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RANDOM HOMEOMORPHISMS AND FOURIER
EXPANSIONS

G. Kozma and A. Olevskǐı

Abstract

We prove that a random change of variable in general improves con-
vergence properties of the Fourier expansions, and we give a precise
quantitative estimate of the phenomenon.

0 Introduction

0.1. It is well known that the best possible estimate of the Fourier partial
sums

Sn(f ;x) =
∑
|k|≤n

f̂(k)e2πikx ,

which is true for any function f continuous on the circle group T = R/Z is

‖Sn(f)‖C(T) = o(logn) . (1)

This result is closely connected with another classical result, which gives
an unimprovable condition for uniform convergence of the Fourier series in
terms of the modulus continuity:

ωf (δ) = o
(
log 1

δ

)−1
. (2)

0.2. A suitable change of variable allows one to remove the divergence
phenomenon. According to the Pal-Bohr Theorem (see [Ba]), for every
real function f ∈ C(T) one can find a homeomorphism ϕ : T → T such
that the superposition f ◦ ϕ belongs to U(T) (the space of all functions
with uniformly convergent Fourier series). A stronger result of Kahane and
Katznelson [KKat] shows that it can be done simultaneously for a given
compact family of f ’s. These results were obtained by different methods;
in each case the homeomorphism ϕ was defined by a special construction
using concrete data about f or about its modulus of continuity.
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Detailed surveys of papers on the influence of individual changes of
variable on the fundamental properties of Fourier expansions can be found
in [K1], [O1,2].

0.3. In this paper we are interested in the role of a random homeomor-
phism.

We mention that an excellent survey on random Fourier series, starting
with classical results of Kolmogorov, Paley and Zygmund and ending with
modern papers, can be found in [K2]. Most of these results deal with
Fourier series with independent random coefficients. We also mention the
important papers, [G] and [Bo], on random rearrangement of orthogonal
series and a paper, [Ka], about random corrections of functions.

0.4. Our paper is devoted to a different aspect of random Fourier analysis.
For a given f ∈ C(T) we consider a random change of variable ϕ : T→ T,
independent of f , and we are interested in the “typical” behaviour of the
Fourier expansion for the superposition f ◦ ϕ. What is the best possible
estimate ∥∥Sn(f ◦ ϕ)

∥∥ = o(ω(n)) ,
which holds for any f and the “majority” of ϕ?

Our main idea is as follows: the divergence phenomenon of Fourier se-
ries is caused by resonance between the given function f and the Dirichlet
kernel Dn. A random perturbation should presumably destroy this “un-
pleasant” resonance, so one may expect that in “most cases” the superpo-
sition f ◦ ϕ enjoys a better estimate than (1). The main results confirm
this conjecture in a precise, quantitative form.

0.5. The first obstacle on the way is how to understand a “typical” change
of variable, or, stated differently, how to introduce a measure in the space
Φ of all homeomorphisms ϕ? A “most natural” measure probably does
not exist. In particular, the group Φ being non-compact has no invari-
ant probability measure. We use a stochastic structure on Φ suggested in
a more general form by Dubbins and Freedman in [DF] and studied by
Graf, Mauldin and Williamson in [GrMWi]. This construction is based on
the following assumption: for every couple of integers p, q (0 ≤ p < 2q,
q = 0, 1, 2, . . . ) the value ϕ

(p+(1/2)
2q

)
depends only on the values ϕ

( p
2q
)

and
ϕ
(p+1

2q
)

and is distributed uniformly between these numbers. The proba-
bility measure P defined this way has the nice property of “selfsimilarity”
on dyadical intervals.

In spite of the fact that the trajectories ϕ are singular almost surely
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(see [DF]), on average they preserve the Lebesgue measure m on the circle,
i.e. E(mϕ(E)) = mE; in particular

mE = 0⇔ mϕ(E) = 0 a.s. (see [GrMWi]).

Another nice property is the smoothness: the homeomorphisms ϕ and ϕ−1

both almost surely belong to the Hölderian classHα(T) (with some absolute
value α > 0). In §1 we prove the last statement, as well as some other
necessary properties of the distribution P.

0.6. Now we describe the main results. For a given f ∈ C(T), ‖f‖ ≤ 1,
n ∈ N and t ∈ T, we study the random variable

S := Sn(f ◦ ϕ; t) =
∫
T
f
(
ϕ(x)

)
Dn(t− x) dx .

We prove (§2) the following estimate for its distribution, which is uniform
with respect to all parameters above,

P(S > M) < e−e
cM

(M >M0) (3)

(c > 0 and M0 are absolute constants).
Our approach to the proof starts with an analogy to the classical result

on the distribution of the sum

T =
∑
k≥1

± 1
k ,

with equidistributed independent signs. However, the variables ϕ(α) have
much weaker independence properties and this makes our analysis much
harder than the classical case.

Inequality (3) implies (§3)

Theorem 3. For any f ∈ C(T), the Fourier partial sums satisfies the
estimate, ∥∥Sn(f ◦ ϕ)

∥∥ = o(log logn) a.s. (4)
In §5 we investigate the asymptotic behaviour of U(T) norms for high-

frequency oscillations eiνϕ with a random phase ϕ, which enables us to
prove the sharpness of the previous result:

Theorem 5. For every given sequence s(n) = o(log logn) there exists an
f ∈ C(T) such that

lim sup 1
s(n)

∥∥Sn(f ◦ ϕ)
∥∥ =∞ a.s.

Comparing (1) and (3) one can see to which extent a random pertur-
bation improves convergence properties of the Fourier expansion. We also
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prove a different version of the same phenomenon: the condition

ωf (δ) = o
(
log log 1

δ

)−1

(compare with (2)) implies f ◦ϕ ∈ U(T) a.s., and the result is sharp (The-
orems 4, 6).

A non-stochastic corollary of Theorem 3: For any f ∈ C(T) one can
achieve (4) by a bi-Hölderian change of variable. In contrast to this, all
known constructions of improving homeomorphisms mentioned in 0.2 are
extremely non-smooth.

0.7. Another possible interpretation of a “typical” change of variable
comes from Baire categories. However, this approach does not give any
positive effect. It turns out that the smoothness condition which guaran-
tees that f ◦ ϕ ∈ U for a residual set of homeomorphisms, is even stronger
than (2), and is actually identical to the condition providing that f ◦ϕ ∈ U
for every ϕ.

Denoting for a given modulus of continuity ω(δ)

Hω =
{
f : ωf (δ) = O(ω(δ))

}
,

in §5 we prove that the condition∑
1
kω
( 1
k

)
<∞

is necessary and sufficient for the implication

f ∈ Hω ⇒ f · ϕ ∈ U for a residual set of ϕ .

This result is intimately connected with the result of [BW].

0.8. We conclude by noting that it might be interesting to find “random
versions” of other problems in Fourier analysis on homeomorphisms of the
circle, such as those discussed in [O1,2].

0.9. This paper was completed when the second-named author enjoyed
the hospitality of the Institute for Advanced Study, Princeton. The Insti-
tute’s support is gratefully acknowledged.

