating m
items to n players with subadditive utility functions. Our main result
is a way of rounding any fractional solution to a linear programming
relaxation to this problem so as to give a feasible solution of welfare
at least half that of the value of the fractional solution. This approx-
imation ratio of 1/2 improves over an Ω(1/ log m) ratio of Dobzinski,
Nisan and Schapira [STOC 2005]. We also show an approximation
ratio of 1− 1/e when utility functions are fractionally subadditive. A
result similar to this last result was previously obtained by Dobzinski
and Schapira [Soda 2006], but via a different rounding technique that
requires the use of a so called “XOS oracle”.

The randomized rounding techniques that we use are oblivious in
the sense that they only use the primal solution to the linear program
relaxation, but have no access to the actual utility functions of the
players.

1 Introduction

We consider the following problem. There are m items and n players. A
feasible allocation allocates every item to at most one player. For every
player Pi, her utility wi depends only on the set S of items that she receives.
Utility functions are nonnegative, monotone and subadditive. That is,

0 ≤ wi(S) ≤ wi(S ∪ S′) ≤ wi(S) + wi(S′)
∗Weizmann Institute, Rehovot, Israel. uriel.feige@weizmann.ac.il
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for every i, S, S′. Let Si be the set of items allocated to player i. The
goal is to find a feasible allocation that maximizes social welfare, namely,
maximizes

∑
i wi(Si).

Dobzinski, Nisan and Schapira [3] considered the following linear pro-
gramming relaxation of the problem, that we call the welfare maximizing
LP. xi,S is intended to be an indicator variable that specifies whether player
i gets set S.
Maximize

∑
i,s xi,Swi(S) subject to:

• Item constraints:
∑

i,S|j∈S xi,S ≤ 1 for every item j.

• Player constraints:
∑

S xi,S ≤ 1 for every player i.

• Nonnegativity constraints: xi,S ≥ 0.

This linear program can be solved optimally in polynomial time, assum-
ing that there is an oracle that can answer demand queries: which set of
items would a player want to buy given a setting of prices to the individual
items? See [3] for more details.

In [3] it is shown that any solution to the linear program can be rounded
to give a feasible allocation of welfare at least Ω(1/ log m) of the value of
the fractional solution. Our main result (described in Section 3.2) is a new
randomized rounding technique that given any fractional solution to the wel-
fare maximizing LP (whose value we denote by w(LP )), produces a feasible
(integer) allocation of expected welfare at least w(LP )/2. We show that
a wide variety of other rounding techniques (including all other rounding
techniques described in this paper) fail to give a constant approximation
ratio (see Section 3.2.1).

Another result of this paper is that if the utility functions are further
restricted to be fractionally subadditive (see definition in Section 1.1), then
one can round the solution to the LP so as to obtain a feasible allocation
of welfare at least (1− 1/e)w(LP ). This last result is not new. An approx-
imation ratio of 1− 1/e was previously obtained in [4] for a class of utility
functions known as XOS, and as we show (see Proposition 1.1), the class
XOS is the same as the class of fractionally subadditive utility functions.
Nevertheless, our result uses a rounding technique that is inherently differ-
ent from that of [4], and may be of independent interest. See discussion
below.

We note that both the 1− 1/e approximation ratio for fractionally sub-
additive utility functions and the 1/2 approximation ratio for subadditive
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utility functions are best possible, in the sense that they match the integral-
ity ratio of the linear program for the corresponding cases, up to low order
terms.

An interesting feature of our rounding techniques is that they are obliv-
ious in the following sense. As input, they use only the values xi,S of an
arbitrary feasible solution to the welfare maximizing LP. They receive ab-
solutely no information about the actual utility functions of the players.
(It may appear that the solution to the LP provides implicit information
about the utility functions, but this is not the case, because this solution is
only required to be (fractionally) feasible, but not optimal.) As output, our
rounding techniques produce a feasible integer allocation, or rather, a distri-
bution over feasible allocations (because oblivious rounding techniques are
inherently randomized). The performance guarantee is per player. Every
player is guaranteed to recover in expectation at least a certain fraction (the
approximation ratio) of the utility offered to the same player under the given
solution to the welfare maximizing LP.

Once a solution to the welfare maximizing LP is given, the use of obliv-
ious rounding techniques requires no further interaction with the players.
This circumvents the issue of how utility functions are represented (see
discussion in Section 1.2), and may also be of practical significance as it
may reduce communication costs. Moreover, this is in agreement with the
principle that players cannot always be trusted to report their true utility
functions.

The other known rounding technique achieving an approximation ratio
of 1 − 1/e for fractionally subadditive utility functions [4] is not oblivious.
Implementing the rounding technique of [4] requires some detailed knowledge
of the utility functions of the players, given in terms of a so called “XOS
oracle”.

The welfare maximization problem sometimes comes up in game theo-
retic settings. In these settings, one would like to have mechanisms that
provide incentives to players to report their true utilities. In a preliminary
version of this paper [5], the oblivious nature of our rounding techniques
was used (in combination with other ideas) in order to design a truthful
mechanism that recovers at least an Ω(log log m/ log m) fraction of the to-
tal optimum welfare when utility functions are subadditive. However, as
this result involves multiple assumptions about how players would react to
various incentives, it is omitted from the current version of this manuscript.
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1.1 Classes of utility functions

In this section we discuss some classes of utility functions that we shall refer
to throughout this work. For more details, see [8].

We denote a utility function by w, and sets of items by uppercase let-
ters. As a convention in this work, utility functions are nonnegative and
monotone. That is, w(S) ≥ 0 for every S, and w(S ∪ T ) ≥ w(S) for every
S, T . Another common convention regarding utility functions is that the
utility of the empty set is 0, though this convention is not used in our work.
It will be informative to consider the following classes of utility functions.

Additive (a.k.a. linear). w(S) =
∑

j∈S w(j).
Submodular. w(S ∪ T ) + w(S ∩ T ) ≤ w(S) + w(T ), for every S, T . A

useful equivalent characterization of submodular utility functions is as those
utility functions in which the marginal utility of an item decreases as sets
become larger (inclusion-wise). That is, for every item j and sets T ⊂ S,
w(j ∪ S)− w(S) ≤ w(j ∪ T )− w(T ).

Fractionally subadditive. w(S) ≤ ∑
αiw(Ti) with 0 ≤ αi ≤ 1 for all i,

whenever the following condition holds: for every item j ∈ S,
∑

i|j∈Ti
αi ≥ 1.

(Namely, if the sets Ti form a “fractional cover” of S, then the sum of their
utilities weighted by the corresponding coefficients is at least as large as that
of S.) The class of fractionally subadditive utility functions is the same as
the class XOS introduced in [8]. This fact will be proved in Proposition 1.1.

Subadditive (a.k.a. complement free). w(S ∪ T ) ≤ w(S) + w(T ), for
every S, T .

It can be shown that every linear utility function is submodular, every
submodular utility function is fractionally subadditive, and every fraction-
ally subadditive utility function is subadditive. To illustrate the difference
between the above classes, consider a set S = {1, 2, 3} of three items, and as-
sume that the utility of every proper subset of it (containing either one or two
items) is 1. What constraints does this place on w(S)? For arbitrary util-
ity functions, the only constraint is that w(S) ≥ 1. For subadditive utility
functions, we have in addition w(S) ≤ 2, because w(S) ≤ w({1, 2}) + w(3).
For fractionally subadditive utility functions we have w(S) ≤ 3/2, because
w(S) ≤ (w({1, 2}) + w({2, 3}) + w({1, 3}))/2. For submodular utility func-
tions we have w(S) = 1, because w(S) + w(1) ≤ w({1, 2}) + w({1, 3}).
The function cannot be a linear utility function at all, because w({1, 2}) 6=
w(1) + w(2).

The class of utility functions based on set cover problems serves as a
useful example to show the distinction between subadditive and fraction-
ally subadditive utility function. Let T1, . . . , Tk be some ground sets whose
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union contains all items. Then w(S) = min t such that there are t sets sat-
isfying S ⊂ ⋃t

j=1 Tij is a subadditive utility function, but in general is not
fractionally subadditive.

