
Lemma 1. For every n ∈ N there exists K = n4n orthonormal functions f1, . . . , fK

such that

(1) fi(t) = ±1 for all i and all t, and
∫

fi = 0.
(2) For all t except for a set of measure e−cn,

sup
k≤K

∣

∣

∣

∣

∣

1√
K

k
∑

i=1

fi(t)

∣

∣

∣

∣

∣

≥ c
√

n.

This is quite well known if one does not require fi = ±1 or, alternatively, if
one allows coefficients i.e. writes

∑

cifi for some ci such that
∑

c2
i = 1. In this

formulation I don’t have a reference at hand.

Proof. On the set H := {(p, q) : 0 ≤ p ≤ n, 0 ≤ q ≤ 2p − 1} we define the
lexicographical order ≤ (later on we will need a different order on H). We denote
by k(p, q) the position of (p, q) in the order ≤, in a formula

k(p, q) = 1 + q +

p−1
∑

i=0

2i

(ranging from 1 to 2n+1 − 1). The inverse functions will be denoted by p(k) and
q(k) so that k(p(i), q(i)) = i. We now define inductively blocks of functions g
which will be our f -s after a reordering in the style of Olevskiı̆. More specifically,
we construct the following objects:

(1) Two functions αk, βk : [0, 1] → [0, 1] which are constant on intervals of the
form [m2−4nk, (m+1)2−4nk). For every t, αk(t) < βk(t) and [αk(t), βk(t)] is
a maximal interval of constancy for the first k Haar functions. Note that the
first k Haar functions have k+1 (maximal) intervals of constancy, 2q(k)+2

of them of length 2−p(k)−1 and the rest of length 2−p(k). A second property
we will preserve is

[αk(t), βk(t)] ⊂ [αj(t), βj(t)] ∀t ∀j < k. (1)

Finally, α and β will have the property that the measure of the inverse
images is just the measure of the interval, namely

m{t : α(t) = a} = m{t : β(t) = b} = b − a (2)

for any interval of constancy [a, b].

(2) Functions gi,j for i ≤ k and j ∈ {1, . . . , 4n2−p(i)} (at the k’th step we define
only gk,j). The functions are constant on intervals of the form [m2−4kn, (m+
1)2−4kn), are all orthogonal and gi,j(t) = ±1. The connection between g, α
and β is in (4) below.

Start with α0 ≡ 0 and β0 ≡ 1 (as we must). The process is as follows. Assume we
are in the k’th step, k ≥ 1, and denote p = p(k), q = q(k). Let I be the interval
[q2−p, (q + 1)2−p). Write 2p

1I as a polynomial in Walsh functions. Since (denoting
by ri the i’th Radamacher function)

2p
1I =

p
∏

i=1

(1 + ri) or (1 − ri) depending on the i’th digit of q

we see that

2p
1I =

2p−1
∑

i=0

±Wi

1
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where Wi are the Walsh functions. Now write l = n − p and examine the product

B :=
l

∏

i=1

(rn+3i−2 + rn+3i−1 + rn+3i − rn+3i−2rn+3i−1rn+3i).

A simple check shows that each term in the product is ±2 for all t and therefore
B(t) = ±2l. Denote H = 2pB1I . This function is equi-distributed like a Haar
function, hence the notation H . The expansion of H into Walsh functions has
4l2p = 4n2−p terms which are all ±1, so write

H =

4n2−p
∑

i=1

hi

where each hi = ±some Walsh function, so they are orthonormal and hi(t) = ±1.
With H and hi defined we can describe the induction step. Define gi which are,

on every interval of length 2−4n(k−1), a compressed version of hi on the interval
[α, β]. In a formula,

gk,i(t) = hi

(

αk−1(t) +
〈

t24n(k−1)
〉

(βk−1(t) − αk−1(t))
)

i = 1, . . . , 4n2−p

where 〈x〉 := x − ⌊x⌋. It is easy to verify all requirements from the gk,i: Clearly
gk,i(t) = ±1. Since hi are constant on every interval of the form [m2−4n, (m +
1)2−4n), and since αk−1(t) ∈ 2−n−1

N and βk−1(t) − αk−1(t) = 2−r for some r we
get that gk,i are constant on every interval of the form [m2−4nk, (m + 1)2−4nk), as
required. As for orthogonality,

∫

gk,igk,i′ = 0 for all i 6= i′ since gi,k(t) = hi(T t)
for some measure-preserving T — here is where we use (2) which ensures that, if we
map the intervals of length 2−4nk inside {t : αk−1(t) = a} into the interval [a, b]
in some way compatible with the definition of gk,i we get a measure-preserving
transformation. Here is one possible explicit formula for T :

T (t) = αk−1(t) + 2−4n
⌊〈

t24n(k−1)
〉

24n
⌋

(βk−1(t) − αk−1(t)) +

+ 2−4n
m{s < 2−4n(k−1)

⌊

t24n(k−1)
⌋

: αk−1(s) = αk−1(t)} +

+ 2−4nk
〈

t24nk
〉

. (3)

The reader would probably find it easier to prove that some measure-preserving
T exists with g = h ◦ T himself than to verify that the T in (3) is such.

