Lemma 1. For every $n \in \mathbb{N}$ there exists $K = n4^n$ orthonormal functions f_1, \ldots, f_K such that

- (1) $f_i(t) = \pm 1$ for all i and all t, and $\int f_i = 0$.
- (2) For all t except for a set of measure e^{-cn} ,

$$\sup_{k \le K} \left| \frac{1}{\sqrt{K}} \sum_{i=1}^{k} f_i(t) \right| \ge c\sqrt{n}.$$

This is quite well known if one does not require $f_i=\pm 1$ or, alternatively, if one allows coefficients i.e. writes $\sum c_i f_i$ for some c_i such that $\sum c_i^2=1$. In this formulation I don't have a reference at hand.

Proof. On the set $\mathcal{H}:=\{(p,q): 0\leq p\leq n,\ 0\leq q\leq 2^p-1\}$ we define the lexicographical order \leq (later on we will need a different order on \mathcal{H}). We denote by k(p,q) the position of (p,q) in the order \leq , in a formula

$$k(p,q) = 1 + q + \sum_{i=0}^{p-1} 2^i$$

(ranging from 1 to $2^{n+1}-1$). The inverse functions will be denoted by p(k) and q(k) so that k(p(i),q(i))=i. We now define inductively blocks of functions g which will be our f-s after a reordering in the style of Olevskiĭ. More specifically, we construct the following objects:

(1) Two functions $\alpha_k, \beta_k: [0,1] \to [0,1]$ which are constant on intervals of the form $[m2^{-4nk}, (m+1)2^{-4nk})$. For every $t, \alpha_k(t) < \beta_k(t)$ and $[\alpha_k(t), \beta_k(t)]$ is a maximal interval of constancy for the first k Haar functions. Note that the first k Haar functions have k+1 (maximal) intervals of constancy, 2q(k)+2 of them of length $2^{-p(k)-1}$ and the rest of length $2^{-p(k)}$. A second property we will preserve is

$$[\alpha_k(t), \beta_k(t)] \subset [\alpha_j(t), \beta_j(t)] \qquad \forall t \, \forall j < k. \tag{1}$$

Finally, α and β will have the property that the measure of the inverse images is just the measure of the interval, namely

$$\mathbf{m}\{t : \alpha(t) = a\} = \mathbf{m}\{t : \beta(t) = b\} = b - a$$
 (2)

for any interval of constancy [a, b].

(2) Functions $g_{i,j}$ for $i \leq k$ and $j \in \{1, \dots, 4^n 2^{-p(i)}\}$ (at the k'th step we define only $g_{k,j}$). The functions are constant on intervals of the form $[m2^{-4kn}, (m+1)2^{-4kn})$, are all orthogonal and $g_{i,j}(t) = \pm 1$. The connection between g, α and β is in (4) below.

Start with $\alpha_0 \equiv 0$ and $\beta_0 \equiv 1$ (as we must). The process is as follows. Assume we are in the k'th step, $k \geq 1$, and denote p = p(k), q = q(k). Let I be the interval $[q2^{-p}, (q+1)2^{-p})$. Write 2^p1_I as a polynomial in Walsh functions. Since (denoting by r_i the i'th Radamacher function)

$$2^{p}\mathbf{1}_{I}=\prod_{i=1}^{p}(1+r_{i}) \text{ or } (1-r_{i}) \text{ depending on the } i' \text{th digit of } q$$

we see that

$$2^{p}\mathbf{1}_{I} = \sum_{i=0}^{2^{p}-1} \pm W_{i}$$

where W_i are the Walsh functions. Now write l = n - p and examine the product

$$B := \prod_{i=1}^{l} (r_{n+3i-2} + r_{n+3i-1} + r_{n+3i} - r_{n+3i-2} r_{n+3i-1} r_{n+3i}).$$

A simple check shows that each term in the product is ± 2 for all t and therefore $B(t)=\pm 2^l$. Denote $H=2^pB\mathbf{1}_I$. This function is equi-distributed like a Haar function, hence the notation H. The expansion of H into Walsh functions has $4^l2^p=4^n2^{-p}$ terms which are all ± 1 , so write

$$H = \sum_{i=1}^{4^n 2^{-p}} h_i$$

where each $h_i = \pm$ some Walsh function, so they are orthonormal and $h_i(t) = \pm 1$. With H and h_i defined we can describe the induction step. Define g_i which are, on every interval of length $2^{-4n(k-1)}$, a compressed version of h_i on the interval $[\alpha, \beta]$. In a formula,