Another class of utility functions that is considered in [8, 3, 4] is called
XOS. This is the class of utility functions that can be expressed as a max-
imum of linear utility functions. If one allows the number of linear utility
functions in the XOS representation to be arbitrarily large (exponential in
the number of items), then Proposition 1.1 shows that the class XOS is the
same as the class of fractionally subadditive utility functions.

Proposition 1.1 A utility function is in the class XOS if and only if it is
fractionally subadditive.

Proof: Let w be an XOS utility function. Then by definition there
are additive utility functions w1, w2, . . . such that for every set of items S,
w(S) = maxj{wj(S)}. Now we show that w is fractionally subadditive.
Consider an arbitrary fractional cover of a set S by sets Ti, namely S is
covered by

∑
αiTi. For set S, let j∗ be such that maxj{wj(S)} = wj∗(S).

Since wj∗ is an additive function and the Tis form a cover of S, it follows that∑
αiwj∗(Ti) ≥ wj∗(S). But for every Ti we have w(Ti) ≥ wj∗(Ti). Putting

these inequalities together we have: w(S) = maxj{wj(S)} = wj∗(S) ≤∑
αiwj∗(Ti) ≤

∑
αi maxj{wj(Ti)} =

∑
αiw(Ti).

To show that every fractionally subadditive utility function is in the class
XOS consider the following linear program associated with a set S and a
utility function w.

minimize
∑

T xT w(T )
subject to:

• ∑
T |j∈T xT ≥ 1 for every item j ∈ S

• xT ≥ 0 for every set T .

The fact that w is fractionally subadditive implies that the optimum of
the above LP is at least w(S). Hence, it is exactly w(S) (by setting the
variable xS = 1 and all other xT = 0).

The dual of the above LP is:
maximize

∑
j∈S yj

subject to:

• ∑
j∈T yj ≤ w(T ) for every set T .

• yj ≥ 0 for every item j.
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By linear programming duality, the value of the dual is also w(S). The
optimal values y∗j of the dual variables define a linear function wS in a
natural way, where the value of a set T is wS(T ) =

∑
j∈T y∗j .

Now w can be represented as an XOS utility function using w = maxS{wS}.
Indeed, for every set T we have that for every S, wS(T ) ≤ w(T ) (a conse-
quence of the dual linear program for S), and maxS{wS(T )} ≥ wT (T ) =
w(T ) (a consequence of the equality between primal and dual). 2

The reader may note that Proposition 1.1 is a straight-forward variation
of the Bondareva-Shapley Theorem [2, 9]. This theorem is sketched below
for completeness.

Suppose that there is a set S of n players that jointly receive some
service. For each set of players T ⊆ S there is a cost c(T ) ≥ 0 for providing
the service to that set. A cost sharing scheme f allocates nonnegative shares
of the cost c(S) to each of the players so that the service is payed for. The
cost sharing scheme is said to be in the core if no subset T of players has
incentive to defect from S, receive the service on their own, and pay for it
the cost of serving T alone. That is, for every T ⊂ S,

∑
i∈T f(i) ≤ c(T ).

The Bondareva-Shapley theorem says that the core is nonempty if and only
the cost function c is fractionally subadditive with respect to S.

1.2 Single player problems

We are interested in this work in efficient (polynomial time) algorithms.
Intuitively, one may imagine that the complexity of the allocation problem
is the result of having multiple players with conflicting wishes. But in fact,
even single player problems might involve computationally difficult tasks.
We elaborate on this below. (More details can be found in [8, 3, 4].)

A utility function specifies a nonnegative value to every set of items.
Representing a utility function as a table requires space exponential in the
number of items m. This representation is incompatible with standard no-
tions of efficient algorithms. As a way of coping with this exponential com-
plexity, one may consider the value query model. The allocation algorithm
is assumed to be able to access each entry of the utility table at unit cost.
That is, for every set S, the algorithm may obtain w(S) as an answer to a
query, and this is considered to cost one computation step.

When there are n players and m items, each player gets on average m/n
items. Hence one of the most basic pieces of information that we would like
to deduce about a player is which k (e.g., k = m/n) items would bring her
maximum utility. We call this a k-query. Unfortunately, even for the case
of fractionally subadditive utility functions, a polynomial number of value

6



queries do not suffice in order to answer a k-query, even in an approximate
sense. Consider for example the fractionally subadditive utility function

w(S) = max[a|S|+ b, |S ∩ T |]

where a = 1/
√

m, b = m1/3 and T is some fixed set of size
√

m. Observe
that for these parameters, a = |T |

m . Assume that w is given in form of a
table, with T unknown (chosen at random). For k =

√
m, the set with

maximum utility is T , and its utility is
√

m. A random set of
√

m elements
would have utility only m1/3 + 1, because the expected size of |S ∩ T | is
|T |
m |S| = 1, and the term a|S| + b dominates. Querying the value of set S,
the reply is affected by the set T only if |S ∩ T | > a|S|+ b = |T |

m |S|+ m1/3.
But the probability of choosing such a set S is smaller than the inverse of
any polynomial in m, because regardless of the size of S, the term m1/3 is
almost surely larger than |S∩T |− |T |

m |S|. It follows that polynomially many
queries do not suffice in order to learn anything about the best choice T .

Hence representing the utility function as a table and charging for value
queries does not capture properly our intention that single player problems
should be easy.

A more general class of queries that has been considered is that of de-
mand queries. In this model one may set prices pj for items, and obtain in
one query the set S that maximizes w(S)−∑

j∈S pj . One advantage for this
model is that prices come up naturally as dual variables to linear programs
for the allocation problem, and demand queries offer a level of generality that
allows one to solve linear program relaxations to the allocation problem.

In some cases the utility function happens to have a compact (polynomial
space) representation. One may be tempted to assume that in these cases we
are better off than in the cases in which one needs to resort to a query model.
However, this is not always true. Consider for example a utility function
that is defined as follows. There is a d-regular graph on m vertices. Every
vertex corresponds to an item. The value of a set of items is the number
of edges covered (incident with) by the corresponding vertices. This is a
compact representation of a submodular utility function. However, it is NP-
hard to answer demand queries on this representation. For example, there
is a set of k items with value dk if and only if the graph has an independent
set of size k.

The set cover utility function example given in Section 1.1 is a compact
representation for which even value queries are NP-hard to answer (as they
require solving a minimum set cover instance).
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As explained in the introduction, in our work we do not need to deal
with the subtleties involved with the representation of utility functions.

1.3 Integrality gaps

It is shown in [3] that it is impossible to get an approximation ratio strictly
better than 1/2 with only polynomial amount of communication with the
players. In our context, it may be more informative to view this as an
integrality gap for the LP, or as a hardness of approximation result.

Proposition 1.2 For every ε > 0, it is NP-hard to approximate the maxi-
mum welfare (when players have subadditive utility functions) within a factor
of 1/2 + ε.

Proof: It is known [1] that for every ε > 0 there is an α > 0 such that it
is NP-hard to distinguish between ”yes instances” in which a graph has an
independent set of size αn and ”no instances” in which every independent
set is of size at most εαn. Let the edges of an input graph be the items,
let the number of players be αn, and let w(S) = wi(S) = 2 if there is
some vertex such that S contains all edges incident with it, and w(S) = 1
otherwise. This utility function w is subadditive. On yes instances the
maximum welfare is 2αn (by giving each player the edges incident with
some vertex of a maximum independent set), and on no instances it is at
most (1 + ε)αn. 2

We remark that it is known (and was rediscovered multiple times) that
without subadditivity the maximum welfare cannot be approximated even
within factors close to

√
m (essentially by the same proof as above, but

setting w(S) = 0 in the ”otherwise” case).
Observe that for a clique on 2n vertices, n players and utility functions as

in Proposition 1.2, the optimal allocation has welfare n+1, whereas the LP
has a feasible fractional solution of value 2n (e.g., by having all xi,v = 1/2n,
where v is a shorthand notation for the set of edges incident with vertex v).
This establishes an integrality gap of 1/2 + 1/2n for the LP.

