
An O(n logn) Algorithm for a
Load Balancing Problem on Paths

Nikhil R Devanur1 and Uriel Feige2?

1 Microsoft Research, Redmond, WA. nikdev@microsoft.com
2 Weizmann Institute of Science, Rehovot, Israel. uriel.feige@weizmann.ac.il

Abstract. We study the following load balancing problem on paths
(PB). There is a path containing n vertices. Every vertex i has an initial
load hi, and every edge (j, j + 1) has an initial load wj that it needs
to distribute among the two vertices that are its endpoints. The goal is
to distribute the load of the edges over the vertices in a way that will
make the loads of the vertices as balanced as possible (formally, mini-
mizing the sum of squares of loads of the vertices). This problem can be
solved in polynomial time, e.g, by dynamic programming. We present an
algorithm that solves this problem in time O(n logn).

As a mental aide in the design of our algorithm, we first design a hydraulic
apparatus composed of bins (representing vertices), tubes (representing
edges) that are connected between bins, cylinders within the tubes that
constrain the flow of water, and valves that can close the connections
between bins and tubes. Water may be poured into the various bins, to
levels that correspond to the initial loads in the input to the PB problem.
When all valves are opened, the water flows between bins (to the extent
that is feasible due to the cylinders) and stabilizes at levels that are the
correct output to the respective PB problem. Our algorithm is based on
a fast simulation of the behavior of this hydraulic apparatus, when valves
are opened one by one.

1 Introduction

We describe a problem that we shall call Path Balancing (PB).
An instance of PB is a path on n vertices. Every vertex vi has an initial

height 0 ≤ hi ≤ 1. Every edge ej = (vj , vj + 1) has weight 0 ≤ wj ≤ 1. A
feasible solution splits the weight of every edge in an arbitrary way between its
endpoints, thus contributing to the heights of its endpoints. The goal is to make
the vector of heights as balanced as possible. (Here and elsewhere, heights, in
contrast to initial heights, will refer to the heights of vertices in a solution and
not in the input.) In a perfectly balanced solution all heights are identical. When
there is no perfectly balanced solution, the notion of balance that we use is that
of minimizing the sum of squares of the heights.

? The author holds the Lawrence G. Horowitz Professorial Chair at the Weizmann In-
stitute. Work supported in part by The Israel Science Foundation (grant No. 873/08).



The problem above can be formulated as a convex program as follows. For
1 ≤ i ≤ n−1, let xi denote the amount of weight that edge ei gives to vertex vi.
The rest of the weight of ei which is wi − xi is given to vertex vi+1. Then there
are n − 1 constraints of the form 0 ≤ xi ≤ wi, and the objective function is to
minimize (h1+x1)2+

∑n−1
i=2 (hi+(wi−1−xi−1)+xi)

2+(hn+(wn−1−xn−1))2. For
simplicity of notation, we shall introduce fictitious xn = 0, w0 = 0 and x0 = 0,
and let h(vi) denote the value of hi + (wi−1 − xi−1) + xi. Hence the objective
function can be written as

∑n
i=1(h(vi))

2. (Actually, the optimal solution with
the objective being any convex function of the h(vi)’s will turn out to be the
same, we just choose h(vi)

2 for convenience.)

We are interested in efficient algorithms for PB. Since it can be formulated
as a convex program, it follows that it can be solved in polynomial time. In
fact, a natural dynamic programming approach gives a running time of O(n3)
(Appendix B) and with some effort, one can obtain an algorithm that runs in
time O(n2) (Appendix C). In this paper we show that this problem can be solved
in O(n log n) time. In measuring the running time of algorithms we shall count
the number of basic operations that they perform, without worrying too much
about the cost of each operation (e.g., the cost of basic arithmetic operations
as a function of the precision needed), or about the data structures that are
needed in order to implement the algorithms efficiently. Our assumption is that
these issues can be addressed while imposing only acceptable overhead on the
algorithms.

Besides being a natural problem, the hope is that such an algorithm for
this problem might be useful in finding fast algorithms for computing maxi-
mum cardinality matchings in bipartite graphs. The fastest algorithms known
for this problem are by Hopcroft and Karp [HK71,HK73] (time O(m

√
n) ), by

Ibarra and Moran [IM81] (time O(nω))3 and by Feder and Motwani [FM95]
(time O(m

√
n logn(n2/m))). Recently, Goel et. al. [GKK09] gave an O(n log n)

algorithm to find a perfect matching in regular bipartite graphs. (The case of reg-
ular bipartite graphs is easier; O(m) time algorithm was known earlier [COS01]).
One approach to solve the matching problem is an interior point approach, which
searches through fractional matchings, updating them in each step. Our prob-
lem can be thought of as an analog of updating along an augmenting path for
fractional matchings. A vertex i in our problem corresponds to a vertex i on
one side (say L) of the bipartite graph. The edge i in our problem corresponds
to a vertex i′ on the other side (say R). Each vertex i′ ∈ R is adjacent to the
vertices i and i + 1 ∈ L. hi corresponds to the total amount of edges matched
to i from vertices other than i′ and (i− 1)′ ∈ R. wi corresponds to 1 minus the
total amount of edges matched to i′ from vertices other than i and i+ 1 ∈ L.