The fact that
∫

gk,igk′,i′ = 0 for k′ < k follows from the fact that
∫ b

a
hi = 0 for

every interval of constancy [a, b]. Therefore we get

∫ (m+1)2−6n(k−1)

m2−6n(k−1)

gk,i = 0 ∀i ≤ 4l2p, m < 24n(k−1)

and since gk′,i′ is constant on each such interval, we get the full orthogonality.
Finally we need to define αk and βk. The requirement [αk, βk] ⊂ [αj , βj ] (1)

implies that we need only modify them for t-s for which [αk−1(t), βk−1(t)] = I
— note that I is exactly the interval that gets split into two intervals of constancy
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when you add the k’th Haar function. We define

αk(t) =



























αk−1(t) when
4n2−p
∑

i=1

gk,i(t) = 2n

αk−1(t) + 2−p−1 when
4n2−p
∑

i=1

gk,i(t) = −2n

and then βk(t) = αk(t) + 2−p−1. As already explained, gk,i(t) = hi(T t) for a
measure-preserving transformation T . Therefore

∑

gk,i(t) =
∑

hi(T t) and
∑

hi 6=
0 exactly on I and there m{t :

∑

hi(t) = ±2n} = 2−p−1 (2n is a product of 2l from
the definition of B and a 2p from the definition of H). Thus (2) holds for αk and βk

and the induction is complete.
Before going on let us note the equality that we worked so hard to get.

∑

j

gk,j =











2n when αk(t) ∈ [q2−p, (q + 1
2 )2−p)

−2n when αk(t) ∈ [(q + 1
2 )2−p, (q + 1)2−p)

0 otherwise.

(4)

The reason we wrote the conditions on αk(t) in (4) so strangely is that in this nota-
tion one can replace αk with αk′ for any k′ > k — indeed from (1) we have that if
αk(t) = q2−p then αk′(t) ∈ [αk(t), βk(t)) = [q2−p, (q + 1

2 )2−p) for all k′ ≥ k.

Examine now the situation at last step (k = 2n+1 − 1). Again we use the the fact
that (2) implies that the function αk defines a measure-preserving transformation
T which collects all t with αk(t) = a into [a, b]. Formally, we define

T (t) = αk(t) + m{s : s < t, αk(s) = αk(t)} (5)

and get that T : [0, 1] → [0, 1] is one-to-one, onto and measure-preserving (this is
more-or-less the same T we had above — before the definition was complicated
because we didn’t have αk defined yet, only αk−1). Further,

4n2−p(i)
∑

j=1

gi,j(t) = 2nηi(T t)

where ηi is the i’th Haar function normalized to have ‖ηi‖∞ = 1. Collect all the
functions gi,j (there are exactly n4n of them) and arrange the blocks gi,j according
to the Olevskiı̆ order �, see [O75, §III.2] and call the result fi. We get

sup
k≤K

∣

∣

∣

∣

∣

1√
K

k
∑

i=1

fi(t)

∣

∣

∣

∣

∣

≥ sup
j≤2n+1−1

∣

∣

∣

∣

∣

∣

1√
n

∑

j′�j

hj′(T t)

∣

∣

∣

∣

∣

∣

and as is well known, this last sum is ≥ cn except for a set of t-s of measure ≤ e−cn.
This finishes the lemma. �

Theorem. There exists a sequence of functions ϕi which is orthonormal, stationary and
pairwise independent but does not satisfy Carleson’s theorem.

Proof. Define inductively N1 = 4 and Ni = 2Ni−142Ni−1
. Examine the following

Markov chain. The state space V is

{i, j : i ∈ N, 1 ≤ j ≤ Ni}.
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As for the transition probabilities, let

q(n) =
1/n2Nn

∑∞

i=1 1/i2Ni

and define

p((i1, j1), (i2, j2)) =











1 i1 = i2, j2 = j1 + 1

q(i2) j1 = Ni1 , j2 = 1

0 otherwise.

It is straightforward to check that

π(i, j) =
1/i2Ni

∑∞

k=1 1/k2

is a stationary probability measure for our process. The reverse process has tran-
sition probabilities

p∗((i1, j1), (i2, j2)) =











1 i1 = i2, j2 = j1 − 1

q(i2) j1 = 1, j2 = Ni2

0 otherwise.

and has the same stationary measure. This allows to construct a stationary process
M on Z (formally M : Ω → V Z where Ω is the probability space) by taking M(0)
to be distributed as π and then M(n) defined by

P(M(n) |M(n − 1)) = p(M(n − 1), M(n)) n > 0

P(M(n) |M(n + 1)) = p∗(M(n + 1), M(n)) n < 0.