1 Analysis of Random Homeomorphisms

1.1. In this subsection, we basically follow [GrMWi]. We start with a
more rigorous definition of the measure P. Let Xn,k, n ≥ 1, 0 < k < 2n, k
odd, be a sequence of independent, uniform random variables on [0,1] (we
denote by Ω a probability space realizing all of them). Define ϕ(0) = 0,
ϕ(1) = 1 and ϕ(1/2) = X1,1. Next, define ϕ(1/4) = X2,1 · ϕ(1/2) and
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ϕ(3/4) = ϕ(1/2) + X2,3 · (1 − ϕ(1/2)). We continue this process, at each
step defining ϕ(k2−n) = ϕ((k−1)2−n)+Xn,k ·(ϕ((k+1)2−n)−ϕ((k−1)2−n))
until we have ϕ defined on each dyadic rational on the interval [0, 1]. With a
probability 1, ϕ can be extended to a continuous strictly increasing function
[0,1] ([DF, Theorem 4.1]). Thus we have defined a measurable map X :
Ω→ Φ, where Φ is the space of all increasing homeomorphisms of [0,1] with
the topology induced by the maximum norm and the map is measurable
with respect to the borel sets on Φ. The measure P can be regarded as
being defined on Ω or directly on Φ.
Remark. The measure thus defined is not translation invariant. In
particular, 0 is a fixed point. One can make it translation invariant by
composing it with a random rotation from the left, the right or even from
both sides (making it, in the last case, invariant from both sides). It is
easy to check that all the theorems proven in §1-§4 are valid also for these
invariant measures.

The following basic properties of P are rather intuitive.

Lemma 1.1. Let I be a dyadic interval, i.e. I = [d2−l, (d + 1)2−l]. If we
fix the value of ϕ on its boundaries, the interior behaves like a small copy
of P. To be more precise, for P-almost any value of ϕ(∂I) (this “value” is
of course two real numbers, ϕ(d2−l) and ϕ((d+ 1)2−l)),(

ϕ
∣∣ ϕ(∂I)

)
|I ∼ (ϕ ◦ LI) · |ϕI|+ ϕ(d2−l) ,

where LI is a linear increasing mapping of I onto [0, 1], and |ϕI| is the
length of the interval ϕI = ϕ((d+ 1)2−l)− ϕ(d2−l). The symbol ∼ stands
for “has the same distribution as”.

This property is called “scaling invariance” and P is said to be scaling
invariant on I, see [GrMWi, Theorem 4.6].

Lemma 1.2. P is time-reversal invariant, i.e. 1− ϕ(1− x) ∼ ϕ(x).
See [GrMWi, Theorem 4.3].
The averages of ϕ and ϕ−1 are also of some interest to us. The following

two equalities are proved in [GrMWi]: ∀x ∈ [0, 1]

i) Eϕ(x) = x

ii) Eϕ−1(x) =: p(x) = 1
2 + 1

π arcsin(2x− 1) .

As a consequence, by a standard limit process we get

Lemma 1.3. Let us extend the σ-algebra on Ω by adding all P-0 measure
sets. Then,
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(i) Let E ⊂ [0, 1] be a Lebesgue measurable set. Then ϕ(E) and ϕ−1(E)
are Lebesgue measurable P-a.s.;

(ii) m
(
ϕ(E)

)
and m

(
ϕ−1(E)

)
are random variables on the probability

space Ω, that is measureable maps Ω→ R, and

E
(
mϕ(E)

)
= mE

E
(
mϕ−1(E)

)
=
∫
E
p′ dx ,

where m is the Lebesgue measure.
(iii) If f ∈ L∞[0, 1] then f ◦ϕ ∈ L∞ a.s. and

∫ 1
0 g · (f ◦ϕ) dx is a random

variable for any g ∈ L1([0, 1]).

1.2. We consider the following operator in L1[0, 1],

(Θf)(x) =
∫ 1

x

1
yf(y)dy ,

or, after a change of variable,

(Θf)(x) =
∫ 1

x

1
yf
(
x
y

)
dy .

Fubini’s theorem gives
∫ 1

0 Θf dx =
∫ 1

0 f dx and it follows that ‖Θf‖1 ≤
‖f‖1 (equality takes place iff f has constant sign).

Now we state some fundamental properties of the distribution

Pα(x) := P
(
ϕ(α) < x

)
,

and the corresponding density function ρα := d
dxPα(x).

Theorem 1. (i) For every α ∈ (0, 1), the function Pα(x) is continuous on
R and ∈ C1(0, 1).

(ii) ρα = Θρ2a (0 < α < 1/2).
(iii) ρα(x) = ρ1−α(1− x) (1/2 < α < 1).

Proof. First note that (iii) follows from Lemma 1.2. Further, if for some
α < 1/2, P2α ∈ C1(0, 1) then Pα ∈ C1(0, 1) and (ii) holds. Indeed, we have

P
(
ϕ(α) < x

)
= E

(
P(ϕ(α) < x)

∣∣ ϕ (1
2

))
.

The scaling invariance of P on the interval [0, 1/2] implies that for P-almost
any value of ϕ(1/2), (ϕ(α) | ϕ(1/2) = y) ∼ y · ϕ(2α),

Pα(x) =
∫ 1

0
P
(
y · ϕ(2α) < x

)
dy =

∫ 1

0
P2α

(
x
y

)
dy = x+

∫ 1

x
P2α

(
x
y

)
dy ,

and differentiation with respect to the parameter x (which can be justified
easily) gives (ii) and Pα ∈ C1(0, 1). So for α of the form d2−l, the obvious
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induction over l together with (ii) and (iii) gives (i) and (ii). Moreover,
using the definition of Θ we see that Pα ∈ C2(0, 1) and we have a uniform
(over all dyadical α) estimate, minδ<x<1−δ ρα(x), |ρ′α(x)| < C(δ). Now
we fix α ∈ (0, 1/2) and take dyadical αn → 2α. Obviously, Pαn → P2α
on [0,1]. Standard compactness arguments imply from the estimate above
that P2α ∈ C1, so we finish the proof.

Certainly, Pα ∈ C∞(0, 1) for every α ∈ (0, 1) but we do not need it.
We mention one more property which follows from the previous ones:

(iv) ρα is strictly decreasing if α < 1/2 and increasing if α > 1/2.

1.3. Now we prove that a random homeomorphism ϕ has almost surely a
Hölder smoothness (∈ Hγ := {f : ωf (δ) = O(δγ)}) with some fixed order
γ > 0. We need this result in a slightly more precise form. (Throughout
the paper, we denote by C and c absolute constants, possibly different.
Occasionally, we shall number the constants for clarity.)

Lemma 1.4. There exists a γ > 0 such that P(ωϕ(δ) > δγ) ≤ Cδ2 ∀δ > 0
(ωϕ is the modulus of continuity of ϕ).

Proof. Applying Θ inductively we get

ρ2−(k+1)(x) = 1
k! logk(x−1) . (1)

So, for a given b > 0 we have

P
(
ϕ(2−l) > e−bl

)
≤ 1

(l − 1)!

∫ 1

e−bl
logl−1 1

x
dx <

(bl)l

(l − 1)!
< (Cb)l .

From the definition of P, it follows that the increment of ϕ on any dyadic
interval [d2−l, (d+ 1)2−l] has the same distribution as ϕ(2−l); we obtain

P
(

max
d

[
ϕ((d+ 1)2−l)− ϕ(d2−l)

]
> e−bl

)
≤ 2lP

(
ϕ(2−l) > e−bl

)
≤ (Cb)l ,

and choosing b sufficiently small, we get the result.

Remarks. (i) It is possible to prove that γ0 = inf{γ|ϕ ∈ Hγ almost
surely} is given as the smaller solution of the transcendental equation
α(1/2)α(2e log 2) = 1. A calculation shows γ0 ≈ 0.33.

(ii) Using the inequality
∫ ε

0 logl x−1 dx < Cε logl ε−1 we get from the
proof above,

P
{

min
0≤x≤1

[
ϕ(x+ δ)− ϕ(x)

]
< δβ

}
< δ2

for β sufficiently small. In particular, this means that ϕ−1 has almost surely
a Hölder smoothness of some fixed order. Again, the exact value can be
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calculated – it is the inverse of the larger solution of the equation from (i)
≈ 0.26.