The PB problem is also a special case of a power-minimizing scheduling prob-
lem that has been well studied [YDS95,LY05,LYY06]: suppose that there are n
jobs to be scheduled on a single machine. Each job has an arrival time, a dead-
line, and needs some amount of CPU cycles. The machine can be run at different
speeds, if it is run at speed s then it can supply s CPU cycles per unit time, and

3 ω is the exponent in the matrix multiplication algorithm.



consumes a power of s2 per unit time. (Again, it could be any convex function
of s.) The goal is to schedule the jobs on the machine and determine the speeds
so as to minimize the total power consumed. Li, Yao and Yao [LYY06] gave the
fastest known algorithm for this problem that runs in time O(n2 log n). Design-
ing an O(n log n) time algorithm is an open problem. The PB problem is the
following special case: there are n jobs with [arrival time, deadline] = [i, i + 1]
which require hi CPU cycles, for i = 1 to n. There are n − 1 jobs with [arrival
time, deadline] = [i, i+ 2] which require wi CPU cycles, for i = 1 to n− 1.

The design of our algorithm is aided by physical intuition. We first design a
hydraulic apparatus that may serve as an analog (rather than digital) computing
device that solves the PB problem. Thereafter, we design an efficient algorithm
that quickly simulates the operation of the hydraulic apparatus.

2 Preliminaries

Proposition 1 The optimal solution is unique.

The proof of the proposition, and all others in this section are in the appendix.

Proposition 2 There is a linear time algorithm for checking if there is a per-
fectly balanced solution.

When there is no perfectly balanced solution, we provide a structural char-
acterization of the unique optimal solution.

Definition 1. A solution is said to have a block structure (BS) if it can be
partitioned into blocks in which each block is a consecutive set of vertices that
have the same height, and every edge between two adjacent blocks allocates all
its weight to the vertex of lower height (and hence is said to be oriented towards
that node).

Lemma 1. For any PB problem, there is a unique solution with a block struc-
ture.

Lemma 2. A solution is optimal if and only if it has a block structure.

It follows that to solve the PB problem it suffices to find a BS solution.

2.1 Hydraulic Apparatus

Our goal is to design more efficient algorithms for the PB problem. But before
that, we describe a hydraulic apparatus that solves the PB problem (See Figure
1). The apparatus is constructed from a row of n identical bins arranged from
left to right, where each bin has base area 1 square unit and height 4 units. Every
two adjacent bins are connected by a horizontal cylindrical tube of base area 1
square unit and length one unit. Inside the tube there is a solid cylinder that
exactly fits the width of the tube (no water can flow around it) and has width



(1− wj) for tube ej . (It would be desirable to have solid cylinders whose width
can be varied so as to encode different instances of the PB problem, but the
physical design of such cylinders is beyond the scope of this manuscript). The
openings between the tube and each of the adjacent bins have smaller diameter
than the tube, and hence the cylinder cannot extend out of the tube. There is a
valve between every tube and the bin to the left of it.

1 1 

1 

1 

ℎ1 + 𝑤1 + 1 ℎ2 +𝑤1 + 𝑤2 + 1 ℎ𝑛 + 𝑤𝑛−1 + 1 

ℎ2 + 𝑤1 

ℎ𝑛 + 𝑤𝑛−1 

Fig. 1. Illustration of the Hydraulic Apparatus.

To input the initial conditions of the PB problem, first one shuts all valves.
Then, iteratively for i from 1 up to n−1, one opens valve i, pours (hi+wi−1+wi+
1) cube units of water into bin i (that now fill the tube to the right (ensuring this
is the reason for the +1 term in the volume of water) pushing the cylinder all the
way to the right), and closes valve i (closing valve i is not strictly necessary, but
helps understand the algorithms that will follow). For bin n there is no valve to
open, and one simply pours into it (hn +wn−1 +1) cubic units of water. Observe
that the initial condition corresponds to the case that the vertex to the right of
an edge gets all the weight of the edge (the bin to the left of a tube also gets a
volume of water corresponding to the weight of the corresponding edge, but this
volume is spent on filling the tube). Now one opens all the valves. As a result,
some of the cylinders may drift towards the left in their tubes (to an extent that
depends on the relative water levels of adjacent bins). This corresponds to the
situation where the corresponding edge allocates part (or all) of its weight to
the left. The water levels when the system stabilizes (minus 1) are the solution
to the PB problem.