As shown in [3] (by a reduction from the max k-coverage problem), for
every ε > 0, it is NP-hard to approximate the maximum welfare for XOS
utility functions (which as we noted, are the same as fractionally subadditive
utility functions) within a ratio better than 1 − 1/e + ε. Likewise, the
integrality gap of the welfare maximizing LP in this case is 1− 1/e + ε.
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1.4 Notation and conventions

Throughout we use the following notation. We assume that we are given
an arbitrary feasible solution (though not necessarily optimal) to the wel-
fare maximizing LP. For every player i and set S, we use xi,S to denote
the (fractional) value assigned to variable xi,S in this particular solution.
(This is a slight abuse of notation, as previously xi,S denoted a name of a
variable rather than a value given to it.) The value of the objective function
under this particular solution,

∑
i,S wi(S)xi,S , will be denoted by w(LP ).

For every i, the contribution of player i to the objective function, namely∑
S wi(S)xi,S , will be denoted by wi(LP ).
It will be convenient to also establish special notation for

∑
S|j∈S xi,S ,

which can be interpreted as the fraction of item j assigned to player i by
the solution of the LP. This quantity will be denoted by fi,j .

To simplify the presentation, we shall assume that the solution given to
the LP is such that all constraints are satisfied with equality. This convention
can be made without loss of generality. For example, if the item constraint
associated with item j is not satisfied with equality, we may add a special
player Pj with a utility function that is identically 0, and set the value of
variable xPj ,j to 1 −∑

1≤i≤n fi,j . Likewise, a player constraint for player i
can be satisfied with equality by setting the value of the variable xi,φ (where
φ is the empty set) to a value of 1−∑

S 6=φ xi,S .

2 Basic oblivious rounding techniques

This section contains known results [3], but our presentation is based on
oblivious rounding techniques, and hence will lead more naturally to our
new results.

2.1 One step randomized rounding

Perhaps the simplest randomized rounding scheme for the LP is as follows.
The item constraints of the welfare maximizing LP (recall the convention
from Section 1.4) imply that for every item j,

∑
i fi,j = 1, and hence the fi,j

define a probability distribution over players. Allocate item j to one player,
by selecting player i with probability fi,j . This gives a feasible allocation.
When utility functions are additive, then in expectation a player’s utility
will be the same as wi(LP ), and the expected welfare generated by this
rounding technique is equal to w(LP ). However, when utility functions are
not additive, this is far from true.
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Consider the following example in which n =
√

m. All items are par-
titioned into n equal size sets T1, . . . , Tn. All players have the same utility
function w(S) = maxn

j=1 |S ∩ Tj |, which is fractionally subadditive. A feasi-
ble fractional solution to the LP has xi,j = 1/n for every player i and set Tj ,
and xi,j = 0 otherwise. For this fractional solution, wi(LP ) = 1

n

∑n
j=1 |Tj | =

m/n = n, and w(LP ) = n2 = m. However, the randomized rounding proce-
dure described above is unlikely to ever allocate more than O(log n) items
from the same set Tj to a player i, and hence the total welfare will be
O(n log n), which is a factor of Ω(

√
m/ log m) worse than w(LP ).

2.2 Two step randomized rounding

We present here an oblivious two step randomized rounding technique. It is
a straightforward variation of the rounding technique of [3] (which was not
oblivious).

1. Tentative allocation. For every player i, recall that the player con-
straints (and our convention from Section 1.4) imply that

∑
S xi,S = 1,

and hence the xi,S values may be thought of as defining a probability
distribution over sets. Each player chooses a tentative set of items,
where player i chooses set S with probability xi,S . The expected util-
ity to player i of her tentative set is exactly wi(LP ). However, her
chosen set might intersect with sets chosen by other players. Hence,
the solution might not be feasible.

2. Uniform contention resolution. For each item j, if it is allocated
to several players under the tentative allocation, choose uniformly at
random which of these players gets the item j. This results in a feasible
solution, called the final allocation.

To analyse the quality of the final solution, we use the following known
proposition.

Proposition 2.1 Let xi for 1 ≤ i ≤ t be independent indicator random
variables, with Pr[xi = 1] = pi and

∑
i pi = 1. Then for every nonnegative

integer k, Pr[
∑

i xi = k] ≤ 1/k!.

Proof: Clearly the proposition is true when t = 1. Hence we may
assume that t ≥ 2. We now sketch a shifting argument that shows that
we may assume that all pi are equal. Assume that p1 6= p2, and let p =
p1 + p2. Replace x1 and x2 by two new indicator random variables, where
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Pr[x1 = 1] = y and Pr[x2 = 1] = p − y, where 0 ≤ y ≤ p. We need to
choose y so as to maximize Pr[

∑
i xi = k]. It is not hard to see that once

p3, . . . , pt are fixed, this probability is some quadratic function f(y), with
f(0) = f(p). Under these circumstances, the maximum is attained either
when y = p/2 (and then p1 = p2) or when y is either 0 or p (and then one
of the variables drops out). It follows that if not all pi are equal, we did not
maximize Pr[

∑
i xi = k].

Given that pi = 1/t for all i, we have that Pr[
∑

i xi = k] =
(t
k

)
(1 −

1/t)t−k/tk ≤ 1/k!. 2

Proposition 2.1 implies that with high probability (say, probability 1−
1/m), no item belongs to more than k = O(log m/ log log m) players in the
tentative allocation. (In [3] only a weaker bound of O(log m) is claimed, but
the basic idea is the same.) Hence when computing the final allocation to a
player (the second step of the rounding) every item of the tentative allocation
is included independently with probability at least 1/k. Now is the point
when we use subadditivity of the utility functions, namely, Proposition 2.2,
which together with monotonicity implies the desired bound. (Monotonicity
is appealed to because the probability per item in Proposition 2.2 is exactly
1/k, whereas we are interested in the case where the probability is at least
1/k.)

Proposition 2.2 Let k ≥ 1 be integer and let w be an arbitrary subadditive
utility function. For a set S, pick a random subset S′ ⊂ S by picking each
item of S independently at random with probability 1/k. Then E[w(S′)] ≥
w(S)/k.

Proof: Color independently at random each item of S with one of k
colors. This gives k mutually disjoint subsets S1, . . . , Sk, where every such
subset is distributed exactly like S′. By subadditivity,

∑
i w(Si) ≥ w(S).

Now the proposition follows from the linearity of the expectation. 2

Summing up, the two step randomized rounding procedure gives the
following guarantee to every player i. The expected utility of her tentative
set is exactly wi(LP ). Thereafter, with overwhelming probability (say, 1−
1/m), no bad event happens, in the sense that no item is in more than k
tentative sets. Conditioned on no bad event happening, the expected utility
of her final set is at least a 1/k fraction of the utility of her tentative set,
by Proposition 2.2. By linearity of expectation, it follows that the expected
welfare of the allocation delivered by the two step rounding technique is at
least 1−1/m

k w(LP ) = Ω( log log m
log m )w(LP ).
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2.3 Fractionally subadditive utility functions

For fractionally subadditive utility functions we can use a strengthening of
Proposition 2.2. The difference between the two propositions is the removal
of the requirement for statistical independence among items.

Proposition 2.3 Let k ≥ 1 be integer and let w be an arbitrary fractionally
subadditive utility function. For a set S, consider a distribution over subsets
S′ ⊂ S such that each item of S is included in S′ with probability at least
1/k. Then E[w(S′)] ≥ w(S)/k.

Proof: Let pi be the probability that set Si is chosen. Then
∑

pi = 1,
and k

∑
piSi fractionally covers S. Hence also

∑
min[1, kpi]Si fraction-

ally cover S, and by fractional subadditivity, w(S) ≤ ∑
min[1, kpi]w(Si) ≤

k
∑

piw(Si) = kE[w(S′)], as desired. 2

An alternative proof of Proposition 2.3 follows from the equivalence be-
tween fractionally subadditive and XOS utility function (Proposition 1.1),
but is omitted here.

Consider now the two step rounding procedure of Section 2.2. From the
point of view of player i, step 1 of the other players can be viewed as being
part of step 2, as follows.

1. Player i chooses a tentative set Si.

2. (a) All other players choose their tentative sets.