(iii) Let us consider the following variation on P: Let Qε be a probability
measure created by taking Xn,k to be uniform variables on the interval[1

2 −ε,
1
2 +ε

]
(it is also a Dubins–Freedman measure). It is easy to see that

a Qε-random ϕ has a.s. a Hölder smoothness of 1− δ, where δ = δ(ε)→ 0
as ε → 0 (and the same holds for ϕ−1). We conjecture that our results
(Theorems 2-6) hold also for Qε, for any ε.

1.4. To further analyze the ρα’s we need the following definition: a func-
tion f on (0,1) is “positive and then negative” if for some x0 ∈ (0, 1) we
have that f(x) > 0 for x < x0 and f(x) < 0 for x > x0.

Lemma 1.5. If α < β then ρα(x)− ρβ(x) is positive and then negative. In
particular, ρα(x) = ρβ(x) at exactly one value of x.

Proof. We already know (Theorem 1, iv) that ρα(x) is strictly decreasing for
α < 1/2 and strictly increasing for α > 1/2. These two facts (remembering
that ρ1/2 = 1) give us what we need for α ≤ 1/2 ≤ β.

Claim. If f and g are continuous on (0, 1), f − g is positive and then
negative and if

∫
f =

∫
g, then Θf −Θg is positive and then negative.

Clearly, Θ(f − g) is strictly decreasing and then increasing, and Θ(f −
g)(1) = 0. Since Θ preserves integrals,

∫ 1
0 Θ(f − g) = 0 and these three

facts combined give us that Θ(f − g) is positive and then negative. �

Using the claim, we get our result for all α ≤ 1/4 ≤ β < 1/2. Reversing
it (see Theorem 1, iii), we get the result for 1/2 < α ≤ 3/4 ≤ β. Repeating
this process (applying Θ and reversing) over and over we prove our claim
for all α < β. �

Lemma 1.6. ρ1/3 ≤ 2.

Proof. The equations ρ1/3 = Θρ2/3 and ρ1/3(x) = ρ2/3(1− x) (which come
from Theorem 1) can be combined to an integral functional equation for
ρ1/3. Let us define an operator Ξ by (Ξf)(x) = (Θf(1−x)) =

∫ 1
x
f(1−y)

y dy.
ρ1/3 is a stable point of Ξ. On the other hand, the space of stable points of
Ξ is one dimensional; assume f and g are two linearly-independent stable
points of Ξ. Then some combination af +bg does not have a constant sign.
Since they are both continuous, we get that ‖Θ(af+bg)‖ < ‖af+bg‖ which
implies that ‖Ξ(af + bg)‖ < ‖af + bg‖ which is a contradiction. Now, 1−x
is a solution for Ξf = f and thus ρ1/3(x) = 2(1− x).
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An alternative proof for the uniqueness of the solution is the following:
combining the first and second derivatives of the equation Ξf = f one can
get the linear equation xf

′′
+ f ′ + 1

1−xf = 0. The other solution of the
equation is (1 − x)(log(1 − x) − log x) − 1. Any solution for the equation
Ξf = f , however, must satisfy f(1) = 0, and thus the coefficient of this
second solution must be 0.
Remark. It is not difficult to show, using different methods, that ρα(x)
is bounded for α ∈ (1/4, 3/4). On the other hand, ρ1/4 is unbounded (see
equation (1) above).

The above discussion was aimed at proving the following lemma:

Lemma 1.7. Suppose 1/3 = α1 < α2 < · · · < αn = 2/3. Then
n−1∑
i=1

∫ 1

0

∣∣ραi(x)− ραi+1(x)
∣∣dx ≤ 4 .

Proof. We may assume that for some k, αk = 1/2. We shall start by
evaluating the sum up to i = k − 1. We know that ραi − ραi+1 = 0 at
exactly one point in the interval (0,1). When αi+1 < 1/2 we get that
ραi − ραi+1 = Θ(ρ2αi − ρ2αi+1). Since ρ2αi − ρ2αi+1 is positive and then
negative we have that ραi − ραi+1 is decreasing and then increasing. In
particular, it is decreasing on its positive part. The last sentence clearly
holds also for αi+1 = 1/2. Moreover, we know that (ραi − ραi+1)(0) < ∞,
so clearly∫

|ραi − ραi+1 | = 2
∫

(ραi − ραi+1)+ ≤ 2(ραi − ραi+1)(0) .

Summing these results we obtain half of what we need,∑
i<k

∫
|ραi − ραi+1 | ≤ 2

∑
i<k

(ραi − ραi+1)(0) = 2(ρ1/3 − ρ1/2)(0) = 2

(the last equality comes from Lemma 1.6). The sum over i ≥ k has the
same estimate.

2 A Pointwise Estimate for the Fourier Partial Sums

From now on we shall identify the interval [0,1] with the circle T. This iden-
tification will give us the probability space (Φ,P) of all homeomorphisms
ϕ : T → T preserving the orientation and keeping 0 as a fixed point. We
shall denote by Dn the Dirchlet kernel with period 1, i.e. Dn = sin((2n+1)πx)

sin(πx) .
The main result of this section is
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Theorem 2. There exists constants c > 0 and M0 such that for any n ≥ 1,
t ∈ T, f ∈ C(T) and M ≥M0,

P
(∫

Dn(t− x) · (f ◦ ϕ)(x)dx > M‖f‖
)
≤ e−ecM .

Proof. Throughout the proof we assume that f , n and t are fixed. Clearly,
we may assume ‖f‖ ≤ 1. We use the following notation:

D(x) := Dn(t− x).
q is the integer satisfying 2q−1 ≤ n < 2q.
An arc in [0, 1] is the image of an arc in T, i.e. an interval or a set of

the form [0, x] ∪ [y, 1].
Let B ⊂ [0, 1] be an arc and let K ∈ L1(B). Then we define

γK(B) := sup
I⊆B

∣∣ ∫
I
K
∣∣ ,

where the supremum is taken over all arcs contained in B. If K = D we
will just write γ := γD.

Actually, K will be some affine transformation of the Dirichlet kernel. In
this case, because K flips signs, γK(B) will be rather small when compared
to
∫
B |K|. Notice also the following geometric fact: if |J | ≥ 1/n then

γ(J) ≈ C
nd(t,J)+1 , where d is the cyclic distance on T.

Lemma 2.1. Assume K ∈ L1([1/3, 2/3]) and f ∈ C([0, 1]), ‖f‖ ≤ 1. Then∣∣∣∣E∫ 2/3

1/3
K · (f ◦ ϕ)

∣∣∣∣ ≤ CγK ([1
3
,
2
3

])
where C is some absolute constant.

Proof. Our idea is to perform integration by parts on
∫
K · (f ◦ϕ). Since ϕ

is singular we cannot do it directly. We therefore approximate the integral
with a finite sum and replace the integration by parts with Abel’s formula.
Let 1/3 = x0 < x1 < · · · < xl = 2/3 and denote εx := max |xi+1 − xi|. Let
us define S1 =

∫ 2/3
1/3 K ·(f ◦ϕ) and S2 =

∑l
i=1
( ∫ xi

xi−1
K
)
·f(ϕ(xi)). A rough

estimation of the difference between the sum and the integral gives

|S1 − S2| ≤
(∫
|K|
)
· max

δ<εx
1/3≤x≤2/3

∣∣f(ϕ(x+ δ))− f(ϕ(x))
∣∣ .

Now let us choose arbitrarily small εy and δ and consider the event

X :=
{
ϕ : ωϕ(εx) > εy

}
.
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Lemma 1.4 will gives us that for εx suficiently small we shall have P(X) < δ.
Further,

E
(
|S1 − S2|

)
= P(X) · E

(
|S1 − S2|

∣∣X)+ P(XC) · E
(
|S1 − S2|

∣∣XC
)

≤ 2δ
∫
|K|+ E

(
|S1 − S2|

∣∣XC
)

≤ 2δ
∫
|K|+

(∫
|K|
)
· max
η<εy

0≤y≤1

∣∣f(y + η)− f(y)
∣∣

≤
(∫
|K|
)(

2δ + ωf (εy)
)
.