Our algorithm is obtained by simulating (quickly) the action of the hydraulic
apparatus. Our algorithm will be monotone in the sense that in the mathematical



program, the variables xi are initially all set to 0, and in every step of the
algorithm can only be raised. (This corresponds to cylinders only drifting to the
left and never to the right.)

Every edge will be in one of three states:

– closed. This corresponds to the situation when the valve of the corresponding
tube is closed. All the edge weight has to be allocated to the right. Equiva-
lently, the corresponding variable xi is set to 0. At this point, the PB problem
is broken into two independent subproblems, one to the left and one to the
right of the edge.

– open. This corresponds to the situation when the valve is open. The weight
of an edge may be distributed in an arbitrary way (including still allocating
all the weight to the right). Once an edge is open, it is never closed again.
Also, an edge is open unless it is blocked, which is the next state.

– blocked. This corresponds to the situation that all the weight of the edge
is allocated to the left. Equivalently, the corresponding variable xi is set to
wi. For the hydraulic apparatus, this means that the cylinder drifted all the
way to the left of the tube. Since our algorithms will be monotone, once an
edge is blocked it will never become unblocked again. Hence again, the PB
problem is broken into two independent subproblems, one to the left and
one to the right of the edge. However, since the edge will never reopen, the
subproblems remain independent until the algorithm ends.

Having introduced the notion of closed edges, we extend the notion of block
structure to that of constrained block structure (CBS). Here, some edges may
be designated as being closed, and the PB problem is broken into independent
subproblems separated by the closed edges, and one seeks BS solution for every
subproblem. In particular, the initial state of the hydraulic apparatus corre-
sponds to a CBS with all edges closed, and the final solution is a CBS with no
edge closed. Given the set of closed edges, there is a unique corresponding CBS.

3 An O(n logn) Algorithm

Our algorithm for PB will go through a sequence of CBS’s. Initially, all edges
are closed. At every step one more edge is opened, and the corresponding CBS
is found. Eventually, all edges become open and the final BS is found. We now
focus on the opening of one edge.
Opening one edge at a time. When a valve is opened, the water in the
hydraulic apparatus re-adjusts itself to get to a stable point. We refer to this
process as one round. Suppose valve i is opened to begin a round. If at this
point h(vi) ≥ h(vi+1) then the system is already in a stable situation, and the
old CBS is also the new CBS. Otherwise, cylinder i moves to the left until it
comes to rest because either the heights of the vertices vi and vi+1 become the
same, or edge ei becomes blocked. During this process we track the instantaneous
block structure (IBS) of the system: this is the block structure defined by the
instantaneous heights of the bins where consecutive bins with the same height



belong to the same block. An IBS satisfies all the conditions of a CBS, except at
the newly opened edge. As the cylinder i moves farther to the left, the IBS goes
through a sequence of changes, and the IBS when the cylinder i comes to rest is
the new CBS. We now identify the (only) two types of events that change the
IBS.

Type 1 Events: Consider an edge ej which has been opened prior to the round,
but remained oriented to the right. That is, all its weight is allocated to the
vertex vj+1 and xj is set to 0. This is because prior to the round, h(vj) >
h(vj+1). If at some point during the round the heights become the same,
then cylinder j starts to move to the left, and the edge ej is no longer being
oriented. At this point the IBS changes: the blocks on either side of ej merge
to become a single block. For such an event we also say that an edge starts
to move.

Type 2 Events: The other type of event is when an edge becomes blocked.
Again the IBS changes: the block containing the edge is split into two blocks
on either side of it.

Opening the rightmost edge We now consider a special case, suppose that
we have the CBS where all edges except en−1 are open. We then open edge en−1
and find the new CBS (which will be the BS solution). We use an algorithm for
this special case as a subroutine to design an algorithm for the PB problem. For
now we prove the following theorem which guarantees a fast algorithm for this
case.

Theorem 1 Given the CBS solution with all edges but en−1 open, the BS can
be found in O(n) time.

First, we present two lemmas that describe how the IBS changes when we
open the edge en−1. For the discussion that follows, we introduce a notion of
time t. t is set to 0 when the round begins. We assume that the cylinder n − 1
moves to the left at unit speed and calculate all other values as a function of t.
We denote the speed at which cylinder i moves by dxi

dt . We will also be interested
in the height of the block containing vertex vn−1 and denote it by h. We denote
the speed with which h increases by dh

dt .

