Lemma 1. For every n € N there exists K = n4™ orthonormal functions fi,..., fx
such that

(1) fi(t) = L1 foralliandallt, and [ f; = 0.
(2) For all t except for a set of measure e=“",

This is quite well known if one does not require f; = +1 or, alternatively, if
one allows coefficients i.e. writes >_ ¢; f; for some ¢; such that > ¢? = 1. In this
formulation I don’t have a reference at hand.

Proof. On the set H := {(p,q) : 0 < p < n, 0 < ¢ < 2P — 1} we define the
lexicographical order < (later on we will need a different order on /). We denote
by k(p, q) the position of (p, ¢) in the order <, in a formula
p—1
k(p,q) =1+q+» 2
=0
(ranging from 1 to 2"*! — 1). The inverse functions will be denoted by p(k) and
q(k) so that k(p(i),q(i)) = i. We now define inductively blocks of functions g
which will be our f-s after a reordering in the style of Olevskii. More specifically,
we construct the following objects:
(1) Two functions «ag, 8 : [0,1] — [0, 1] which are constant on intervals of the
form [m2=4"% (m+1)274"%). For every t, ay(t) < By (t) and [ax(t), Bi(t)] is
a maximal interval of constancy for the first k¥ Haar functions. Note that the
first k Haar functions have k£ + 1 (maximal) intervals of constancy, 2¢(k)+2
of them of length 277(*)=1 and the rest of length 277(F). A second property
we will preserve is

[k (8), Br(B)] C [ (1), B5(1)]  VEVj <k D

Finally, a and 3 will have the property that the measure of the inverse
images is just the measure of the interval, namely

m{t:alt)=a}=mit: 5{t)=b}=b—a 2)
for any interval of constancy [a, b].

(2) Functions g; ; fori < kand j € {1,...,4"27P()} (at the k’th step we define
only gi ;). The functions are constant on intervals of the form [m2~%*" (m+
1)274F), are all orthogonal and g; ;(t) = +1. The connection between g, «
and ( is in (4) below.

Start with oy = 0 and By = 1 (as we must). The process is as follows. Assume we
are in the k’th step, k¥ > 1, and denote p = p(k), ¢ = ¢q(k). Let I be the interval
[¢27P, (¢ +1)27P). Write 2P1; as a polynomial in Walsh functions. Since (denoting
by 7; the i'th Radamacher function)
P
2P1; = H(l + ;) or (1 — r;) depending on the ¢'th digit of ¢
i=1

we see that
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where W; are the Walsh functions. Now write [ = n — p and examine the product

l

B = H(Tn+3i—2 + Tnt3io1 + Tnt3i — Tnt3i—2Tn43i—1n434)-
i=1

A simple check shows that each term in the product is £2 for all ¢ and therefore
B(t) = +2!. Denote H = 2PB1;. This function is equi-distributed like a Haar
function, hence the notation H. The expansion of H into Walsh functions has
4l9p = 47927 terms which are all +1, so write

4m27P
H= Z h;
=1

where each h; = £some Walsh function, so they are orthonormal and h;(t) = £1.

With H and h; defined we can describe the induction step. Define g; which are,
on every interval of length 24*(*~1) 'a compressed version of h; on the interval
[, B]. In a formula,

gri(t) = hi (ak_l(t) n <t24"(’“_1)> (B (t) — ak_l(t))) i=1,...,4"0°P

where (x) := x — |z]. It is easy to verify all requirements from the gy, ;: Clearly
gr,i(t) = £1. Since h; are constant on every interval of the form [m2=4" (m +
1)274"), and since ay_1(t) € 27" N and By_1(t) — ax_1(t) = 27" for some r we
get that g, ; are constant on every interval of the form [m2~%"% (m + 1)274%), as
required. As for orthogonality, [ g gk = 0 for all i # ¢’ since g; 1 (t) = h;(Tt)
for some measure-preserving T'— here is where we use (2) which ensures that, if we
map the intervals of length 274"* inside {t : aj_1(t) = a} into the interval [a, ]
in some way compatible with the definition of gi ; we get a measure-preserving
transformation. Here is one possible explicit formula for 7™

T(t) = apr (8) + 274 [ (1203 217 | (B (8) = g (1) +
+ 274 m{s < 274D {t24"(k71)J sag—1(s) = a1 (B)} +
+ 274nk <t24nk> ) (3)

The reader would probably find it easier to prove that some measure-preserving
T exists with g = h o T himself than to verify that the 7" in (3) is such.