Therefore by choosing εx sufficiently small, we can make E(|S1 − S2|)
arbitrarily small and refer to E(S2) as an approximation of E(S1).

Now let’s apply Abel’s transformation. We get

S2 =
l−1∑
i=1

(∫ xi

1/3
K

)
·
(
f(ϕ(xi))− f(ϕ(xi+1))

)
+
(∫ 2/3

1/3
K

)
· f
(
ϕ(xl)

)
and thus

|ES2| ≤ γK
([

1
3
,
2
3

])(
1 +

l−1∑
i=1

∣∣Ef(ϕ(xi))− Ef(ϕ(xi+1))
∣∣) .

Let us recall the definition of the density functions ρx of ϕ(x) from §1. It
is well known that

E
(
f(ϕ(x))

)
=
∫
f(y) · ρx(y)dy ,

which gives us∣∣E(f(ϕ(xi)))− E(f(ϕ(xi+1)))
∣∣ =

∣∣∣ ∫ f · ρxi − f · ρxi+1

∣∣∣ ≤ ∫ |ρxi − ρxi+1 | .

We apply Lemma 1.7 and we are done. The estimate
∑l−1

i=1
∫
|ρxi−ρxi+1 | ≤

4 gives∣∣∣∣E l−1∑
i=1

(∫ xi

1/3
K

)
·
(
f(ϕ(xi))− f(ϕ(xi+1))

)∣∣∣∣ ≤ 4γK

([
1
3
,
2
3

])
,

then |ES2| ≤ 5γK
([1

3 ,
2
3

])
, and therefore

∣∣E ∫ 2/3
1/3 K ·(f◦ϕ)

∣∣ ≤ 5γK
([1

3 ,
2
3

])
. �

Lemma 2.2. Let B be a dyadic interval. Let I be its middle third. Then∣∣∣∣E(∫
I
D · (f ◦ ϕ)

∣∣∣ ϕ(∂B)
)∣∣∣∣ ≤ Cγ(I) ,

where C is some absolute constant.
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Proof. We apply the previous lemma to K = D ◦ L, where L is the affine
increasing transformation carrying [0, 1] → B, with f ◦ L instead of f and
use the scaling invariance of P on B. �

Lemma 2.3. Let B = [b0, b1] be a dyadic interval and assume t 6∈ B. Then∣∣∣∣E(∫
B
D · (f ◦ ϕ)

∣∣ ϕ(∂B)
)∣∣∣∣ ≤ γ(B)

(
C| log γ(B)|+ C

)
.

Proof. If |B| ≤ 2−q we have nothing to prove since D flips signs no more
than once on B which implies that

∫
B |D| ≤ 2γ(B) and we need no proba-

bilistic considerations. Therefore, we can write |B| = 2k−q. Divide B into
2k + 1 subblocks as in the following diagram:

........
.................... ........

.................... ........
.................... ........

.................... ........
.................... ........

.................... ........
....................

. . . . . . . . . . . . . .

SLS1 S2 Sk S2k−1 SR

Sk is the middle third, Sk−1 is the middle third of the left half, Sk−2 is the
middle third of the left quarter, etc. SL and SR are the remainders and a
short calculation shows that |SL| = |SR| = 2

32−q. The same considerations
as above show that

∫
SL
|D| ≤ 2γ(B) which implies

∣∣E ∫SL D · (f ◦ ϕ) |
ϕ(∂B)

∣∣ ≤ 2γ(B). The same holds for SR. To estimate the integral for
the Sj ’s we can use Lemma 2.2. For Sk we can use Lemma 2.2 with no
modification and obtain

∣∣E( ∫Sk D · (f ◦ ϕ)
∣∣ ϕ(∂B)

)∣∣ ≤ Cγ(Sk). For the
other Sj ’s the proof is almost as simple: suppose for simplicity that j ≤
k − 1. Then

E
(∫

Sj

D · (f ◦ ϕ)
∣∣ ϕ(∂B)

)
= EE

(∫
Sj

D · (f ◦ ϕ)
∣∣ ϕ(∂B), ϕ(b0 + 2j−q)

)
= EE

(∫
Sj

D · (f ◦ ϕ)
∣∣ ϕ(b0), ϕ(b0 + 2j−q)

)
,

and we have the situation of Lemma 2.2, with B replaced by [b0, b0 + 2j−q]
and I replaced by Sj – which implies

≤ E
(
Cγ(Sj)

)
= Cγ(Sj) ,

and so∣∣∣∣E(∫
B
D · (f ◦ ϕ)

∣∣∣ ϕ(∂B)
)∣∣∣∣ ≤ C (γ(SL) + γ(SR) +

∑
γ(Sj)

)
≤ Cγ(B) + C

∑ 1
nd(t, Sj)

.
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Suppose now that t is closer or equal to the left side of B. We write
∑k

j=1 =∑′+∑′′, where
∑′′ is taken over the Sj ’s for which d(t, Sj) ≥ 2d(t, B) (if

such j exist). Clearly,
∑′ holds no more than log2(nd(t, B)) ≤ C| log γ(B)|

summands, and for each one γ(S) ≤ γ(B) since S ⊂ B. On
∑′′, 1

d(t,Sj)

drop exponentially and then
∑′′ ≤ C 1

nd(t,Sj0) ≤ Cγ(Sj0) ≤ Cγ(B) (j0 is

the first summand in
∑′′). The same calculation holds for the case the

j ≥ k if t is closer to the right side of B. Now, if j ≤ k and t is closer to
the right side of B then we can simply argue that d(t, Sj) > d(t, S2k−j) and
thus

∑k
j=1 ≤

∑2k−1
j=k and we are done. �

Remark. The lemma also holds if t ∈ B, in which case it takes the form∣∣∣∣E(∫
B
D · (f ◦ ϕ)

∣∣∣ ϕ(∂B)
)∣∣∣∣ ≤ C .

The proof is similar.

Lemma 2.4. Let I be an arc. Let B ⊂ IC be a dyadic interval (IC denotes
the complement of I). Then∣∣∣∣E(∫

B
D · (f ◦ ϕ)

∣∣∣ ϕ|I)∣∣∣∣ ≤ γ(B)
(
C| log γ(B)|+ C

)
.

Proof. It is clear from the construction of measure P that the information
on ϕ|I adds nothing to ϕ|B when ϕ|∂B is known. Thus this lemma is derived
from Lemma 2.3 by integration over ϕ|∂B. �

Lemma 2.5. Let I be an arc. Then∣∣∣∣E(∫
IC
D · (f ◦ ϕ)

∣∣∣ ϕ|I)∣∣∣∣ ≤ γ(IC)
(
C log2 γ(IC) + C

)
.

Proof. Following the proof of Lemma 2.3 we divide IC into a finite number
of disjoint intervals; two of them (those nearest I) of length < C/n, and all
other dyadical of length > 1/n, at most two of each size. Denote them by
Bj . For each Bj we use the estimate of Lemma 2.4 and we get∣∣∣∣E(∫

IC
D · (f ◦ ϕ)

∣∣∣ ϕ|I)∣∣∣∣ ≤ 2γ(IC) +
∑
Bj

γ(Bj)
(
C| log γ(Bj)|+ C

)
.

As in Lemma 2.3, we get a sequence of intervals of length C| log γ(IC)| for
which we estimate γ(Bj) ≤ γ(IC), and in the remaining intervals γ(Bj)
will drop exponentially. �
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From now on, it will be more natural to change the notation somewhat.
Let Ik be a symmetric arc centered at t which holds exactly 2k − 1 peaks
of the Dirichlet kernel. Denote Yk :=

∫
ICk
D · (f ◦ ϕ). Since d(t, ICk ) = k/n

(d is the cyclic distance, as above), γ(ICk ) ≈ Ck−1. Thus, Lemma 2.5 can
be restricted to arcs centered at t, and reformulated as

Lemma 2.5
′. For k > 1, |E(Yk | ϕ|Ik)| ≤ Ck−1 log2 k.