Lemma 3. Let the block containing vn−1 be [j, n− 1].

1. dh
dt = 1

n−j . The time at which the edge ej−1 starts to move, if no other event

happens earlier, is (n− j)(h(vj−1)− h(vj)).
2. dxi

dt = i−j+1
n−j . The time at which edge ei becomes blocked, if no other event

happens earlier, is (wi − xi)(n− j)/(i− j + 1).

Proof. 1. Water that flows into vn−1 at unit rate is distributed equally among
all the n− j vertices in the block [j, n− 1]. Edge ej−1 starts to move when
∆h = h(vj−1)− h(vj), that is, when ∆t = (n− j)(h(vj−1)− h(vj)).



2. There are i − j + 1 vertices in the block to the left of ei, each of which
accumulates water at rate 1

n−j . The time at which edge i becomes blocked
is precisely when ∆xi = wi − xi.

Lemma 4. The events happen in the following order: Type 1 events happen from
right to left (decreasing order), and after all such events, Type 2 events happen
from left to right (increasing order).

Proof. Let the current block containing vn−1 be [j, n− 1]. Clearly, all the edges
that started to move in this round lie in the current block, and the only edge
that can start to move next is ej−1. Also, if the last event was an edge blocking
event, then it must have been the edge ej−1. In this case any subsequent event
does not effect the vertices in [1, j − 1]. Therefore the only subsequent events
that can happen are edges becoming blocked in [j, n− 1]. (Or n joins the block
[j, n−1] and the system stabilizes.) Thus, if the events upto some time follow the
given order, then the next event also follows the same order. The proof follows
by induction on the sequence of events.

The algorithm computes the sequence of events that happen and other rel-
evant information such as the heights of the blocks when these events happen,
and then the eventual BS. The block structure is represented using an array.
The ith element of the array contains information about the vertex i, whether it
is the left end of a block, the right end (or both), or in the middle of the block.
If it is the left end, then the position of the right end of the block is stored, and
vice versa if it is the right end. The height of the block is stored at both the
ends. Finally, for a vertex that is at an end of the block, we also store whether
the adjacent edge is closed.

Given a CBS, we compute the solution (xi values) that respects the CBS. It
is easy to see that this can be done in O(n) time.

Our algorithm proving Theorem 1 is composed of three procedures, where
each procedure makes gradual progress towards the solution. Procedure 1 as-
sumes a simplified version of the problem in which Type 2 events (blocking
events) are assumed not to happen. Hence only Type 1 events (edges starting
to move) happen, and the order of them happening is from right to left. The
output of Procedure 1 is a tentative sequence O1, O2, . . . On1 of Type 1 events
in the order in which they happen. For each event Ok, we store the edge jk that
started to move, the time tk at which it happened, and the height ĥk of the
block at that time. We also store the total number of such events, n1. Proce-
dure 2 removes a suffix of the tentative sequence O1, O2, . . . On1

, leaving a prefix
that contains only those Type 1 events that actually do happen. To do this, one
considers potential Type 2 events from left to right, and checks whether they
would have prevented a Type 1 event to the left of them. If so, the respective
Type 1 event is removed from the tentative sequence. Even though Procedure 2
considers potential Type 2 events, its only goal is to gather sufficient information
about Type 2 events so as to be able to determine the correct sequence of Type 1
events. In particular, potential Type 2 events that are deemed irrelevant to this
goal are not considered by Procedure 2. The task of determining the correct



sequence of Type 2 events is left to Procedure 3, which is called only after the
correct sequence of Type 1 events was determined.

Procedure 1: Find Type 1 events

– k = 1, t0 = 0.
– j = the left end of the block whose right end is at n− 1.
– While j > 1 and edge j − 1 is not blocked, do

• jk = j − 1 /∗ The next edge that opens is immediately to the left of j
∗/

• tk = tk−1 + (n− j)(h(vj−1)− h(vj)), ĥk = h(vj−1).
• /∗ Move to the next block to the left ∗/
• j = the left end of the block whose right end is at j − 1.
• k = k + 1.

– n1 = k − 1.

Lemma 5. Procedure 1 runs in O(n) time.