$$g_{k,i}(t) = h_i \left(\alpha_{k-1}(t) + \left\langle t 2^{4n(k-1)} \right\rangle (\beta_{k-1}(t) - \alpha_{k-1}(t)) \right) \quad i = 1, \dots, 4^n 2^{-p}$$

where $\langle x \rangle := x - \lfloor x \rfloor$. It is easy to verify all requirements from the $g_{k,i}$: Clearly $g_{k,i}(t) = \pm 1$. Since h_i are constant on every interval of the form $\lfloor m2^{-4n}, (m+1)2^{-4n} \rfloor$, and since $\alpha_{k-1}(t) \in 2^{-n-1}\mathbb{N}$ and $\beta_{k-1}(t) - \alpha_{k-1}(t) = 2^{-r}$ for some r we get that $g_{k,i}$ are constant on every interval of the form $\lfloor m2^{-4nk}, (m+1)2^{-4nk} \rfloor$, as required. As for orthogonality, $\int g_{k,i}g_{k,i'} = 0$ for all $i \neq i'$ since $g_{i,k}(t) = h_i(Tt)$ for some measure-preserving T — here is where we use (2) which ensures that, if we map the intervals of length 2^{-4nk} inside $\{t: \alpha_{k-1}(t) = a\}$ into the interval [a,b] in some way compatible with the definition of $g_{k,i}$ we get a measure-preserving transformation. Here is one possible explicit formula for T:

$$T(t) = \alpha_{k-1}(t) + 2^{-4n} \left[\left\langle t 2^{4n(k-1)} \right\rangle 2^{4n} \right] (\beta_{k-1}(t) - \alpha_{k-1}(t)) +$$

$$+ 2^{-4n} \mathbf{m} \{ s < 2^{-4n(k-1)} \left[t 2^{4n(k-1)} \right] : \alpha_{k-1}(s) = \alpha_{k-1}(t) \} +$$

$$+ 2^{-4nk} \left\langle t 2^{4nk} \right\rangle.$$
(3)

The reader would probably find it easier to prove that some measure-preserving T exists with $g = h \circ T$ himself than to verify that the T in (3) is such.

The fact that $\int g_{k,i}g_{k',i'} = 0$ for k' < k follows from the fact that $\int_a^b h_i = 0$ for every interval of constancy [a,b]. Therefore we get

$$\int_{m2^{-6n(k-1)}}^{(m+1)2^{-6n(k-1)}} g_{k,i} = 0 \quad \forall i \le 4^l 2^p, m < 2^{4n(k-1)}$$

and since $g_{k',i'}$ is constant on each such interval, we get the full orthogonality.

Finally we need to define α_k and β_k . The requirement $[\alpha_k, \beta_k] \subset [\alpha_j, \beta_j]$ (1) implies that we need only modify them for t-s for which $[\alpha_{k-1}(t), \beta_{k-1}(t)] = I$ — note that I is exactly the interval that gets split into two intervals of constancy

when you add the k'th Haar function. We define

$$\alpha_k(t) = \begin{cases} \alpha_{k-1}(t) & \text{when } \sum_{i=1}^{4^n 2^{-p}} g_{k,i}(t) = 2^n \\ \alpha_{k-1}(t) + 2^{-p-1} & \text{when } \sum_{i=1}^{4^n 2^{-p}} g_{k,i}(t) = -2^n \end{cases}$$

and then $\beta_k(t) = \alpha_k(t) + 2^{-p-1}$. As already explained, $g_{k,i}(t) = h_i(Tt)$ for a measure-preserving transformation T. Therefore $\sum g_{k,i}(t) = \sum h_i(Tt)$ and $\sum h_i \neq 0$ exactly on I and there $\mathbf{m}\{t: \sum h_i(t) = \pm 2^n\} = 2^{-p-1}$ (2^n is a product of 2^l from the definition of B and a 2^p from the definition of B). Thus (2) holds for α_k and β_k and the induction is complete.

Before going on let us note the equality that we worked so hard to get.

$$\sum_{j} g_{k,j} = \begin{cases} 2^{n} & \text{when } \alpha_{k}(t) \in [q2^{-p}, (q + \frac{1}{2})2^{-p}) \\ -2^{n} & \text{when } \alpha_{k}(t) \in [(q + \frac{1}{2})2^{-p}, (q + 1)2^{-p}) \\ 0 & \text{otherwise.} \end{cases}$$
 (4)

The reason we wrote the conditions on $\alpha_k(t)$ in (4) so strangely is that in this notation one can replace α_k with $\alpha_{k'}$ for any k'>k — indeed from (1) we have that if $\alpha_k(t)=q2^{-p}$ then $\alpha_{k'}(t)\in [\alpha_k(t),\beta_k(t))=[q2^{-p},(q+\frac{1}{2})2^{-p})$ for all $k'\geq k$.