(b) Item j ∈ Si is allocated to player i with probability 1/(nj + 1),
where nj is the number of other players who have item j in their
tentative sets.

Recall that the expected value of the tentative set Si to player i is
wi(LP ). Now consider steps 2(a) and 2(b) combined. The expected value
of nj is at most 1, due to the item constraints of the LP. It is not hard to
see that this implies that the expected value of 1/(nj + 1) is at least 1/2.
It now follows from Proposition 2.3 that for fractionally subadditive utility
functions, the rounded solution is expected to recover at least half the value
of the fractional solution.

3 Improved approximation ratios

In this section we show how to improve over the approximation ratios pre-
sented in Section 2. First we give an overview of our approach.
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Recall the two step randomized rounding technique. In the first step,
each player is assigned at most one tentative set. The second step resolves
contention: if several players have the same item j in their tentative set
(in which case, we view them as players competing for j), then one of the
competing players is chosen uniformly at random and gets item j. But
potentially, we could do better if rather that allocating item j uniformly at
random, we attempt to allocate it to the player who will derive the highest
marginal utility from item j. This principle was indeed used in [7]. There
the setting is that utility functions are additive, and it is straightforward to
determine which player derives the highest marginal utility from an item.
The same principle was used in [4] for XOS utility functions (maximum of
additive utility functions), under the assumption that one can determine
for every player which additive utility function maximizes the utility of its
tentative set.

In contrast to [4] (and to [7]), we present rounding techniques that are
oblivious. That is, our goal is to give item j to the player that would
derive maximum marginal utility from it, but we wish to achieve this goal
without knowing anything about the utility functions of the players. Of
course, this cannot be done. Nevertheless, we design randomized oblivious
rounding techniques that achieve the best possible approximation ratios (in
the sense that they match the integrality gap of the LP). For fractionally
subadditive utility functions, the new aspect of our results is the fact that
the rounding techniques are oblivious. For subadditive utility functions (our
main result), an even more important aspect is the dramatic improvement
in approximation ratio, matching the NP-hardness result (Proposition 1.2)
and the integrality gap of the welfare maximizing LP in this case.

We alert the reader to an implicit distinction between worst case in-
stances and “typical” instances in the above discussion. If we are only in-
terested in the worst case approximation ratios, then our oblivious rounding
techniques are indeed optimal (up to low order terms). However, it is not
difficult to design specific instances on which rounding techniques that do
take into account the actual utility functions of players do better than our
oblivious rounding techniques.

3.1 Fractionally subadditive utility functions

In Section 2.3 we showed a factor 1/2 approximation for the case of frac-
tionally subadditive utility functions. In this Section we show an improved
rounding procedure with approximation ratio 1 − 1/e. A different way of
obtaining a similar approximation ratio was previously shown in [4].
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We first describe an instance in which the two step randomized rounding
procedure of Section 2.2 does not produce an approximation ratio signifi-
cantly better than 1/2. There are two players and 2m items partitioned into
two equal size sets S and T . Player P1 has utility 1 if she gets at least one
item from S (items in T have negligible utility for P1). Player P2 has a util-
ity 1 if she gets at least one item from T (the items from S have negligible
utility for P2).

For 1 ≤ j ≤ m, let Sj denote the set containing the jth item from S and
all but the jth item from T . Let Tj denote the set containing the jth item
from T and all but the jth item from S. An optimal solution to the LP
sets x1,Sj = 1/m for all sets Sj , and x2,Tj = 1/m for all sets Tj . All other
variables are 0. The value of the LP is 2m/m = 2. However, the two step
rounding procedure will produce a solution of expected value 1 + 1/m.

As a precursor to our improved rounding technique for fractionally sub-
additive utility functions, we consider first the special case where there are
only two players. For this we suggest the following two-player rounding pro-
cedure. (The reader is advised to review notation from Section 1.4. Here we
shall not use the convention that item constraints are satisfied with equal-
ity, as this involves an increase in the number of players, and our rounding
technique is specific for two players.)

1. Each player chooses at most one set of items, where player i chooses
her tentative set S with probability xi,S .

2. Let Si denote the tentative set chosen by player i, for i ∈ {1, 2}. For
every item j independently do the following.

(a) If j ∈ S1 \ S2, allocate j to player 1.

(b) If j ∈ S2 \ S1, allocate j to player 2.

(c) If j ∈ S1∩S2, then allocate j to player 1 with probability f2,j

f1,j+f2,j

and to player 2 with probability f1,j

f1,j+f2,j
.

(d) If j 6∈ S1 ∪ S2, allocate j arbitrarily (this will not be used in our
analysis of the approximation ratio).

Proposition 3.1 For every player i ∈ {1, 2}, if her utility function is
fractionally subadditive, then the expected utility of the random set allo-
cated to the player under the above two-player rounding technique is at least
3
4wi(LP ).
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Proof: By symmetry, it suffices to prove the proposition with respect to
player 1. The expected utility of the random tentative set S1 that player 1
receives in step 1 is the same as w1(LP ). However, some items of S1 might
be given to player 2, if these items happen also to be in S2, and moreover,
step 2(c) allocates them to player 2. Hence an item j ∈ S1 is given to
player 1 with probability

1− f2,j
f1,j

f1,j + f2,j
≥ 3/4

where the inequality follows from the fact that f1,j + f2,j ≤ 1 (the item
constraints). Now the proof follows from Proposition 2.3. 2

We now consider the case when the number of players is n > 2.

Theorem 3.2 There is an oblivious rounding technique that for every player
i that has a fractionally subadditive utility function guarantees an expected
utility that is at least a (1− (1− 1/n)n)wi(LP ).

An earlier version of this manuscript contained a proof of Theorem 3.2
that involved setting up a flow problem of size exponential in n, and hence
resulted in an efficient algorithm only when the number of players is small.
(When n is large, (1− (1− 1/n)n) approaches 1− 1/e from above, and this
case will be handled below.) The proof of Theorem 3.2 is omitted from
the current version of the paper, because subsequently a better proof (not
requiring time exponential in n) was discovered by Jan Vondrak and is given
in [6].

We present an oblivious rounding technique that achieves an approxima-
tion ratio of at least 1− 1/e when utility functions are fractionally subaddi-
tive, whose running time is polynomial regardless of the number of players.
The rounding technique was designed in a way that makes its analysis sim-
ple. As intuition, consider the performance of the two step randomized
rounding technique of Section 2.2 when there are N players, each having
probability 1/N of choosing a tentative set that contains item j. Then the
probability that no player gets item j is (1 − 1/N)N ≤ 1/e. By symmetry
among players, it follows that player i gets item j with probability at least
(1− 1/e)/N . Observe that player i gets item j only if the tentative set that
player i chooses happens to contain item j, and this happens with proba-
bility 1/N . It follows that conditioned on player i choosing a tentative set
that contains item j, player i in fact gets item j with probability at least
(1− 1/e).
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Let us now consider a more general case. Consider an item j and recall
our notation of fi,j =

∑
S|j∈S xi,S for the fraction of item j assigned by the

LP solution to player i. Fixing j in this discussion, we omit the subscript j
and use fi to denote fi,j . Recall also our convention from Section 1.4 that∑

i fi = 1. The previous paragraph corresponds to the case when there are
N players and fi = 1/N for all i. Now we shall not make these assumptions.
Instead, let N be an integer such that 1/N divides all fi. Every player i gets
to control fiN coins (associated with item j). Each of the coins in biased,
and comes up 1 independently with probability 1/N . Every player i tosses
her fiN coins independently, and those coins that come up 1 are placed into
a bag Bj . If bag Bj is empty at the end of the process, no player gets item j.
If the bag contains at least one coin, than one coin is chosen independently
at random from this bag, and the player who owned this winner coin gets
item j.

Observe that the probability that bag Bj is empty is precisely (1 −
1/N)N < 1/e. Hence with probability at least 1 − 1/e, one player gets
item j. By symmetry among the coins, every coin is equally likely to be the
winning coin, and hence player i has probability at least (1−1/e)(fiN)/N =
(1− 1/e)fi of getting item j.