We now describe Procedure 2. Let t = tn1
be the time at which the last

Type 1 event happens (according to the output of Procedure 1). We start with
i = jn1

+ 1 and see if edge ei becomes blocked before time t. If not, then we
move to the edge to the right (by setting i = i + 1) and continue. If ei does
become blocked before t, we update t to be the time at which the previous Type
1 event happened (set n1 = n1 − 1, and t = tn1

). If i is still to the right of the
new jn1

(since jk < jk−1 for all k), we continue with the same i, otherwise we
set i = jn1

+ 1. We end when i = n.
One difficulty here is that we need to determine if ei becomes blocked by

time t in O(1) steps. Let ∆xi(t) be the distance traveled by cylinder i at time t
(in the current round). Then ei is blocked by time t iff ∆xi(t) ≥ wi − xi. Note
that ∆xi(t) = ∆xi−1(t)+ the increase in the height of vi at time t. This increase

in height is (ĥn1 − h(vi)). So we can iteratively compute ∆xi(t) in O(1) steps.
This gives rise to another difficulty, if t changes then we might have to go back

and recompute ∆xi starting from i = jn1
+1. This might make the procedure run

in quadratic time. We get around this by using the observation that ∆xi(tk)−
∆xi(tk−1) = the distance traveled by cylinder i in the time interval [tk−1, tk],
which by Lemma 3 is equal to

(i− jk + 1)(tk − tk−1)

n− jk
.

Thus when we update t, we can also update ∆xi(t) in O(1) steps and continue
with the same i.

Procedure 2: Eliminate Type 1 events

– i = jn1
+ 1, ∆xi = ĥn1

− h(vi).
– While i < n and n1 > 0 do



• If ∆xi > wi−xi then /∗ Edge i would prevent edge jn1
from opening

∗/
∗ n1 = n1 − 1.
∗ If i > jn1 then /∗ i is still to the right of the new jn1 ∗/
· ∆xi = ∆xi −

(i−jn1
+1)(tn1+1−tn1

)

n−jn1+1
.

∗ Else

· i = jn1 + 1, ∆xi = ĥn1 − h(vi).
• Else

∗ i = i+ 1.
∗ ∆xi = ∆xi−1 + ĥn1

− h(vi).

Lemma 6. Procedure 2 runs in O(n) time.

We now describe Procedure 3 that computes the sequence of Type 2 events,
and the times at which these happen. Note that the time at which an edge could
potentially become blocked depends on all the events that happen prior to that,
since each event changes the speed at which the cylinder moves. In particular,
it depends on when any of the edges to the left become blocked. In addition,
whether an edge ever becomes blocked depends on the Type 2 (blocking) events
that happen to the right of the edge. Thus the dependencies go both ways and
resolving these dependencies is a challenge. A naive algorithm that attempts
to iteratively find the next event in the sequence takes O(n2) time, whereas
our goal is to compute the entire sequence in O(n) time. To do so we build
the sequence of Type 2 events from left to right. We will borrow an approach
that we used for constructing the sequence of Type 1 events, which was to first
build the sequence under a simplifying assumption that certain blocking events
do not happen, and then correct for the fact that they do happen. For Type
1 events, this construction took two stages, Procedure 1 and Procedure 2. For
Type 2 events, we have only one stage, Procedure 3, but this procedure takes
many rounds. Procedure 3 scans edges from left to right, and at every round
it considers one more edge. It assumes that no blocking event happens to the
right of the edge currently scanned. This implies that this edge (say edge ei)
necessarily eventually becomes blocked and is tentatively added to the sequence
of blocking events. At this time we do another scan from right to left of the
tentative sequence of the Type 2 events we have constructed so far to determine
which ones can be removed because ei is blocked earlier to them. In fact this is
necessary to determine the exact time at which ei becomes blocked. This nested
loop hints at a quadratic running time, but we show that the time is indeed
O(n) based on the observation that once an event is removed from the sequence
it is never returned.

First of all, before we proceed further, we update the xi values upto time
τ0 = tn1 , the time of the last Type 1 event. Note that at this point all the

heights that have changed are in [jn1
+ 1, n− 1], and they are all equal to ĥn1

.
It is easy to see that this update can be done in O(n) time.

Our algorithm builds the following iteratively, starting with the left most
edge and moving right: the sequence of Type 2 events, ending at ei becoming



blocked, assuming no events happen to the right of ei. The sequence of events,
say E1, E2, . . . , En2

in the order in which they happen, is maintained as an array.
For each event Ek in the sequence, we store the corresponding edge that was
blocked, say ik, the time at which the event happened, say τk, and the increase
in the height of the block when that event happened, say ∆hk. The total number
of such events n2 is also maintained. Also for the sake of convenience, set i0 to
be the edge at the left end of the block containing jn1

, that is [i0 + 1, jn1
] is a

block. The time τ0 as mentioned earlier is set to tn1 . ∆h0 is set to 0.
At the beginning of the ith iteration, we have the sequence of events upto

i−1, that is the last event is ei−1 becoming blocked. In the ith iteration, we check
if ei becomes blocked before ei−1. If not then we insert ei after ei−1 and proceed
to the next iteration. Otherwise, we iteratively consider the previous event in
the sequence and do the same, until we either find an event that happens before
ei is blocked, or we eliminate all events in the sequence in which case ei will be
the only event in the new sequence.