Examine now the situation at last step $(k = 2^{n+1} - 1)$. Again we use the fact that (2) implies that the function α_k defines a measure-preserving transformation T which collects all t with $\alpha_k(t) = a$ into [a, b]. Formally, we define

$$T(t) = \alpha_k(t) + \mathbf{m}\{s : s < t, \ \alpha_k(s) = \alpha_k(t)\}$$
(5)

and get that $T:[0,1]\to [0,1]$ is one-to-one, onto and measure-preserving (this is more-or-less the same T we had above — before the definition was complicated because we didn't have α_k defined yet, only α_{k-1}). Further,

$$\sum_{j=1}^{4^n 2^{-p(i)}} g_{i,j}(t) = 2^n \eta_i(Tt)$$

where η_i is the *i*'th Haar function normalized to have $\|\eta_i\|_{\infty} = 1$. Collect all the functions $g_{i,j}$ (there are exactly $n4^n$ of them) and arrange the blocks $g_{i,j}$ according to the Olevskii order \leq , see [O75, §III.2] and call the result f_i . We get

$$\sup_{k \le K} \left| \frac{1}{\sqrt{K}} \sum_{i=1}^k f_i(t) \right| \ge \sup_{j \le 2^{n+1} - 1} \left| \frac{1}{\sqrt{n}} \sum_{j' \le j} h_{j'}(Tt) \right|$$

and as is well known, this last sum is $\geq cn$ except for a set of t-s of measure $\leq e^{-cn}$. This finishes the lemma.

Theorem. There exists a sequence of functions φ_i which is orthonormal, stationary and pairwise independent but does not satisfy Carleson's theorem.

Proof. Define inductively $N_1=4$ and $N_i=2^{N_{i-1}}4^{2^{N_{i-1}}}$. Examine the following Markov chain. The state space V is

$$\{i, j : i \in \mathbb{N}, 1 \le j \le N_i\}.$$

As for the transition probabilities, let

$$q(n) = \frac{1/n^2 N_n}{\sum_{i=1}^{\infty} 1/i^2 N_i}$$

and define

$$p((i_1, j_1), (i_2, j_2)) = \begin{cases} 1 & i_1 = i_2, j_2 = j_1 + 1 \\ q(i_2) & j_1 = N_{i_1}, j_2 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

It is straightforward to check that

$$\pi(i,j) = \frac{1/i^2 N_i}{\sum_{k=1}^{\infty} 1/k^2}$$

is a stationary probability measure for our process. The reverse process has transition probabilities

$$p^*((i_1, j_1), (i_2, j_2)) = \begin{cases} 1 & i_1 = i_2, \ j_2 = j_1 - 1 \\ q(i_2) & j_1 = 1, \ j_2 = N_{i_2} \\ 0 & \text{otherwise.} \end{cases}$$

and has the same stationary measure. This allows to construct a stationary process M on $\mathbb Z$ (formally $M:\Omega\to V^\mathbb Z$ where Ω is the probability space) by taking M(0) to be distributed as π and then M(n) defined by

$$\mathbb{P}(M(n) | M(n-1)) = p(M(n-1), M(n)) \qquad n > 0$$

$$\mathbb{P}(M(n) | M(n+1)) = p^*(M(n+1), M(n)) \qquad n < 0.$$

Clearly M is a stationary process. Let Ω be a standard probability space realizing M.

We now move to define the φ_i . Clearly one may construct the φ_i on any standard probability space, and we will do it on $\Omega \times \mathbb{T}^{\mathbb{Z}}$. Use lemma 1 for $n=2^{N_{i-1}}$ and get N_i functions $f_{i,1},\ldots,f_{i,N_i}$. Now define on Ω the process B that counts how many "blocks" were seen, namly

$$B(n) = \begin{cases} \text{number of times } t \in (0, n] \text{ such that } M_2(t) = 1 & n \ge 0 \\ -\text{number of times } t \in (-n, 0] \text{ such that } M_2(t) = 1 & n < 0. \end{cases}$$

(here M_2 is the second coordinate, "the j"). Finally write

$$\varphi_n(\omega;\ldots,t_{-1},t_0,t_1,\ldots)=f_{M_1(\omega;n),M_2(\omega;n)}(t_{B(\omega;n)}).$$

It remains to prove the promised properties of the φ_n .