The fact that [ g ;gr,iv = 0 for k' < k follows from the fact that f: h; = 0 for
every interval of constancy [a, b]. Therefore we get

(m+1)276nk—1)
/ gk =0 Vi< 412P7m < 94n(k-1)

m2—6n(k—1)

and since gj ;v is constant on each such interval, we get the full orthogonality.
Finally we need to define o and §. The requirement [ax, Sx] C [oy, G5] (1)

implies that we need only modify them for ¢-s for which [ax—1(t), Bx—1(t)] = I

— note that [ is exactly the interval that gets split into two intervals of constancy



when you add the £’th Haar function. We define
4m27P
ag—1(t) when Z r,i(t) =2"
=1

qno—r

agp-1(t) +27P71  when Z gk,i(t) = —2"
i=1

ag(t) =

and then Bi(t) = ai(t) + 27771 As already explained, g ;(t) = h;(Tt) for a
measure-preserving transformation 7. Therefore Y gx ;(t) = >_ h;(Tt)and Y h; #
0 exactly on I and there m{t : >_ h;(t) = £2"} = 27P~! (2" is a product of 2! from
the definition of B and a 2P from the definition of H). Thus (2) holds for aj and 8%
and the induction is complete.

Before going on let us note the equality that we worked so hard to get.

2" when ai(t) € [¢277, (¢ + 3)277)
Dok = -2 whenay(t) € [(g+ )27, (¢ + 1)277) (4)
J 0 otherwise.

The reason we wrote the conditions on ay(¢) in (4) so strangely is that in this nota-
tion one can replace oy, with oy for any k&’ > k — indeed from (1) we have that if
ar(t) = q277 then ap (t) € [ar(t), Be(t)) = [q277, (¢ + 3)27P) forall & > k.

Examine now the situation at last step (k = 2"™! — 1). Again we use the the fact
that (2) implies that the function oy, defines a measure-preserving transformation
T which collects all ¢t with ay(t) = a into [a, b]. Formally, we define

T(t) = ax(t) + m{s: s <t, ag(s) = ag(t)} (5)

and get that T" : [0,1] — [0, 1] is one-to-one, onto and measure-preserving (this is
more-or-less the same 7" we had above — before the definition was complicated
because we didn’t have oy, defined yet, only a_1). Further,

gno—p (%)
> gii(t) =2"ni(T)
j=1

where 7); is the i’th Haar function normalized to have ||7;|| ., = 1. Collect all the
functions g; ; (there are exactly n4™ of them) and arrange the blocks g; ; according
to the Olevskii order =, see [O75, §II1.2] and call the result f;. We get

sup
k<K

> sup %Zhj’(Tt)

j<on+1 _ ) .
js2 ! 3=y

k
=310

and as is well known, this last sum is > cn except for a set of ¢-s of measure < e~ ".
This finishes the lemma. O

Theorem. There exists a sequence of functions @; which is orthonormal, stationary and
pairwise independent but does not satisfy Carleson’s theorem.

Proof. Define inductively Ny = 4 and N; = 2¥-142"""" | Examine the following
Markov chain. The state space V' is

{i,j:ieN,1<j<N}.