We now show how to determine whether ei becomes blocked before Ek or
not. As before, let ∆xi(τk) be the distance moved by cylinder i at time τk. Let
j = ik be the edge that was blocked during event Ek. Note that

∆xi(τk) = ∆xj(τk) + (i− j)∆hk.

This is because, the distance moved by cylinder i is equal to the distance moved
by cylinder j plus the water that accumulated at the vertices in the range [j+1, i].
Further we know that ∆xj(τk) = wj − xj since ej became blocked at τk. The
exception is when k = 0 in which case ∆xi(τk) = 0. Thus we can determine if
∆xi(τk) ≥ wi − xi, which gives us the required answer.

Finally, once we have determined the right position k, we update Ek+1 to be
the event that ei becomes blocked. We set ik+1 = i and let j = ik. The time
τk+1 is given by

wi − xi = ∆xi(τk+1) = ∆xi(τk) +
i− j
n− j

(τk+1 − τk),

from which one gets

τk+1 = (wi − xi −∆xi(τk))
n− j
i− j

+ τk.

∆hk+1 = ∆hk + 1
n−j (τk+1 − τk). Also n2 is set to k + 1.

Procedure 3: Find Type 2 events

– n2 = 0.
– For i = i0 + 1 to n− 1 do /∗ When is edge ei blocked? ∗/
• k = n2, j = ik.
• If k 6= 0, then ∆xi = wj − xj + (i− j)∆hk, Else ∆xi = 0.
• While k > 0 and ∆xi > wi − xi, /∗ ei is blocked before Ek ∗/
∗ k = k − 1, j = ik.



∗ If k 6= 0, then ∆xi = wj − xj + (i− j)∆hk, Else ∆xi = 0.
• /∗ Insert ei being blocked as the event Ek+1 ∗/
• ik+1 = i.
• τk+1 = (wi − xi −∆xi) n−j

i−j + τk.

• ∆hk+1 = ∆hk + 1
n−j (τk+1 − τk).

• n2 = k + 1.

Lemma 7. Procedure 3 runs in time O(n) time.

Proof. Naively, each time the inner (While) loop for Procedure 3 might go from
n2 to 0 and this would give an n2 bound. However, note that each iteration of
the inner While loop eliminates an edge blocking event, and every such event
can be eliminated only once. Thus there can be only O(n) iterations of the inner
loop overall and hence the running time of this procedure is O(n).

Procedure 3 finds all the Type 2 events upto edge n−1, assuming that nothing
happens to the right of n − 1. That is, Procedure 3 ignores the possibility that
the heights of vn−1 and vn might become the same and the round ends due to
that. Therefore we next compute at what time the heights become equal and
determine if some events need to be eliminated because of that. The height of
vn at time t is simply h(vn) − t. The height of vn−1 however depends on the
sequence of events that happen. Recall that for the Type 1 events, we actually
stored the height of vn−1 at each tk, which was ĥk. So for every k from 1 to n1,
we can compare the heights of vn−1 and vn and see if they cross over, that is
at time tk, the height of vn−1 is smaller than that of vn but at time tk+1 it is
larger. In that case, we set n1 = k, and n2 = 0. If the heights never cross over
during Type 1 events, we then move on to Type 2 events. Once again, we stored
the height increment of vn−1 at each τk, which was ∆hk. Therefore as before we
can compare the heights of the two vertices at time τk for every k from 1 to n2
and see if they cross over. If they do cross over at k, then we set n2 = k.

Finally, once we have determined the entire sequence of events in a round,
we can update the block structure and the new xi values. Suppose first that
the round ended with en−1 becoming blocked. In this case the new blocks are
[i0 + 1, i1], [i1 + 1, i2], . . . , [in2−1 + 1, n − 1]. Everything to the left of i0, that is
everything in the range [1, i0] remains unchanged. We also know the heights of
each of these blocks, so finding the new xi values is easy. In case the round ended
with the heights of vn−1 and vn becoming equal, then everything is as before,
except that the last block is [in2

+ 1, n]. It is easy to see that everything after
Procedure 3 can be done in O(n) time. This completes the proof of Theorem 1.

Divide and Conquer We now show how the technology developed for the
special case of opening the valve for the rightmost edge can be used to solve the
PB problem. First, we show that essentially the same algorithm can be used to
solve the case when it is the middle edge whose valve is closed to begin with.
Then we show how to use this case to apply a divide and conquer technique to
solve the entire problem.



Lemma 8. Given the CBS solution with all edges but en/2 open, the BS solution
can be found in O(n) time.