The first thing to note is that $\varphi_n = \pm 1$. The next thing is that $\int \varphi_n = 0$. This is clear because

$$\int \varphi_n = \mathbb{E}\left(\int \varphi_n \,\middle|\, \omega\right) = \mathbb{E}\left(\int f_{M_1(\omega;n),M_2(\omega;n)}(t_{B(\omega;n)}) \,\middle|\, \omega\right)$$

and this is 0 because $\int f_{i,j}(t_k) = 0$ for any i, j and k. Similarly we get that the functions are orthogonal:

$$\int \varphi_n \varphi_{n'} = \mathbb{E}\left(\int f_{M_1(\omega;n),M_2(\omega;n)}(t_{B(\omega;n)}) f_{M_1(\omega;n'),M_2(\omega;n')}(t_{B(\omega;n')}) \,\middle|\, \omega\right). \tag{6}$$

For ω such that $B(\omega; n) \neq B(\omega; n')$ this integral is zero because

$$\int f_{i,j}(t_k) f_{i',j'}(t_{k'}) = \left(\int f_{i,j}(t_k)\right) \left(\int f_{i',j'}(t_{k'})\right) = 0 \quad \forall k \neq k'.$$

For ω such that $B(\omega;n)=B(\omega;n')$ the integral in (6) is zero because $\int f_{i,j}f_{i,j'}=0$ whenever $j\neq j'$. Hence we get that the integral in (6) is zero for all ω , and therefore the φ_n are orthogonal. For ± 1 functions this automatically implies that they are pairwise independent.

Stationarity more-or-less follows immediately from the stationarity of M. Indeed, let $S:\Omega\to\Omega$ be the "right shift" i.e. the measure-preserving transformation such that $M(S(\omega);n)=M(\omega;n-1)$. Then we can define on $\Omega\times\mathbb{T}^\mathbb{Z}$

$$T(\omega; \{t_k\}) = \begin{cases} (S(\omega); \{t_k\}) & M_2(\omega; 0) > 1\\ (S(\omega); \{t_{k-1}\}) & M_2(\omega; 0) = 1 \end{cases}$$

and it is straightforward to verify that T is measure-preserving and

$$\varphi_n(T(\omega; \{t_k\})) = \varphi_{n-1}(\omega; \{t_k\}) \quad \forall n.$$

Finally we need to demonstrate an L^2 function with almost-everywhere diverging expansion. Examine therefore

$$\sum_{i=1}^{\infty} \frac{1}{N_{i-1}^2 \sqrt{N_i}} \sum_{n=N_i}^{N_{i-1}^2 N_i} \varphi_n$$

which is in L^2 . Examine first ω . Until time $N_{i-1}^2N_i$ there are $\leq N_{i-1}^2N_i$ new blocks, and each such block has probability $\leq C4^{-2^{N_i}}$ to be larger than N_i . Therefore with probability $\geq 1-C4^{-2^{N_i/2}}$ no such block exist (these numbers are huge, and we really don't care — let's just write probability $\geq 1-C2^{-i}$). Next examine the probability that all blocks are small. If all blocks up to $(N_{i-1}^2-1)N_i$ have size $< N_i$ then their sizes are $\leq N_{i-1}$ and we must have had at least $\frac{1}{2}N_{i-1}N_i$ new blocks. At each such event the probability to have a block of size N_i is $\geq c/i^2N_i$ and so we get

 $\mathbb{P}(\text{no block of size } N_i \text{ in the first } \frac{1}{2}N_{i-1}N_i \text{ blocks}) \leq$

$$\leq \left(1 - \frac{c}{i^2 N_i}\right)^{\frac{1}{2}N_{i-1}N_i} \leq e^{-cN_{i-1}/i^2} \leq C2^{-i}.$$

In total we see that with probability $\geq 1 - C2^{-i}$ there exists at least one block of size exactly N_i until time $N_{i-1}^2 N_i$.

This finishes the theorem, since, conditioning on the block being number B and in position $[q, q + N_i]$,

$$\sup_{n \le N_{i-1}^2 N_i} \left| \frac{1}{\sqrt{N_i}} \sum_{m=1}^n \varphi_m(\omega; \{t_k\}) \right| \ge \frac{1}{2} \sup_{n \le N_i} \left| \frac{1}{\sqrt{N_i}} \sum_{m=1}^n f_{i,m}(t_B) \right| \ge c\sqrt{2^{N_{i-1}}}$$

for all t except on a set of t-s of measure $e^{-c2^{N_{i-1}}}$. And we are done.

REFERENCES

[O75] A. M. Olevskiĭ, Fourier series with respect to general orthogonal systems, Translated from the Russian by B. P. Marshall and H. J. Christoffers. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 86. Springer-Verlag, New York-Heidelberg, 1975.