Lemma 2.6. E(Y 2
k | ϕ|Ik) ≤ Ck−1 log2 k.

Proof. Denote Jk = Ik\Ik−1, J1 = I1 and Xi =
∫
Ji
D · (f ◦ ϕ). Then

Yk =
∑

i≥k+1Xi and

Y 2
k = 2

∑
i≥k+1

XiYi +
∑
i≥k+1

X2
i .

Now,
∫
Ji |D| ≤ Ci−1 which gives the non-probabilistic estimate∑

i≥k+1

X2
i ≤ C

∑
i≥k+1

i−2 ≤ Ck−1 .

For the first summand, using Ji ⊂ Ii, we can write,∣∣E(XiYi | ϕ|Ik)
∣∣ ≤ E(|Xi| · |E(Yi | ϕ|Ik∪Ji)|

∣∣ ϕ|Ik)
≤ E

(
|Xi| · E|E(Yi | ϕ|Ii)|

∣∣ ϕ|Ik)
≤ E

(
|Xi| · E(Ci−1 log2 i)

∣∣ ϕ|Ik)
= Ci−1 log2 i · E

(
|Xi|

∣∣ ϕ|Ik) ≤ Ci−2 log2 i .

This gives us

E

( ∑
i≥k+1

XiYi

∣∣∣ ϕ|ICk
)
≤
∑
i≥k+1

Ci−2 log2 i ≤ Ck−1 log2 k ,

which proves our lemma. �

Remarks. (i) Using a slightly more sophisticated decomposition into
dyadic blocks, one can remove the log2 k factor from the above estimation.
However, this gives no improvement to the final result.

(ii) In §4 we will need a version of Lemma 2.6 which is not restricted to
arcs centered at t. The exact formulation is: For any arc J ⊂ [0, 1],

E
(∣∣∣∣ ∫

J
D · (f ◦ ϕ)

∣∣∣∣2 ∣∣∣ ϕ|JC) < Cγ(J)
(

log2 γ(J) + 1
)
.

The proof is identical to the proof of Lemma 2.6.
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The last lemma enables us to complete the proof of Theorem 2 by
a suitable modification of a classical independent-variable sum technique,
which one can find in [K2, ch. 2].

Let C1 satisfy that
∫
Ij\Ij−1

|D| < C1/j. For a given M , we denote by
j = j(M) the maximal integer such that

∫
Ij
|D| ≤ M − 1. Clearly, there

exists an absolute constant c > 0 such that j ≥ ecM . We have,

P
(∣∣∣∣ ∫

T
D · (f ◦ ϕ)

∣∣∣∣ > M

)
≤ P

(
|Yj | > 1

)
.

Using Lemma 2.6, we can define µ := C log j√
j

which will satisfy

P
(
|Ys| > µ | ϕ|Is

)
≤ 1

4 ∀ s ≥ j . (1)

Now, if M is sufficiently large (M > M0), we may also assume that

C1

j
< µ := C

log j√
j
. (2)

Lemma 2.7. If, for a given ε > 0 and ν ≥ 1, the inequality

P
(
|Ys| > νµ

∣∣ ϕ|Is) ≤ ε ∀ s ≥ j
is true, then

P
(

max
r≥s
|Yr − Ys| > (ν + 1)µ

∣∣ ϕ|Is) ≤ 4
3ε ∀ s ≥ j .

Proof. We fix s and divide the event B = {maxr>s |Yr − Ys| > (ν + 1)ν}
into disjoint events

Br =
{
|Yr−Ys| > (ν+1)µ , |Yl−Ys| ≤ (ν+1)µ ∀ l = s, . . . ,r−1

}
(r > s) .

Obviously, Br ∩ {|Yr| ≤ µ} ⊂ {|Ys| > νµ}. This gives us

ε ≥ P
(
|Ys| > νµ

∣∣ ϕ|Is) ≥ P(B ∩ {|Ys| > νµ}
∣∣ ϕ|Is)

=
∑
r>s

P
(
Br ∩ {|Ys| > νµ}

∣∣ ϕ|Is) ≥∑
r>s

P
(
Br ∩ {|Yr| ≤ µ}

∣∣ ϕ|Is) .
Clearly, Br belongs to the σ-algebra generated by ϕ|Ir and so (1) with r
instead of s gives:

P
(
Br ∩ {|Yr| ≤ µ}

∣∣ ϕ|Is) ≥ 3
4P
(
Br
∣∣ ϕ|Is)

and thus ε ≥ 3
4P (B | ϕ|Is), which is what we need. �

Lemma 2.8. With the assumptions of Lemma 2.7,

P
(
|Ys| > (2ν + 2)µ

∣∣ ϕ|Is) ≤ 4
3ε

2 .
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Proof. Let us retain the definitions of B and Br from the previous lemma.
Notice that the values of |Yr| change by no more than C1r

−1 ≤ µ at each
stage. Therefore |Ys − Yr| cannot rise above (ν + 2)µ without first being
inside the interval [(ν + 1)µ, (ν + 2)µ). Thus

P
(
|Ys| > (2ν + 2)µ

∣∣ ϕ|Is) ≤∑
r>s

P
(
Br ∩ {|Yr| > νµ}

∣∣ ϕ|Is)
≤
∑
r>s

εP(Br | ϕIs) = εP(B | ϕIs) ≤ 4
3ε

2

(using Lemma 2.7 for the last estimate). �
Starting from the definition of µ we apply Lemma 2.8 inductively l times

and get that

P
(
|Ys| > µdl

∣∣ ϕ|Is) ≤ (4
3

)2l−1 (1
4

)2′
<
(1

3

)2′
,

where the dl’s are defined recursively by d1 = 1, dl = 2dl−1 + 2. Clearly
dl ≤ C2l. Picking a maximal l such that µdl < 1 we get that l > cM and
thus P(|Ys| > 1 | ϕ|Is) ≤ (1/3)2l ≤ e−e

cM
. In particular it holds for s = j

and the theorem is proved. �

Remark. The theorem also holds for L∞ functions. To prove it one only
needs to use Lusin’s “correction” Theorem and estimate the remainder by
Lemma 1.3.

3 Global Estimates

For a given f we denote by Sn(f) the n-th partial sum of its Fourier ex-
pansion. By ‖ · ‖ we always mean the norm in C(T).

Theorem 3. For any f ∈ C(T), ‖Sn(f ◦ ϕ)‖ = o(log log n) almost surely.

Theorem 4. If ωf (δ) = o(log log 1/δ)−1 then f ◦ ϕ ∈ U(T) almost surely.
Remember that U(T) is the class of all functions on T having a uniformly

converging Fourier series. We will see in §4 that both results are sharp.
We need the following lemma which is an easy corollary to Theorem 2.

Lemma 3.1. If ‖f‖ ≤ 1 then P(‖Sn(f ◦ ϕ)‖ > C1 log log n) ≤ n−2 for
n > C2.