The divide and conquer strategy we follow is the most natural one: recur-
sively, each half can be solved separately by keeping the middle valve closed. We
then combine them by opening the middle valve.

Theorem 2 The BS can be found in O(n log n) time.

4 Conclusion and Open Problems

We gave an O(n log n) algorithm for a natural load balancing problem on paths.
The same problem can be generalized to trees, and trees in hypergraphs. Ex-
tending our techniques to handle these cases is an interesting open problem.
Our problem is also a special case of a power-minimizing scheduling problem for
which the best known algorithm runs in time O(n2 log n). A challenging open
problem is if our algorithm can be extended to solve this problem. Also, the orig-
inal motivation for our problem was that it could be useful in obtaining a faster
algorithm for bipartite matching. Improving the running time for this problem
is a long-standing open problem.

Acknowledgements

We thank Nikhil Bansal for directing us to relevant references.

References

[COS01] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multi-
graphs in O(E logD) time. Combinatorica, 21(1):5–12, 2001.

[FM95] Tomás Feder and Rajeev Motwani. Clique partitions, graph compression and
speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995.

[GKK09] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in
O(n logn) time in regular bipartite graphs. CoRR, abs/0909.3346, 2009. Also
to Appear in STOC 2010.

[HK71] John E. Hopcroft and Richard M. Karp. A n5/2 algorithm for maximum
matchings in bipartite graphs. In FOCS, pages 122–125, 1971.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[IM81] Oscar H. Ibarra and Shlomo Moran. Deterministic and probabilistic algo-
rithms for maximum bipartite matching via fast matrix multiplication. Inf.
Process. Lett., 13(1):12–15, 1981.

[LY05] Minming Li and Frances F. Yao. An efficient algorithm for computing optimal
discrete voltage schedules. In MFCS, pages 652–663, 2005.

[LYY06] Minming Li, Andrew C. Yao, and Frances F. Yao. Discrete and continu-
ous min-energy schedules for variable voltage processors. Proceedings of the
National Academy of Sciences of the USA, 103:3983–3987, 2006.

[YDS95] F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for
reduced cpu energy. In FOCS, pages 374–382, 1995.



A Missing Proofs

Proof. Of Proposition 1. At least one optimal solution exists, since the feasible
region is compact and the objective function is real and continuous. Assume
for the sake of contradiction that there are two optimal solutions. Then their
average is also a feasible solution of strictly lower value (by strict convexity of
sum of squares).

Proof. Of Proposition 2. In a perfectly balanced solution, the height of every
node is exactly h = (

∑n
i=1 hi +

∑n−1
j=1 wj)/n. Compute h (in linear time). Now

scan the path edge by edge starting at e1, and set xj = h− hj − (wj−1 − xj−1)
(and fail if this value is negative or larger than wj).

Proof. of Lemma 1. The fact that at least one BS solution exists follows from
Lemma 2 (which states that the optimal solution has block structure). We show
that there cannot be two BS solutions. Assume for the sake of contradiction that
there are two BS solutions S1 and S2. Let H1(i) =

∑i
j=1 h(vj) be the sum of

heights of the first i vertices in S1. Similarly define H2(i). It is easy to see that if
edge ei is oriented to the left in S1, then H1(i) ≥ H2(i). Similarly, if ei is oriented
to the right in S1, then H1(i) ≤ H2(i). Suppose for some i, H1(i) > H2(i), we
show that this implies that H1(i + 1) > H2(i + 1). Inductively, this leads to a
contradiction and implies that the heights in the two solutions (and hence the
block structure) are the same.

If H1(i) > H2(i) then the edge ei cannot be oriented to the right in S1.
Therefore h(vi+1) ≥ h(vi) in S1. Similarly, H1(i) > H2(i) implies that ei is not
oriented to the left in S2. Therefore h(vi+1) ≤ h(vi) in S2. Thus H1(i + 1) >
H2(i+ 1).

Proof. Of Lemma 2. Assume that a solution does not have a block structure.
Then there are two adjacent vertices (say vi and vi+1) of unequal height (say
h(vi) > h(vi+1)) with the edge between them not oriented away from the higher
node. Hence (in our example), xi > 0. Lowering xi by some small 0 < ε ≤
min[xi, (h(vi)−h(vi+1))/2] will lower the value of (h(vi))

2+(h(vi+1))2 and hence
will improve the objective function. This implies that the optimal solution must
have block structure. The uniqueness of the optimal solution and the uniqueness
of BS solutions now implies that every BS solution is optimal.