The above discussion was lacking in the sense that we ignored the ques-
tion of whether j was in the tentative set of player i. A preliminary fix to
that is to do the following: if player i happened to place a coin in bag Bj

(this happens with probability 1 − (1 − 1/N)fiN ≤ fi), then she chooses a
tentative set that contains item j. To have the right marginal probability of
choosing a tentative set that contains item j, then conditioned on placing
no coin in bag Bj , player i is required to choose such a set with probability
(fi − 1 + (1− 1/N)fiN )/(1− 1/N)fiN . As before, player i gets item j with
probability at least (1−1/e)fi, but now, player i gets item j only if item j is
in her tentative set (which happens with probability fi). Hence conditioned
on having item j in her tentative set, player i gets item j with probability
at least 1 − 1/e, as desired. Note that this last probability is independent
of which is the actual tentative set containing item j chosen by player i, so
it remains 1− 1/e for each such set.

We are not quite done. The problem is that there are m different items
to consider. We cannot have the tentative set chosen by player i depend on
what happened in the m coin tossing experiments that player i performs,
because this might place too many constraints on the choice of her tentative
set. To get around this last problem, we switch the order of two probabilistic
events, while exactly preserving their joint distribution. Rather than first
randomly choosing how many coins player i places in bag Bj and then
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randomly choosing a tentative set for player i, we first randomly choose the
tentative set, and then based on the outcome randomly choose the number
of coins, with the appropriate marginal distribution conditioned on whether
the tentative set contains item j.

Let us now explain how this marginal probability is computed. If the
tentative set does not contain item j, then the probability of player i placing
a coin in bag Bj becomes 0. If the tentative set does contain item j, then
the distribution over the number t of coins that player i places in bag Bj

is computed as follows. The probability that t of the fiN coins come up 1
is

(fiN
t

)
(1 − 1

N )fiN−t 1
Nt , which in the limit (when N tends to ∞) can be

taken to be f t
i e
−fi/t!. This probability is now scaled by 1/fi, to cancel

out the fact that player i has probability fi (rather than probability 1)
of having item j in her tentative set. Hence for t ≥ 1, the probability
for t coins is 1

fi
f t

i e
−fi/t!. The probability that player i places no coins in

bag Bj (even though her tentative set does contain item j) then becomes
1 − 1

fi

∑
t≥1 f t

i e
−fi/t! = 1 − (efi−1)e−fi

fi
= 1 − 1−e−fi

fi
. (This probability is

indeed nonnegative because e−x ≥ 1− x for every x.)
Observe that having chosen the tentative set first, player i can enforce

for every item separately the correct marginal distribution for its bag con-
ditioned on the choice of tentative set. In summary, we have the following
three step rounding technique:

1. Tentative allocation. Each player chooses a tentative set of items,
where player i chooses set S with probability xi,S .

2. Assigning weights to competing players. A player i is said to
compete for item j if item j is in her tentative set. Consider an arbi-
trary item j, and to simplify notation use fi as shorthand notation for
fi,j . A competing player i is assigned at random an integer nonnega-
tive weight ci,j with respect to item j as follows. For t ≥ 1, ci,j = t

with probability 1
fi

f t
i e
−fi/t!. The probability that ci,j = 0 is 1− 1−e−fi

fi
.

3. Weighted contention resolution. If
∑

i ci,j > 0, allocate item j to
player i with probability ci,j/

∑
i ci,j . If

∑
i ci,j = 0, do not allocate

item j to any player. (Of course, one may allocate item j to some
player also when

∑
i ci,j = 0, but this is not used in the analysis.)

The proof of the following theorem is implicit in the intuitive introduc-
tion that we gave to the three step rounding technique, but we repeat it for
completeness (sometimes using terminology from the intuitive introduction).
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Theorem 3.3 For fractionally subadditive utility functions, the three step
randomized rounding procedure obtains a random feasible solution with ex-
pected welfare at least a (1− 1/e)w(LP ).

Proof: Consider an arbitrary player, which for simplicity we will rename
to be player 1. The expected value of her tentative set is w1(LP ). By
Proposition 2.3, it suffices to show that for every item j in the tentative set
of player 1 (which we call S1), the probability that player 1 is allocated item
j in the final solution is at least 1− 1/e.

Consider an arbitrary item j (regardless of whether j ∈ S1), and recall
that

∑
i fi = 1 (where fi is shorthand notation for fi,j , and we use here the

convention from Section 1.4). Observe that
∑

i ci,j (which we denote here by
cj) is distributed exactly as a random variable that is (the limit as N tends
to infinity of) the sum of N

∑
fi = N indicator random variables, each with

probability 1/N of being 1. Item j is allocated if and only if cj > 0, which
has probability 1 − (1 − 1/N)N > 1 − 1/e. Moreover, conditioned on item
j being allocated, every coin has exactly the same probability of winning
item j (this is a consequence of the marginal distribution that is enforced
on ci,j conditioned on the tentative set containing item j), and hence this
probability is at least (1 − 1/e)/N . As player 1 controls f1N coins, her
probability of winning item j is at least (1 − 1/e)f1N/N = (1 − 1/e)f1.
However, player 1 may win j only if she competes for j, and this happens
with probability exactly f1. Hence conditioned on having item j in her
tentative set, player 1 gets item j with probability at least 1 − 1/e, as
desired. Finally, note that this last probability is independent of which is
the actual tentative set containing item j chosen by player 1, so it remains
1− 1/e also when the tentative set is S1. 2

We remark that the rounding technique as described assumes computa-
tion with infinite precision. A slight loss in the approximation ratio might
result from rounding errors when finite precision arithmetic is used. How-
ever, this loss will not bring the approximation ratio below 1− 1/e, because
it can be compensated for by slackness in the analysis. (For example, as
the fi are solutions of an LP, they are rational, and hence N is finite, and
(1− 1/N)N is strictly smaller than 1/e.) We omit the tedious details from
this manuscript.

18



3.2 Subadditive utility functions

3.2.1 A negative example

We present an instance based on the set cover utility function (which is sub-
additive but not fractionally subadditive) for which the two step randomized
rounding procedure of section 2.2 does not produce a constant approxima-
tion ratio (and neither do many other rounding techniques).

There are m items. There are n = log2 m players. With every player i
we associate one canonical subset Si. We shall later explain how this set is
chosen, but here only remark that its size is roughly m/ log m. Items not
in set Si have no utility for player i. The utility of a subset S′ ⊂ Si to
player i is based on the set cover paradigm of Section 1.1: it is the smallest
number of ground sets of type i that can cover S′. The definition of ground
sets is a bit tricky. It involves two types of ground sets (easy and hard) and
parameters ` =

√
log m/ log log m and t = `/3.

Definition 3.4 A set U is an easy ground set of type i if there is some
collection of c log m canonical sets Sj of other players such that U contains
those items of Si that appear in at least one but at most ` sets Sj in the col-
lection. Here c is some explicit constant that will be defined later, satisfying
0 < c ≤ 1. A set V is a hard ground set of type i if it satisfies the following
conditions:

1. V ⊂ Si \ U for some easy set U of type i.

2. For every collection of t additional easy sets Uj1 . . . Ujt of type i,

|V ∩ (Si \ (U ∪ Uj1 ∪ . . . ∪ Ujt))| ≤ 2|Si \ (U ∪ Uj1 ∪ . . . ∪ Ujt)|/`

To complete the description of the example, it remains to explain how
the canonical sets Si are chosen. We require the choice of canonical sets to
satisfy three properties:

1. For a sufficiently small ε > 0 (independent of m), no item belongs to
more than (log m)/ε canonical sets.

2. For every canonical set Si and every t + 1 easy sets U0, . . . , Ut with
respect to i, |Si \ ∪t

k=0Uk| ≥ m1/4.

3. For every canonical set Si, wi(Si) = Ω(`).
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A simple consequence of property 1 is that for every type i, every item
is in some easy set of type i. In particular, this implies that every canonical
set can be completely covered by easy sets, and hence every utility function
is well defined.