As for the transition probabilities, let
1/n?N,
" SE RN,
and define
1 i1 =12, 2 =1 +1
p((i1,j1), (i2,52)) =  q(i2) 1= Nij, j2 =1
0 otherwise.
It is straightforward to check that
- 1/i>N;
B S eve
is a stationary probability measure for our process. The reverse process has tran-
sition probabilities

1 11 =12, j2=J1—1
p*((i1,51), (i2,52)) = { q(iz) J1 =1, j2 = Ny,
0 otherwise.

and has the same stationary measure. This allows to construct a stationary process
M on Z (formally M : Q — VZ where  is the probability space) by taking M (0)
to be distributed as 7 and then M (n) defined by
P(M(n)| M(n —1)) = p(M(n —1), M(n)) n>0
P(M(n)|M(n+1))=p*"(M(n+1),M(n)) n < 0.
Clearly M is a stationary process. Let €2 be a standard probability space realizing
M.
We now move to define the ¢;. Clearly one may construct the ¢; on any stan-
dard probability space, and we will do it on  x TZ. Use lemma 1 for n = 2Vi-1

and get IV; functions f; 1,..., fi n,. Now define on 2 the process B that counts
how many “blocks” were seen, namly

Bn) number of times ¢ € (0, n] such that Ms(t) =1 n>0
n)=
—number of times ¢ € (—n, 0] such that M>(t) =1 n <0.
(here M is the second coordinate, “the j”). Finally write
‘pn(w; o to,to,tr, . ) = fMl(w;n),Mg(w;n) (tB(w;n))'

It remains to prove the promised properties of the ¢,,.
The first thing to note is that ¢,, = +1. The next thing is that [ ¢,, = 0. This is

clear because
w> =E (/ fMl(w;n),I\lg(w;n)(tB(w;n)) ‘ w)

for-a(f

and this is 0 because [ f; j(tx) = 0 for any ¢, j and k. Similarly we get that the
functions are orthogonal:

/‘Pn‘/)n’ =E </ fMl(w;n),Mg(w;n) (tB(w;n))fMl(w;n/),Mg(w;n/)(tB(w;n’)) ’W> . (6)



For w such that B(w; n) # B(w;n’) this integral is zero because

/fmtkfz/' trr) —</f”tk)</fz/- tk/)_o Vi # K.

For w such that B(w;n) = B(w;n’) the intgeral in (6) is zero because [ f; ;fij; =0
whenever j # j'. Hence we get that the integral in (6) is zero for all w, and therefore
the ,, are orthogonal. For +1 functions this automatically implies that they are
pairwise independent.

Stationarity more-or-less follows immediately from the stationarity of M. In-
deed, let S : 2 — Q be the “right shift” i.e. the measure-preserving transformation
such that M (S(w);n) = M (w;n — 1). Then we can define on 2 x T?

T(w; {tr}) = (S(w); {tx}) Ms(w;0) > 1
(S(w); {tk—1}) Mz(w;0) =1
and it is straightforward to verify that 7" is measure-preserving and
pn(T (Wi {te})) = pn-1(wi{ts}) Vn.

Finally we need to demonstrate an L? function with almost-everywhere diverg-
ing expansion. Examine therefore

% L N
[ — ©n

which is in L?. Examine first w. Until time N? 1N there are < N? | N; new blocks,
and each such block has probability < C4~ 2% o be larger than ;. Therefore
with probability > 1 — C4-2"""? no such block exist (these numbers are huge, and
we really don’t care — let’s just write probability > 1 — 02*1) Next examine the
probability that all blocks are small. If all blocks up to (N2 ; — 1) N; have size < N;
then their sizes are < N;_; and we must have had at least 2Nz_lN new blocks.
At each such event the probability to have a block of size N; is > ¢/i?N; and so we
get

P(no block of size N; in the first %Ni_lNi blocks) <
N;_1N;

c ' —cN;_1/i? —i
S(l—ile) <e ! <C27°.

In total we see that with probability > 1 — C27¢ there exists at least one block of
size exactly N; until time N? | N;.

This finishes the theorem since, conditioning on the block being number B and
in position [g, ¢ + N,

N

n n
1
sup w; {tg})| > = sup fim(tB)| > cV2Nim
ngNl.{lNl mz:: 2 n<N; | VIV, z::l o
for all ¢ except on a set of {-s of measure e =2 "' And we are done. O
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