Proof. Of Lemma 8. When we open en/2, we compute the sequence of events
to the left of it exactly as before, independent of what happens to the right,
ending at the event of en/2 becoming blocked. Symmetrically, we can do the
same thing to the right of en/2 as well: as the cylinder n/2 moves to the left,
Type 1 events happen from left to right, and then Type 2 events happen from
right to left. The entire sequence can be computed exactly as in the other case.
The two sides are independent because the events are driven by the movement
of cylinder n/2, which separates the two sides. In the final step, we check if the
heights of vn/2 and vn/2+1 cross over during this process. Now both the heights
depend on the sequence of events on the corresponding sides. However, since we



store the heights at the time of occurrence of each event, it is easy to see that
this can be done in O(n) time. It is also easy to see that the new block structure
can be computed quickly.

Proof. Of Theorem 2. In the first round, open odd numbered edges, 1, 3, 5, etc.
In the second round open edges with numbers 2 modulo 4. Then 4 modulo 8 and
so on. Each round takes O(n) time, and there are log n rounds.

B Dynamic Programming algorithm

Theorem 3 The PB problem can be solved in time O(n3).

Proof. We prepare a dynamic programming table T with n − 1 columns (one
for each edge), two rows, and 0/1 entries. Entry T (1, i) = 1 iff it is plausible
that there is a BS solution in which edge ej is oriented to the left, and entry
T (2, i) = 1 iff it is plausible that there is a BS solution in which edge ej is
oriented to the right. Here the notion of plausibility does not mean that there
actually is a BS solution with this edge orientation, but only that the algorithm
has not ruled out such a possibility.

The entries of the table are filled out from the lowest index column to the
largest. Having filled out columns 1 up to i − 1, column i is filled as follows.
T (1, i) can be set to 1 if by orienting ei to the left, vi can become the righthand
side vertex of a block. We need to determine whether there is a plausible lefthand
side vertex to the block. Such a vertex may either be any vertex immediately
following a previously oriented edge (there are 2(i−1) such possibilities to check,
given the two possible orientations) or v1. Given a candidate starting vertex vj
for the block, together with the orientation of the edge preceding it, there is a
linear time algorithm (linear in i − j + 1) to check whether the segment [i, j]
can be made into a block (similar to Proposition 2). If indeed [i, j] can be made
into a block, one needs to check that the orientation of edge ej−1 is consistent
(goes from a block of greater height to a block of lower height), and only then
T (1, i) can be set to 1. At worse, computing entry T (1, i) takes O(i2) time, and
similarly for entry T (2, i). When the table is full, it remains to check (as above)
whether vn can be part of a block that begins after any one of the plausible
edges. The total running time is O(n3).

C The iterated greedy algorithm

Start from the left and greedily maximize number of vertices at average height.
Consider only non-average vertices. Between any two vertices of different signs
(one below and one above), there must be an oriented edge immediately following
the first of the two. Cut at these oriented edges, and repeat on the subparts that
remain. Running time is at most O(n2) because an iteration takes linear time
and either returns a balanced solution or orients at least one edge.

A lower bound for the iterated greedy algorithm.



Let M be a sufficiently large (in particular, larger than n!). Let A (for av-
erage) be such that A = (

∑n
i=1 i!)/n. For 1 ≤ j ≤ n − 2, let the weight of the

edges be wj =
∑

i=j+1(A − i!), and let wn−1 = 0. For 1 ≤ j ≤ n − 1, let the
initial vertex heights be hj = j! +M − wj and let hn = n! +M .

In the optimal solution, all edges are oriented left, and the heights are h(i) =
i! + M . Observe that the average height is M + A, and only vn exceeds the
average height.

If the alternative algorithm is run from left to right then in fact the first
pass already gives the optimal solution. However, the algorithm does not detect
this, and instead cuts off the last vertex. In further passes, it will continue to
find the optimal solution, but nevertheless just cut off the last remaining vertex
(orienting the edge preceding it to the left), because all vertices before it are
below the target average (of the respective iteration). Hence the total running
time is Ω(n2).

If the alternative algorithm is run from right to left, vn is above average,
edges are oriented to the right, and the only vertex to be below average is v1. So
again vn is cut off. In subsequent passes, it will always be the case that only the
rightmost vertex is above average, and only v1 is below average. Hence again,
linear time will be spent to cut off a single vertex, giving total running time of
Ω(n2).

A variation on the lower bound is to add a leftmost vertex v0 of initial height
h0 = M , and give the edge (0, 1) some small weight such as w0 = 3. In the
optimal solution, the heights of both v0 and v1 are then M +2, but all (but last)
passes of the iterated greedy algorithm that start from v0 will give v0 a height of
M + 3. Hence we will no longer be in the situation that the algorithm actually
finds the optimal solution quickly (without being aware of this).