We do not show an explicit choice of canonical sets that satisfies the
three properties. Instead, we choose these sets independently at random.
Specifically, for every item j and player i, item j belongs to set Si inde-
pendently at random with probability 1/ log m. We shall show that positive
probability (in fact, probability very close to 1) this creates an instance on
which the three properties hold.

The following proposition establishes property 1.

Proposition 3.5 Let ε > 0 be a sufficiently small constant (independent
of m). Than with high probability (say, at least 0.99) over the choice of
canonical sets, no item belongs to more than (log m)/ε canonical sets.

Proof: In expectation, an item belongs to n/ log m = log m canonical
sets. Standard bounds on large deviations for sums of independent random
variables show that for sufficiently small ε, an item has probability at most
1/100m of belonging to more than (log m)/ε canonical sets. Taking the
union bound over all items, with probability at least 0.99 no item is in more
than (log m)/ε canonical sets. 2

The following lemma establishes property 2.

Lemma 3.6 With high probability (say, 0.99) over the random choice of
canonical sets Si, for every canonical set Si and every t + 1 easy sets
U0, . . . , Ut with respect to i, |Si \ ∪t

k=0Uk| ≥ m1/4.

Proof: There are
( n
c log m

)
< 2log2 m ways of choosing the indices of the

c log m sets in a collection that defines an easy set. Hence there are at most
2log3 m ways of choosing t easy sets. For an item j ∈ Si, we now compute the
probability that it is in none of t easy sets. We use the fact that the canonical
sets are chosen at random. The probability that j is not in a particular easy
set is at least the probability that the first ` + 1 sets from the respective
collection all contain j, which is at least (1/ log m)`+1. Applying the same
principle to all t easy sets, the probability of j not being in any of the easy
sets is at least (1/ log m)t(`+1) (and even higher, if the respective collections
share canonical sets). This is at least 1/

√
m, for our choice of parameters.

Hence the expected number of items from Si not covered by any of the easy
sets is at least

√
m/ log m. Moreover, the events of not being covered by the
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easy sets are independent among items, because for each item they depend
only on whether the item is contained in the canonical sets that define the
easy sets, and each item is placed in canonical sets independently of other
items. Large deviation bounds now imply that with probability 1 − 2−mδ

(for some δ > 0) there will be at least m1/4 uncovered elements. As there are
only n ways of choosing i and at most 2log3 m ways of choosing the collections
defining the easy sets, we can apply the union bound to prove the lemma.
2

The following proposition establishes property 3.

Proposition 3.7 With overwhelming probability over the choice of the ran-
dom canonical sets Si, wi(Si) = Ω(`).

Proof: We show that t = `/3 ground sets of type i do not suffice in
order to cover Si. Consider an arbitrary collection of t ground sets of type i.
Some of them are easy sets Uj , and some of them are hard sets Vk. For each
hard set Vk, add to the collection also the easy set Uk that is associated with
Vk by condition 1 of the definition of hard sets. (This will be needed when
we later apply condition 2 of the definition of hard sets.) If there is more
than one such easy set Uk that is associated with Vk, pick one arbitrarily.
The union of all easy sets in the resulting collection does not cover Si, by
property 2 (which was already established in Lemma 3.6). Every hard set
in the collection can cover a fraction of at most 2/` of the remaining items,
by condition 2 of the definition of hard sets. As the number of hard sets is
at most t < `/2, some item of Si must remain uncovered. 2

We now assume that we have an instance in which the above three prop-
erties hold. The following is a feasible fractional solution to the LP. For every
i we set xi,Si = ε/ log m for some sufficiently small ε > 0 (as in property 1),
and all other variables to 0. The player constraints trivially hold. The item
constraints also hold, by property 1. The value of this fractional solution
is at least n ε

log m t = Ω((log m)3/2/
√

log log m), for our choice of parameters.
We now contrast this value with the expected welfare of the feasible solution
that is obtained after the two step randomized rounding procedure.

Proposition 3.8 After applying the two step randomized rounding proce-
dure, with overwhelming probability the feasible solution that is obtained has
welfare at most O(log m).

Proof: After the first step of the randomized rounding, with high proba-
bility between ε log m/2 and 2ε log m players remain. Take c in Definition 3.4
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to be c = ε/2. Consider an arbitrary remaining player i and its tentative
set Si, and apply the second step of randomized rounding to obtain a final
set S′ for player i. The final set S′ (and likewise, Si) will contain two types
of items. The easy items are those that were contained in at most ` other
tentative sets. The hard items are those that were contained in more than `
tentative sets. By Definition 3.4, one easy set U covers all easy items of Si

(and perhaps also some of the hard items, because the number of tentative
sets might be larger than c log m). With overwhelming probability, one hard
set V covers those hard items that end up in S′ (and were not in U). This
follows from condition 2 in Definition 3.4 as follows. The set of hard items
in S′ \ U is composed of items not in U , each chosen with probability at
most 1/`. Hence from each set of the form Si \ (U ∪Uj1 ∪ . . .∪Ujt) they are
expected to contain at most a 1/` fraction of the items. This number is not
much smaller than m1/4, by property 2. Hence bounds on large deviations
make it highly unlikely that the fraction would exceed 2/`, even if one takes
the union bound over all possible choices of Si \ (U ∪ Uj1 ∪ . . . ∪ Ujt).

Hence the integral solution will most likely have value at most 4ε log m.
2

We have shown a gap of Ω(
√

log m/ log log m) between the fractional
solution to the LP and the solution obtained by the two step randomized
rounding procedure. The alert reader may have noticed that for our partic-
ular example, the fractional solution that we presented for LP is far from
optimal. Simply giving each player a single item has welfare n = (log m)2,
which is better than the value of our solution to the LP. Moreover, the one
step randomized rounding procedure of Section 2.1 would in fact recover
such a solution from the LP.

To overcome this issue, we slightly modify our example. We create
(log m)/ε identical copies of the above example with the same set of players
but disjoint sets of items. For a set S, let Sk be its items that are in copy
k. We define the subadditive utility functions w′ as w′i(S) = maxk[wi(Sk)],
where wi is defined as in the previous example. Now a fractional solution
to the LP assigns value ε/ log m to each of the (log m)/ε variables xi,(Si)k .
This fractional solution has value at least t(log m)2 and is optimal. For this
modified example, both the one step and the two step randomized rounding
procedures produce a feasible solution of value O((log m)2), giving a gap of
Ω(

√
log m/ log log m).
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3.2.2 A constant approximation ratio

We now present a rounding procedure for the LP that has an approximation
ratio of 1/2 when utility functions are subadditive. As our formal description
of the rounding technique is based on a lot of hindsight, let us first give some
intuition regarding what the rounding technique is aiming to achieve.

The first step of the rounding technique is one that we have already seen
– each player chooses a tentative set. Consider now an arbitrary player, say
player 1, and her tentative set, say S1. Player 1 would need to give up some
of the items from S1, since S1 is likely to intersect other sets. Our goal
would be to devise a method by which after giving up some items, player 1
still retains (in expectation) at least half the utility of w1(S1). But as we
have seen in Section 3.2.1, even if every item of S1 has probability at least
1/2 of staying with player 1, still correlations among the items may cause
the expected remaining utility to be much lower than w1(S1)/2.

Our way of deciding which items player 1 should give up (and which
items she should retain) is based on the idea of pairing different rounding
scenarios. By scenario we mean here the collection of tentative sets chosen
by the players. Two scenarios can be paired with respect to player 1 if in
both scenarios player 1 chooses the same tentative set. Other players may
choose different tentative sets in these two scenarios. Assume that we paired
two scenarios in which the tentative set for player 1 is S1, and moreover,
assume for simplicity that the following property holds: every item of S1 is
in tentative sets of other players only in one of the two scenarios. In this
case, in each of the two scenarios it suffices to give player 1 those items of
S1 that are under no contention. Hence every item of S1 is given to player 1
in one of the two scenarios, and by subadditivity of her utility function, the
sum of utilities that player 1 obtains in the two scenarios is at least w1(S1).
This implies that on average over these two scenarios, player 1 gets utility at
least w1(S1)/2. (Technically, this last argument requires both scenarios to
have the same probability of being generated by the randomized rounding
procedure. This point can be overcome by associating a probability with
each scenario and a weight with each pairing, and reducing the probability
of each of the paired scenarios by the weight of the pairing.) If for every
player, all rounding scenarios could be paired in such a way (eventually
reducing all probabilities to 0), this would imply that there is a feasible
solution of value at least w(LP )/2.