Proof. For any t ∈ T, Theorem 2 gives P(|Sn(f◦ϕ)(t)| > C1 log log n) < n−4

for n > C2. It follows that for a fixed n > C2 with probability > 1− n−2,
we have ∣∣Sn(f ◦ ϕ)(dn−2)

∣∣ ≤ C1 log log n , ∀ 1 ≤ d ≤ n2 .
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But Sn(f ◦ ϕ) is a trigonometric polynomial of degree n with the modulus
of each coefficient ≤ 1, so clearly

∥∥ d
dtSn(f ◦ ϕ)(t)

∥∥ ≤ Cn2 and we get from
the previous estimate that ‖Sn(f ◦ ϕ)‖ < C1 log log n+C with probability
> 1− n−2. �

Proof of Theorem 3. Let us fix an arbitrary ε > 0 and find a C1 function
g such that ‖f −g‖ < ε. It is well known that there is a constant C = C(g)
for which ‖Sn(g◦ϕ)‖ ≤ C(g) uniformly for ϕ ∈ Φ. But the previous lemma
gives

sup
n≥N>C2

1
log log n

∥∥Sn((f − g) ◦ ϕ)
∥∥ < εC

with probability > 1− CN−1 and the theorem follows. �

Remark. If f ∈ L∞(T) then using the Remark to Theorem 2, one gets
the same estimate, with o replaced by O.

Corollary. For any f ∈ C(T), there exists ϕ such that ϕ and ϕ−1 are
Hölder and ‖Sn(f ◦ ϕ)‖ = o(log logn).

We do not know whether it is possible to improve this result in either
of the following two directions: replacing bi-Hölder by bi-Lipschitz; and
replacing o(log logn) with O(1).
Proof of Theorem 4. As usual, we assume that ‖f‖ ≤ 1. Using Lemma 1.4
we fix γ > 0 such that for every n, ωϕ(n−1) ≤ n−γ with probability >
1 − Cn−2. For a given n sufficiently large we pick N , nγ/2 ≤ N ≤ 2nγ/2,
and define g ∈ C(T) to satisfy g(d/N) = f(d/N), 1 ≤ d ≤ N , and linear
between any two neighbouring points. Clearly, ‖g′‖ ≤ 2N so

ωϕ(n−1) ≤ n−γ ⇒ ωg◦ϕ(n−1) < 2Nn−γ < 4n−γ/2 .

Now using the standard estimate∥∥Sn(F )− F
∥∥ ≤ C log n · ωF (n−1) ∀F ∈ C(T) ,

we obtain ‖Sn(g ◦ ϕ)− g ◦ ϕ‖ < Cn−γ/2 log n with probability > 1− Cn2.
On the other hand, Lemma 3.1 gives∥∥Sn((f − g) ◦ ϕ)

∥∥ < C‖f − g‖ log logn < Cωf (N−1) log log n

with probability > 1− n−2, so for almost every ϕ ∈ Φ∥∥Sn(f ◦ ϕ)− f ◦ ϕ
∥∥ < Cωf (N−1) log logn+ Cn−γ/2 log n+ Cωf (N−1)

for every n > N(ϕ), and the result follows. �

Remark. If ωf (δ) = O(log log 1/δ)−1 then f ◦ ϕ has a.s. uniformly
bounded Fourier partial sums.



Vol. 8, 1998 RANDOM HOMEOMORPHISMS AND FOURIER EXPANSIONS 1033

4 Examples of Divergence

The aim of this section is to show that the main estimates of section 3
cannot be improved.

Theorem 5. For every s(n) = o(log logn) there exists an f ∈ C(T) such
that

lim sup
1

s(n)

∥∥Sn(f ◦ ϕ)
∥∥ =∞ a.s.

Theorem 6. There exists a function f with ωf (δ) = O(log log 1/δ)−1 such
that f ◦ ϕ 6∈ U(T) a.s.

4.1. We start with a few lemmas.

Lemma 4.1. Let ϕ0 be a Lipschitz homeomorphism of [0, 1] with a constant
K, i.e. |ϕ0(x)− ϕ0(y)| ≤ K|x− y|. Then

P
{
‖ϕ− ϕ0‖ < r

}
> c(K)1/r , ∀ r > 0

where c(K) is some positive constant.

Proof. It is clearly enough to consider r = K+2
2q , where q is an integer. For

s ≤ q we denote

Xs :=
{
ϕ : |ϕ(j2−s)− ϕ0(j2−s)| < 2−q , ∀ 0 < j < 2s} .

Let us estimate P(Xs+1|Xs). If ϕ ∈ Xs with some s < q then for any odd
j, 0 < j < 2s+1, the probability of the event∣∣ϕ(j2−(s+1))− ϕ0(j2−(s+1))

∣∣ < 2−q

can be estimated from below by

2−q∣∣∣ϕ( j−1
2s+1

)
− ϕ

(
j+1
2s+1

)∣∣∣ ≥ 2−q

K2−s + 2−q+1 ,

and for different j’s these event are independent. So P(Xs+1|Xs) >
(K2q−s + 2)−2s which implies

P(Xq) =
q−1∏
s=0

P(Xs+1 | Xs) >
q−1∏
s=0

(K + 2)−2s2−(q−s)2s

> exp−
(

2q log(K + 2) + 2q log 2
∞∑
j=1

j

2j

)
= exp

(
−C(K)

r

)
.

To finish the proof we only need to notice that Xq implies ‖ϕ−ϕ0‖ < r. �
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Lemma 4.2. Let N be a natural number, I a dyadical interval in (0, 1), t
the middle of I, and suppose we fix ϕ|∂I . Set l = N |ϕI| and assume l is
large enough (l > l0). Then there exists a number n, n|I|/l ∈ (1/2, 1) such
that

P
{∣∣∣∣ ∫

I
Dn(t− x) sinπNϕ(x)dx

∣∣∣∣ > c log l
∣∣∣ ϕ|∂I} > cl ,

where c is some absolute positive constant.

Proof. The properties of the Dirichlet kernel imply immediately that there
exists an n as above and a piece-linear homeomorphism ψ0 = ψ0(I, n,N) :
I → ϕ(I) which will satisfy

(i) |ψ′0| < 10|ϕ(I)|/|I|
(ii) ψ0 has exactly two inflection points in I ′ =

[
t − 1

4 |I|, t + 1
4 |I|
]
, both

not more than 1/n away from t.
(iii) sign sinπNψ0(x) = signDn(t− x) on the interval I ′.

These properties imply∣∣∣∣ ∫
I
Dn(t− x) sinπNψ0(x)dx

∣∣∣∣ > c1

∫
I′
|D| − c > c2 log l − c . (1)

Now let ψ be any homeomorphism ψ : I → ϕ(I) with the condition

‖ψ − ψ0‖ <
c1|ϕ(I)|

20l
. (2)

Then clearly,∣∣∣∣ ∫
I
D ·
(

sinπNψ(x)− sinπNψ0(x)
)
dx

∣∣∣∣ < ∫
I
|D| · πN · c1|ϕ(I)|

20l
<

1
2
c2 log l

and we get (for ψ) the same inequality as (1) but with a different constant.
Let us now estimate the probability of the event (2). Using the scaling
invariance of P we apply Lemma 4.1 to a scaled version of ψ0, r = c1/20l
and get the result of the lemma. �

Lemma 4.3. For a given ε > 0 and N sufficiently large N > N0(ε) one
can find with probability > 1− ε a random number n, a random dyadical
interval I and a random point t ∈ I such that the following conditions hold:

(i)
∣∣ ∫
I Dn(x− t) sinπNϕ(x)dx

∣∣ > c log logN ;
(ii) N c < n < NC ;
(iii) c logN < n|I| < C logN .