Clearly M is a stationary process. Let Ω be a standard probability space realizing
M .

We now move to define the ϕi. Clearly one may construct the ϕi on any stan-
dard probability space, and we will do it on Ω × T

Z. Use lemma 1 for n = 2Ni−1

and get Ni functions fi,1, . . . , fi,Ni . Now define on Ω the process B that counts
how many “blocks” were seen, namly

B(n) =

{

number of times t ∈ (0, n] such that M2(t) = 1 n ≥ 0

−number of times t ∈ (−n, 0] such that M2(t) = 1 n < 0.

(here M2 is the second coordinate, “the j”). Finally write

ϕn(ω; . . . , t−1, t0, t1, . . . ) = fM1(ω;n),M2(ω;n)(tB(ω;n)).

It remains to prove the promised properties of the ϕn.
The first thing to note is that ϕn = ±1. The next thing is that

∫

ϕn = 0. This is
clear because

∫

ϕn = E

(
∫

ϕn

∣

∣

∣
ω

)

= E

(
∫

fM1(ω;n),M2(ω;n)(tB(ω;n))
∣

∣

∣
ω

)

and this is 0 because
∫

fi,j(tk) = 0 for any i, j and k. Similarly we get that the
functions are orthogonal:

∫

ϕnϕn′ = E

(
∫

fM1(ω;n),M2(ω;n)(tB(ω;n))fM1(ω;n′),M2(ω;n′)(tB(ω;n′))
∣

∣

∣
ω

)

. (6)
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For ω such that B(ω; n) 6= B(ω; n′) this integral is zero because

∫

fi,j(tk)fi′,j′(tk′ ) =

(
∫

fi,j(tk)

) (
∫

fi′,j′ (tk′)

)

= 0 ∀k 6= k′.

For ω such that B(ω; n) = B(ω; n′) the intgeral in (6) is zero because
∫

fi,jfi,j′ = 0
whenever j 6= j′. Hence we get that the integral in (6) is zero for all ω, and therefore
the ϕn are orthogonal. For ±1 functions this automatically implies that they are
pairwise independent.

Stationarity more-or-less follows immediately from the stationarity of M . In-
deed, let S : Ω → Ω be the “right shift” i.e. the measure-preserving transformation
such that M(S(ω); n) = M(ω; n − 1). Then we can define on Ω × T

Z

T (ω; {tk}) =

{

(S(ω); {tk}) M2(ω; 0) > 1

(S(ω); {tk−1}) M2(ω; 0) = 1

and it is straightforward to verify that T is measure-preserving and

ϕn(T (ω; {tk})) = ϕn−1(ω; {tk}) ∀n.

Finally we need to demonstrate an L2 function with almost-everywhere diverg-
ing expansion. Examine therefore

∞
∑

i=1

1

N2
i−1

√
Ni

N2
i−1Ni
∑

n=Ni

ϕn

which is in L2. Examine first ω. Until time N2
i−1Ni there are ≤ N2

i−1Ni new blocks,

and each such block has probability ≤ C4−2Ni
to be larger than Ni. Therefore

with probability ≥ 1 −C4−2Ni/2

no such block exist (these numbers are huge, and
we really don’t care — let’s just write probability ≥ 1 − C2−i). Next examine the
probability that all blocks are small. If all blocks up to (N2

i−1−1)Ni have size < Ni

then their sizes are ≤ Ni−1 and we must have had at least 1
2Ni−1Ni new blocks.

At each such event the probability to have a block of size Ni is ≥ c/i2Ni and so we
get

P(no block of size Ni in the first 1
2Ni−1Ni blocks) ≤

≤
(

1 − c

i2Ni

)
1
2Ni−1Ni

≤ e−cNi−1/i2 ≤ C2−i.

In total we see that with probability ≥ 1 − C2−i there exists at least one block of
size exactly Ni until time N2

i−1Ni.
This finishes the theorem, since, conditioning on the block being number B and

in position [q, q + Ni],

sup
n≤N2

i−1Ni

∣

∣

∣

∣

∣

1√
Ni

n
∑

m=1

ϕm(ω; {tk})
∣

∣

∣

∣

∣

≥ 1

2
sup

n≤Ni

∣

∣

∣

∣

∣

1√
Ni

n
∑

m=1

fi,m(tB)

∣

∣

∣

∣

∣

≥ c
√

2Ni−1

for all t except on a set of t-s of measure e−c2Ni−1
. And we are done. �
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