In the above approach the pairing function has to be player dependent.
Consider for example a scenario A in which item j belongs to the tentative
sets of three different players, say 1,2 and 3. Let Bi be the scenario that
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player i pairs with scenario A. Then it cannot be that B1 = B2 = B3

because then one of the three players will not get item j neither in scenario
A nor in the paired scenario B = B1 = B2 = B3.

Let us examine more closely the issues involved in finding a good pairing
function. Observe that in the example given in Section 3.2.1, if one chooses
two random scenarios in which player 1 chooses set S1, it is likely that a
constant fraction of the items of S1 will appear in other tentative sets in
both scenarios. Moreover, some items of S1 will appear in many (a growing
function of n) tentative sets in both scenarios. Nevertheless, in our rounding
technique we will pair random scenarios (sharing S1). We will make sure
that every item of S1 will be given to player 1 in at least one of the two
scenarios. For some items (say item j), and some players (say player 2) this
will prevent player 2 from getting item j in one of the scenarios (call it the
bad scenario) even though it is in her tentative set. Hence in the (random)
scenario that player 2 pairs with the bad scenario (lets call it the worse
scenario), we are committed to give item j to player 2. This might exclude
some other player from getting item j in the worse scenario, and this player
needs to be compensated in her own pairing (with respect to the worse
scenario). However, this commitment to give item j to certain players will
not propagate forever: the item constraints imply that in random scenarios
only one player is expected to have item j in her tentative set, and this will
cause the chain (or rather tree) of commitments to eventually die out.

Our rounding technique is based on the idea above, and is described in a
way that makes its analysis simple. It involves an object called the guiding
graph which is not of polynomial size. Later we shall show how the rounding
procedure can be implemented in expected polynomial time.

The input. The input to our rounding procedure is an arbitrary (not
necessarily optimal) fractional (primal) solution to the LP. Neither the util-
ity functions of the players nor the value of the solution (denoted by w(LP ))
are needed as part of the input.

The guiding graph. Consider an arbitrary regular bipartite graph G
of degree n and girth g, where g is sufficiently large compared to the number
of players n and the number of items m. The graph G is called the guiding
graph.

Edge coloring. The edges of every n-regular bipartite graph can be
partitioned into n matchings (an edge coloring with n colors). Partition the
edges of G into n matchings. Player i controls all edges of matching Mi.

Random edge labelling. For every i ∈ {1, . . . , n} and every edge
(u, v) ∈ Mi, label the edge independently at random. The label of the edge
is a set S(u,v) of items, where set S is chosen as the label with probability
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xi,S .
The item subgraphs. We derive from G in combination with the edge

labelling m edge induced subgraphs, one for every item. Subgraph Gj is
obtained by keeping in G those edges (u, v) whose label satisfies j ∈ S(u,v),
and removing all other edges.

Tree property. As we shall explain later, we may assume that every
connected component of Gj is a tree.

Edge orientation. For every subgraph Gj and for every connected
component C in Gj that is a tree, orient the edges in C such that every
edge of C points in at least one direction, and every vertex of C has at most
one edge pointing to it. This can be done by choosing an arbitrary vertex of
C as a root and orienting every edges away from it. We note that the root
vertex can be chosen in a way that depends only on the topology of the tree,
independently on the names of vertices. If the diameter of C is even, say
2d, then C (being a tree) has a unique central vertex v of distance at most
d from every other vertex. Orient all edges away from v. If the diameter
of C is odd, say 2d + 1, then C has a unique central edge (u, v) of distance
at most d from all vertices of C. Orient every edge other than (u, v) away
from (u, v), and keep the edge (u, v) bi-directional.

Random center. Pick a vertex u ∈ G uniformly at random. We shall
use ui to denote the neighbor of u connected by edge (u, ui) ∈ Mi. The set
labelling the edge (u, ui) will be called the tentative set of player i.

Item allocation. For every item j, if some edge (u, ui) in Gj points at
u, then this edge must be unique, and item j is allocated to the player i.
(If no edge in Gj points at u, allocate item j to an arbitrary player. This
will not be used in the analysis.) Observe that a player i may receive item
j only if item j belongs to her tentative set, as otherwise edge (u, ui) is not
in subgraph Gj . This completes the description of the final sets S1, . . . , Sn

of items allocated to each player.
The following theorem implies (among other things) that with positive

probability, the guiding graph rounding technique produces a solution of
welfare at least w(LP )/2. See also the remarks that follow the proof of the
theorem.

Theorem 3.9 For every ε > 0 (that may depend on the fractional solution
of the LP), there is some sufficiently large girth g(ε) such that if the guiding
graph described above is chosen to have girth at least g(ε), then the welfare
of the final solution found by the guiding graph rounding technique is in
expectation at least (1− ε)w(LP )/2.
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The proof of Theorem 3.9 is a consequence of the following three propo-
sitions.

Proposition 3.10 Consider an arbitrary vertex u ∈ G. Then the expecta-
tion (over choice of random edge labels) of the sum of utilities of the respec-
tive tentative sets satisfies:

E[
∑

i∈{1,...,n}
wi(S(u,ui))] = w(LP )

Proof: Set S labels edge (u, ui) with probability xi,S . Hence the ex-
pected sum of utilities satisfies:

E[
∑

i∈{1,...,n}
wi(S(u,ui))] =

∑

i

∑

S

xi,Swi(S) = w(LP )

2

Proposition 3.11 Consider an arbitrary player i and an arbitrary set S
such that xi,S > 0, and an arbitrary labelling of the guiding graph. Then
conditioned on the center u chosen such that:

1. S is the tentative set of player i,

2. for every j ∈ S, the connected components of u in all subgraphs Gj

are trees,

the expected utility of the final set of items allocated to player i satisfies
E[wi(Si)] ≥ wi(S)/2. Here probability is taken over choice of center vertex
u.

Proof: Let Mi,S be the set of edges controlled by player i that are
labelled by set S and for which the connected components of u in subgraphs
Gj are trees, for all j ∈ S. Then one may choose a center vertex with
the probability distribution specified by the proposition by first picking at
random an edge (u, v) ∈ Mi,S , and then picking the center vertex to be
one of its endpoints. Let Su be the final set that player i receives when
u is the center, and let Sv be the final set that player i receives when v
is the center. Observe that every item j ∈ S must be in either Su or Sv,
depending on the orientation of the edge (u, v) in the subgraph Gj . Hence
S ⊂ Su ∪ Sv. Now we use subadditivity of the utility function to conclude
that wi(Su)+wi(Sv) ≥ wi(S). Summing over all edges of Mi,S and averaging,
the proposition follows. 2
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Proposition 3.12 Fix an arbitrary fractional solution to the LP, and con-
sider an arbitrary vertex u in the guiding graph G. Then for every j ∈
{1, . . . , m}, the probability (over the choice of random edge labelling) that
the connected component of vertex u in graph Gj contains a cycle (is not a
tree) tends to 0 as the girth g of G tends to ∞.

Proof: For player i and item j, recall our notation of fi,j =
∑

S|j∈S xi,S .
As we shall fix j throughout the discussion, we use fi to denote fi,j . By the
item constraints,

∑
fi = 1. Let us use ε to denote mini|fi 6=0[fi]. Assume

first that the girth g is infinite, and hence that the connected component
of u in Gj is a tree. Let us upper bound the expected size of this tree,
where probability is taken over choice of random edge labels. We develop
the connected component Gj(u) in breadth first search fashion, starting at
u. The expected degree of u is

∑
fi = 1. Thereafter, for every vertex already

in the connected components, the expected number of children it has is at
most

∑
fi − ε ≤ 1 − ε < 1. The distribution of connected components

containing v behaves like a branching process with at most (1− ε) expected
children at each node. By linearity of expectation, an upper bound N on
the expected number of nodes generated by such a process can be derived
by the recurrence relation N ≤ 1 + (1 − ε)N , implying N ≤ 1/ε. Hence
the expected size of Gj(u) is at most 1 + 1/ε. By Markov’s inequality, the
probability that its size exceeds 2k/ε is at most 1/k.