Proof. First, using Lemma 1.4 and remark (ii) that follows, we can find a
d > 1 such that

P
{
hd < max |ϕ(x)− ϕ(x+ h)| < h1/d ∀ 0 < h < hε

}
> 1− ε

3 . (3)
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For any N satisfying 1
2N

1/2d > h−1
ε we define Q to be the power of 2 which

satisfies
1
hε
< 1

2N
1/2d < Q < N1/2d . (4)

Fix now a dyadical interval J =
[ j−1
Q , jQ

]
and suppose that∣∣ϕ(J)

∣∣ > Q−d (> N−1/2) , (5)

then obviously, assuming that N is sufficiently large, one can always select
a random dyadical subinterval I ⊂ J such that

c1
logN
N

<
∣∣ϕ(I)

∣∣ < 2c1
logN
N

, (6)

where c1 is some constant that will be fixed later. To pick such an I, we
can start with I0 := J and always choose In to be the larger half of In−1
until, for some n, |In| will satisfy (6) and then define I := In. This selection
process has the important property that if ϕ′ = ϕ outside of I = I(ϕ) then
I(ϕ′) = I(ϕ). Thus we may apply Lemma 4.2 to I and get

P
{

sup
∣∣∣∣ ∫

I
Dn(x− t) sinπNϕ(x)dx

∣∣∣∣ > c log(c1 logN)
∣∣∣ ϕ(∂I)

}
> c2c1 logN

where the supremum is taken over all t ∈ T, dyadical I ⊂ J and n, satisfying
conditions (6) and (7)

c1 logN
2|I| < n <

c1 logN
|I| . (7)

Assuming that (5) holds for all J ’s and using independence, we get the
estimate for the conditional probability,

P
{

sup
t,I,n

∣∣∣∣ ∫
I
Dn(x− t) sinπNϕ(x)dx

∣∣∣∣ > c log logN
∣∣∣ (5) holds ∀ j

}
> 1− (1− c2c1 logN )Q ,

and, if c1 is chosen sufficiently small,

> 1− ε
3 .

The supremum is taken as above, for I, t and n satisfying (6) and (7) but
over all dyadical I ⊂ [0, 1].

Because of (3), assumption (5) occurs for all j with probability > 1− 1
3ε

and thus (i) and (iii) are fulfilled with probability >
(
1− 1

3ε
)2 (see condition

(7)). We lose another 1
3ε to get (ii) from (3), (6) and (7). �
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4.2. Our next step might be of independent interest.

Lemma 4.4.

P
(∣∣∣∣ ∫

J
Dn(t− x) · (f ◦ ϕ)

∣∣∣∣ > M
∣∣∣ ϕ|JC) < C

M

where C is an absolute constant, independent of n, t and J .
We refer the reader to remark (ii) following the proof of Lemma 2.6.

Lemma 4.4 is an easy consequence of it.
Remark. It is possible to get a double-exponential estimation of the
probability in Lemma 4.4, as in Theorem 1, but we do not need it here.

Lemma 4.5. Let ‖f‖ < 1, M > 1, r and n0 < n1 be given with the
condition

P
{

sup
t∈T

y∈[0,1]
n∈[n0,n1]

∣∣∣∣ ∫
[0,y]

Dn(t− x)f
(
ϕ(x)

)
dx

∣∣∣∣ > M

}
> r .

Then
P
{

sup
n∈[n0,n1]

∥∥Sn(f ◦ ϕ)
∥∥ > M

2

}
> r − C

M .

Proof. Denote by B the event above, so P(B) > r. On the set of all triplets
α = {y, t, n} we introduce an order
α1 ≺ α2 ⇔ y1 < y2 or y1 = y2 and t1 < t2 or y1 = y2, t1 = t2 and n1 < n2 .

Let α(ϕ) be the minimal α for which
∣∣ ∫ y

0 Dn · (f ◦ϕ)
∣∣ > M . This allows us

to partition B into disjoint events Bα = {ϕ ∈ B | α(ϕ) = α}. One can see
that every Bα depends only on ϕ|[0,y(α)]. We now fix α = {y, t, n}. Then
using Lemma 4.4 with J = [y, 1] we get

P
{∣∣Sn(f ◦ ϕ)(t)

∣∣ < M
2

∣∣ Bα
}
< C

M

and after integration on α,

P
{

max
n1<n<n2

∥∥Sn(f ◦ ϕ)
∥∥ < M

2

∣∣ B} < C
M ,

and the lemma follows. �
We mention a corollary. Denote by U0 the set of continuous functions

with uniformly bounded partial sums, and by Ũ the set of f for which∣∣∣∣ ∫
I
Dn(x− t)f(x)dx

∣∣∣∣ ≤ K(f)

for all t ∈ T, intervals I ⊂ T and n ∈ N. Clearly, Ũ ⊂ U0 and it is well
known that the imbedding is proper. However, from a probabilistic point
of view these two classes are identical.
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Corollary. For any f ∈ C(T), P(f ◦ ϕ ∈ U0\Ũ) = 0.

Proof. Notice first that Ũ =
{
f :

∣∣ ∫ y
0 D · f

∣∣ ≤ K(f)
}

, i.e. that we can
restrict our attention to intervals of the type [0, y]. The corollary then
follows from Lemma 4.5 by taking a limit as M →∞. �

Corollary. If f ∈ C(T) and ψ any piecewise linear homeomorphism of
T then f ◦ ϕ ∈ U(T)⇔ f ◦ ϕ ◦ ψ ∈ U(T) almost surely.

The last corollary is obviously closely connected with a zero-one law for
the property f ◦ ϕ ∈ U(T). However, the naive proof of the zero-one law
requires us to compare f ◦ϕ with f ◦ψ ◦ϕ. A correct proof of the zero-one
law therefore requires an additional component, which we shall not describe
here.

4.3. We are now able to finish the proofs of Theorems 5 and 6.
Proof of Theorem 5. Clearly, we may assume that s(n) is increasing.
Define by induction a fast increasing sequence Nk and a fast decreasing
sequence bk with the conditions

(i)
∑

q<k bqNq = o(bk log logNk)
(ii)

∑
q>k bq = o(bk/ logNk)

(iii) s(N c
k) = o(bk log logNk) where c is taken from Lemma 4.3, (ii).

(At each step, choose Nk sufficiently large such that (i) and (iii) are fulfilled,
and then choose bk+1 such that all conditions (ii), for all k, will be fulfilled).
With these constants, we may define

f(x) :=
∑

bk sinπNkx .

Let n ∈ [N c
k,N

C
k ], c and C from Lemma 4.3. To estimate Sn(f ◦ ϕ)

we shall define f1 :=
∑

q<k bq sinπNqx and f2 :=
∑

q>k. The standard
estimate Sn(g) < CV(g) where V(g) is the variation of g will give∥∥Sn(f1 ◦ ϕ)

∥∥ < C
∑
q<k

bqNq = o(bk log logNk)

uniformly for all ϕ and n as above. For f2 we get∥∥Sn(f2 ◦ ϕ)
∥∥ = O

(
‖f2‖ log n

)
= o(bk) .

Now, applying Lemmas 4.3 and 4.5 we get

max
n∈[Nc

q ,N
C
q ]

∥∥Sn(bk sinπNkϕ(x))
∥∥ > cbk log logNk ,

with probability > 1−o(1). As s(n) < s(N c
k) = o(bk log logNk) the theorem

is proved. �
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Proof of Theorem 6. Set

f(x) =
∑ 1

log logNk
sinπNkx ,

where Nk is increasing sufficiently fast. One can easily see that f has the
desired ωf (δ).

To prove the divergence of Sn(f) we write, as in the proof of Theorem 5,

f = f1 +
1

log logNk
sinπNkx+ f2 .