Observe that for the above analysis, all that is needed is that the girth
of graph G is larger than 2k/ε, rather that the girth is infinite. Hence the
probability the Gj(u) is a tree is at least 1 − 2/gε, which tends to 1 as g
tends to ∞. 2

The three propositions above imply Theorem 3.9.
Proof: When g is sufficiently large, Proposition 3.12 implies that con-

dition 2 of Proposition 3.11 holds with probability at least 1 − ε. Then
Proposition 3.11 implies that E[wi(Si)] ≥ (1 − ε)wi(S(u,ui))/2, which to-
gether with Proposition 3.10 implies:

E[
∑

i∈{1,...,n}
wi(Si)] ≥ (1− ε)w(LP )/2

2

A few remarks concerning Theorem 3.9 are in order here.
Integrality gap. Theorem 3.9 implies that the integrality gap of the

welfare maximizing LP cannot be worse than 1/2 (when utility functions
are subadditive). This follows from the fact that there are only finitely
many possible ways of allocating items to players, and hence only finitely
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many possible values for the welfare. If all these values were strictly below
w(LP )/2, we could set ε to be sufficiently small so that all these values
would also be strictly below (1 − ε)w(LP )/2, and this would contradict
Theorem 3.9.

An expected polynomial time version. The proof of Theorem 3.9
does not by itself imply that an integer solution of value w(LP )/2 can be
found efficiently. The guiding graph G has degree n and girth g, which
implies that it must contain at least ng/2 nodes. Hence graph G might be
too large so as to be represented efficiently. Luckily, this is not needed.
The rounding procedure uses only parts of the guiding graph, namely the
connected components G1(u), . . . , Gm(u). As shown in Proposition 3.12,
their expected size is O(1/ε), where ε = mini,j

∑
S|j∈S xi,S (conditioned on∑

S|j∈S xi,S > 0). The relevant portion of the guiding graph (that contains
the union of G1(u), . . . , Gm(u)) can be generated on demand using (for ex-
ample) a breadth first search procedure starting at u, and assigning labels
only to those edges that are not cut off from u by labels of previously as-
signed edges. This leads to an expected polynomial time rounding procedure
when 1/ε ≤ poly(n,m). In fact, more careful analysis shows that this last
condition is not needed, because for every j, the average value (over choice
of k ∈ {1, . . . , n}) of

∑
i6=k;S|j∈S xi,S ≤ 1− 1/n. Details omitted.

A faster version. If one is satisfied with an approximation ratio of
(1/2−ε), one may speed up the implementation of the guiding graph round-
ing technique. One may take g = O(m/ε2) as the girth of the guiding graph
G (though the graph need not be constructed explicitly). Scale the values
of all variables in the solution to the LP by a factor of 1− ε. The solution
remains feasible, and its value decreased by a factor of only 1 − ε. Now
the total expected number of nodes in G1(u), . . . , Gm(u) is O(m/ε), and by
Markov’s inequality there is only probability ε of exceeding the girth of G
(and if this happens we may abort). Each vertex has degree n (in G). Al-
together, the total number of edges of the guiding graph that are visited is
at most O(nm/ε2), and the approximation ratio is 1/2− ε.

A slight improvement over w(LP )/2. Here we sketch how one can
show that the integrality gap of the LP is slightly better than 1/2. We
change the guiding graph rounding technique as follows. Rather that ori-
enting the edges independently in each graph Gj , we introduce the following
correlations in orientation among these graphs. We pick an edge e in G, and
in all Gj (for those items j that are contained in the set labelling edge e) we
make e bidirectional. Thereafter, for every Gj and every tree that contains
e, we orient the other tree edges away from e. We may iteratively pick new
edges e′ (not visited in previous steps of the procedure), and repeat the pro-
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cedure (making these e′ bidirectional, and orienting the other edges in their
trees). The advantage of this correlated orientation is that if the random
center happens to be an endpoint of such a bidirectional edge e, then the
player who controls the edge e gets all her tentative set, rather than only
part of it. This leads to an expected welfare strictly (though only slightly)
better than w(LP )/2. Further details are omitted.

A failed attempt. The author also considered the following approach
in attempt to get an approximation ratio better than 1/2. Guess (or try
all possibilities, there are polynomially many of them) one item j and one
player i such that the optimal solution allocates j to i. Allocate item j
to player i, and use the LP approach to solve the residual problem that
remains (without item j). If one obtains an approximation ratio of 1/2 on
the residual problem, then together with item j the approximation ratio is
slightly better than 1/2. However, this approach by itself does not work,
because in the residual problem, the marginal utility function of player i
(given that she already received item j) might no longer be subadditive,
and the proof of Theorem 3.9 does not apply anymore.

It may be instructive to compare between the rounding technique intro-
duced in this section and the two step rounding technique of Section 2.2.
In both rounding techniques, every player first chooses a tentative set, and
the task that remains is that of contention resolution for items that are in
more than one tentative set. In the two step rounding technique, contention
resolution is performed independently for every item. Though every item
has probability at most half of being under contention, the set of items that
are under contention is chosen in a correlated way (as not every set can
be a tentative set), a fact that is used in Section 3.2.1 to show that this
independent contention resolution does not give a constant approximation
ratio when utility functions are subadditive. In the approach that we use in
this section, we compensate for this correlation among items that are un-
der contention by introducing a correlation between contention resolution
of different items. This last correlation is a consequence of the fact that
the graphs Gj (used for contention resolution of the different items) are
subgraphs of the same guiding graph.

4 Conclusions

We mention here some questions that remain open.
Submodular utility functions. As we have seen, the approximation

ratio provided by the welfare maximizing LP depends on the class of utility
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functions that is involved. When utility functions are subadditive, this ratio
is 1/2, when they are fractionally subadditive, this ratio is 1−1/e, and when
they are linear, this ratio is 1. We do not know what the ratio is when utility
functions are submodular. Recent work [6] shows that there is some ε > 0
such that this ratio is at least 1− 1/e + ε, and the ratio is also known to be
bounded away from 1, but we are still far from finding matching upper and
lower bounds on the approximation ratio (or the integrality gap of the LP)
in this case.

Universally good rounding schemes. Recall the rounding technique
from Section 3.1 for fractionally subadditive utility functions. Let pj denote
the probability with which item j is allocated. (We took pj to be 1 − 1/e
or (1− 1/N)N for some large N , but more generally, when

∑
i fi,j < 1, the

value of pj can be different.) Then player i gets item j with probability
exactly pj

fi,j∑
`
f`,j

. With probability 1 − pj the item remains unallocated.

We can modify the rounding scheme so that it does allocate every item.
A natural choice would be to allocate a remaining item j to a player i
with probability exactly fi,j∑

`
f`,j

. Hence overall, every player i receives every

item j with probability fi,j (and even higher, if the item constraints are
not satisfied with equality). If player i happened to have a linear utility
function (and not just fractionally subadditive), the expected utility of all
items allocated to her is at least wi(LP ). That is, we have just designed
one oblivious rounding technique that simultaneously guarantees expected
utility (1− 1/e)wi(LP ) for those players that have fractionally subadditive
utility functions and wi(LP ) for those players that have linear utility func-
tions. Can this result be extended to subadditive utility functions? Namely,
is there one universal rounding technique that simultaneously achieves (in
expectation) an approximation ratio of 1 for those players that have a linear
utility function, an approximation ratio of 1 − 1/e for those players that
have a fractionally subadditive utility function, and an approximation ratio
of 1/2 for those players that have a subadditive utility function?

Two players. When there are only two players and subadditive utility
functions, our results only promise a rounding technique that achieves a
welfare of w(LP )/2, whereas known integrality gap examples only exclude
the possibility of having a rounding technique that obtains welfare better
than 3

4w(LP ). Finding matching upper and lower bounds for this case may
lead to new insights about subadditive utility functions.
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