Standard estimates for the rate of convergence of Fourier partial sums of
Hölder functions give us that, if Nk is increasing sufficiently rapidly, then

max
n∈[Nc

k,N
C
k ]

∥∥Sn(f1 ◦ ϕ)− f1 ◦ ϕ
∥∥ = o(1) ,

with probability > 1 − o(1). For f2, we may argue as in the proof of
Theorem 5, and for the main term (denote it by f3), Lemmas 4.3 and 4.5
give us

max
n∈[Nc

k,N
C
k ]

∥∥Sn(f3)− f3
∥∥ > c

and the theorem is proved. �

4.4 Remarks. i) Analyzing the proof of the last theorem one can see that
in fact one can get not only divergence in C but also pointwise divergence
at a random point (actually on a random dense set).

ii) On the other hand, one can localize our construction and get an
example of an f with the same smoothness for which f ◦ ϕ has a Fourier
series which converges pointwise everywhere, but not in C(T). The localized
function looks like 1

n sin(ee
n
x+ψn) over the interval

[ 1
n+1 ,

1
n

]
where the ψn

are chosen to make f continuous.
It is interesting to compare this result with the Billard theorem, which

states that for random functions of the type
∑
±aneinx almost-sure-

pointwise-convergence-everywhere and almost-sure-uniform-convergence
are equivalent.

iii) A different variant on the pointwise question is the following: when
is it true for a function f to satisfy that f ◦ϕ has an a.s. convergent Fourier
series at x0 assuming that ϕ(x0) = y0? We give without proof the following
result for the case x0 = y0 = 0: a sufficient condition for this behaviour is
|f(δ)− f(0)| = o(log log log 1/δ)−1 and this condition is sharp.

iv) Using similar techniques, one can show that the remarks following
Theorems 3 and 4 are also sharp.
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5 Baire Categories

Here we prove that if, instead of the probabilistic approach above, one
considers the “typical” homeomorphism ϕ in the sense of Baire categories
then the situation completely changes: even the Dini–Lipshitz condition
(0.2) does not imply the convergence of the Fourier series of f ◦ ϕ.

We start with

Proposition.
∑
ωf (1/k)/k < ∞ implies that for every homeomorphism

ϕ : T→ T, f ◦ ϕ ∈ U(T).
The proof is based on a theorem of Baernstein and Waterman: f ◦ ϕ ∈

U ∀ϕ iff

λ(δ) := sup
|x1−x2k|<δ

∣∣∣∣ k∑
j=1

1
j

(
f(x2j)− f(x2j−1)

)∣∣∣∣→ 0 (δ → 0) (1)

(here {xj} (1 ≤ j ≤ 2k) is any monotone sequence on [0, 1]), see [BW].
Now for a given such sequence, |x1 − x2k| < δ, we have∣∣∣∣ k∑
j=1

1
j

(
f(x2j)− f(x2j−1)

)∣∣∣∣ ≤∑ 1
j

∣∣f(x2j)− f(x2j−1)
∣∣

≤
∑

1
jωf

(
|x2j − x2j−1|

)
≤
∑

1
jωf (δj) ,

where δj (1 ≤ j < k) is the decreasing rearrangement of the sequence
{|x2j − x2j−1|}. Obviously δj ≤ δ/j, so we get (with any ν)

λ(δ) ≤
∑ 1

j
ωf

(
δ

j

)
≤ ωf (δ) ·

∑
j≤ν

1
j

+
∑
j>ν

ωf (1/j)
j

.

Now by choosing ν we can make the second term arbitrarily small and (1)
follows.

Our aim now is to prove that the result is sharp even for a typical
(instead of every) ϕ.

Let Φ̄ be the set of all nondecreasing continuous functions ϕ on [0,1],
ϕ(0) = 0, ϕ(1) = 1 with the supremum norm. It is a complete metric space
and one can see easily that the set Φ defined in 1.1 is a residual set in
Φ̄ (as usual, a residual set is a set whose complement is of the first Baire
category). Therefore it is a second category space and it makes sense to
speak about “typical” elements of Φ.

Theorem 7. Let ω(δ) be a modulus of continuity satisfying the condition∑
1
kω
( 1
k

)
=∞ . (2)
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Then there exists a function f ∈ Hω such that for every t ∈ T
lim sup

∣∣Sn(f ◦ ϕ; t)
∣∣ =∞ , (3)

for every ϕ ∈ Φ except for a set of the first category.

Proof. 1. Let f be a function ∈ C(T), ‖f‖ = 1 such that

λ(f ; I) := sup
{xj}⊂I

x1>x2>···>x2k

∣∣∣∣ k∑
j=1

1
j

(
f(x2j)− f(x2j−1)

)∣∣∣∣ =∞ , (4)

where I is any interval ⊂ [0, 1]. Then for any t ∈ T, (3) holds for typical ϕ.
Indeed, fix some 0 < t < 1, a ϕ ∈ Φ and ε > 0. Find δ > 0 with the
condition ϕ(t − δ) > ϕ(t) − ε. For a given M , using (4), choose a ϕ̃ on
[t− δ, t], agreeing with ϕ on the boundries, such that for some n,∣∣∣∣ ∫ t

t−δ
(f ◦ ϕ̃)(x)Dn(t− x)dx

∣∣∣∣ > M + C1
δ + C2 ,

where C1 and C2 are some absolute constants that will be fixed later. Now
define ϕ̃ to be a constant on

[
t, t+ 1

2δ
]

and we will get that for any n,∣∣∣∣ ∫ t+ 1
2 δ

t
(f ◦ ϕ̃)(x)Dn(t− x)dx

∣∣ ≤ C .
Fix C2 to be this C. Set ϕ̃ to be equal to ϕ outside [t−δ, t+δ] and interpolate
ϕ̃ linearly on

[
t+ 1

2δ, t+ δ
]
. We will get, simply because |f ◦ ϕ̃| ≤ 1, that∣∣∣∣ ∫ t−δ

0
+
∫ 1

t+ 1
2 δ

(f ◦ ϕ̃)(x)Dn(t− x)dx
∣∣∣∣ ≤ C

δ
.

Again, fix C1 to be this C. This will give us∣∣Sn(f ◦ ϕ̃; t)
∣∣ > M .

It follows that the set {ϕ : supn |Sn(f ◦ ϕ̃; t)| > M} is dense and certainly
open in Φ, and we get (3) on a residual set of homeomorphisms.

2. Now we need only construct a function f ∈ Hω satisfying (4). Denote

fs(x) =

{
ω(4−l) sin 4lπx x ∈ (2−l, 2−(l−1)], l < s

0 x ≤ 2−s

and extend it periodically with period 1 on R.
Clearly ωfs(δ) < Cω(δ), δ > 0. Denote x(s)

j as the set of all points of
local extremum of fs on [0,1] in decreasing order. Then we have∑

1
j

∣∣fs(x(s)
j+1)− fs(x(s)

j )
∣∣ > c

∑
`<s

ω(4−`) > c
∑
`<2s

ω(2−`) > c
∑
j<4s

1
jω
(1
j

)
.

(5)
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We now put
f(x) =

∑
ν

4−Nνfsν (2Nνx) . (6)

where the numbers Nν and sν are chosen as follows: if the partial sum gν−1
of the series (6) is already defined we take

Nν > Nν−1 + 2sν−1 , (7)
and then take sν so large that∑

j<4sν

1
jω
(

1
j

)
> 42Nν . (8)

Clearly ωf (δ) < C
∑

4−Nνωfsν (2Nνδ) < Cω(δ). Now fix I to be of the form
[p2−Nν , (p+1)2−Nν ]. (7) implies that λ(gν−1, I) < 1. Denoting by {xj} the
extremal points of fνs on I in decreasing order and keeping in mind that
all further members of (6) vanish at each xj , we get from (5),(6),(8) that
λ(f, I) > 4Nν . �

Remark. As in the previous sections, there is also a version of this
theorem pertaining to the order of growth of ‖Sn(f ◦ ϕ)‖. It is possible to
prove that for any s(n) = o(log n) one can construct a function f ∈ C(T)
such that

lim sup
1

s(n)

∥∥Sn(f ◦ ϕ)
∥∥ =∞

for a second category set of homeomorphisms ϕ. Further, in the category
setting one can strengthen this result to get

lim sup
1

s(n)

∣∣Sn(f ◦ ϕ)(t)
∣∣ =∞

on a set S of (t, ϕ)’s which is of second category in T×C(T) and S∩{t = t0}
is of second category in C(T) for every t0.

This kind of extension cannot happen in measure setting, due to the
Carleson convergence theorem.
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